The Inventor Mentor:Programming Object Oriented 3D Graphics
with Open Inventor [,Release 2

About This Book
What This Book Contains
How to Use This Book
What You Should Know Before Reading This Book
Conventions Used in This Book
Tips
Advanced Information
Key to Scene Graph Diagrams
Suggestions for Further Reading
Acknowledgments
Color Plates

Chapter 1
Overview

What Is Open Inventor?
Objects, not Drawings
Using Database Objects in a Variety of Ways
Animation
How Does Open Inventor Relate to OpenGL?
The Inventor Toolkit
The Scene Database
Node Kits
Manipulators
Inventor Component Library
Inventor Class Tree
Extending the Toolkit

Chapter 2
An Inventor Sampler

"Hello, Cone"
A Red Cone
Using Engines to Make the Cone Spin
Adding a Trackball Manipulator
Adding the Examiner Viewer

Naming Conventions

Scene Basic Types
Methods
Types versus Fields

Coordinate Systems in Inventor
Include Files

Chapter 3
Nodes and Groups

The Scene Database
Scene Graphs
Types of Nodes
Creating Nodes
What's in a Node?
What Happens When You Apply an Action to a Node? (Advanced)
Shape Nodes
Property Nodes
Groups
Creating Groups
Ordering of Children
Why Is Order Important?
Separators
Other Subclasses of SoGroup
Shared Instancing of Nodes
Paths
Where Do Paths Come From?
What Are Paths Used For?
Fields within a Node
Why Fields? (Advanced)
Single versus Multiple Value Fields
Single Value Fields: Setting and Getting Values
Multiple Value Fields: Setting and Getting Values
Ignore Flag (Advanced)
Override Flag (Advanced)
References and Deletion
Reference Counting
How Nodes Are Deleted
Nodes with Zero References
Summary of References and Deletion
Node Types
Naming Nodes

Chapter 4
Cameras and Lights

Using Lights and Cameras

Cameras
SoCamera
Subclasses of SoCamera
SoPerspectiveCamera
SoOrthographicCamera
Mapping the Camera Aspect Ratio to the Viewport
Viewing a Scene with Different Cameras
Lights
SoLight
Subclasses of SoLight
SoPointLight
SoDirectionalLight
SoSpotLight
Using Multiple Lights

Chapter 5
Shapes, Properties, and Binding

Simple Shapes

Complex Shapes
Face Set
Indexed Face Set
Triangle Strip Set
Quad Mesh

Property Nodes
Material Node
Draw Style Node
Light Model Node
Environment Node
Shape Hints Node
Complexity Node
Units Node

Binding Nodes
Indexed Binding
Binding per Vertex
Nuances (Advanced)
Using a Material Binding Node
Normal Binding
Generating Normals Automatically

Transformations
SoTransform Node

Order of Transformations

Chapter 6
Text

Two Dimensional Text
Font Type and Size
Using 2D Text
Three Dimensional Text
Parts of 3D Text
Profile
Simple Use of 3D Text
Advanced Use of 3D Text (Advanced)

Chapter 7
Textures

Creating Textured Objects
What Is a Texture Map?
Nodes Used for Texture Mapping
Using the Defaults
Key Concepts
Wrapping a Texture around an Object
How a Texture Affects the Underlying Colors (Advanced)
Storing an Image (Advanced)
SoTexture2 Node
Fields of an SoTexture2 Node
Transforming a Texture Map
Mapping the Texture onto the Object
Using the Default Texture Mapping
Specifying Texture Coordinates Explicitly (Advanced)
Using a Texture Coordinate Function

Chapter 8
Curves and Surfaces

Overview
Classes Used with NURBS Shapes
Parametric Curves

Key Concepts
Control Points and Order
Continuity of a Curve
Basis Function
Summary of NURBS Relationships
Rational Curves

N UR B S Spells NURBS
Examples of NURBS Curves

B Spline Curve

Uniform B Spline Curve Passing through Endpoints
NURBS Surfaces

Bezier Surface

Trimming NURBS Surfaces
Suggestions for Further Reading

Chapter 9
Applying Actions

Inventor Actions
General Model
Applying an Action
Rendering
Setting the Transparency Quality
Antialiasing
Printing and Off screen Rendering
Caching
Culling Part of the Scene
Calculating a Bounding Box
Create an Instance of the Action
Apply the Action
Obtain Results
Accumulating a Transformation Matrix
Create an Instance of the Action
Apply the Action
Obtain Results
Writing to a File
Searching for a Node
Specify the Search Criteria
Apply the Action
Obtain the Results
Picking
Picking Style
Create an Instance of the Action
Set Parameters
Apply the Action
Obtain Results
Using the Pick Action

Calling Back to the Application
Create an Instance of the Action
Register Callback Functions
Apply the Action
Using a Callback for Generated Primitives

Chapter 10
Handling Events and Selection

Overview
General Programming Model for Event Handling
Using the X Window System
Render Area
Inventor Events (SoEvent)
Scene Manager
Inventor Event Handling
How Nodes Handle Events: SoHandleEventAction
SoNode
SoGroup
SoManipulator
SoSelection
Finding the Event Handler
Using Event Callback Nodes (Advanced)
Sending Events Directly to the Application (Advanced)
Selection
Managing the Selection List
Highlighting Selected Objects
Callback Functions for Selection Changes

Chapter 11
File Format

Writing a Scene Graph
Reading a File into the Database
File Format Syntax
File Header
Writing a Node
Writing Values within a Field
Ignore Flag
Field Connections
Global Fields
Writing an Engine
Writing a Path
Defining and Using Shared Instances of Nodes

Writing a Node Kit
Including Other Files
ASCII and Binary Versions
Reading in Extender Nodes and Engines
File Format for Unknown Nodes and Engines
Alternate Representation
Reading from a String

Chapter 12
Sensors

Introduction to Sensors
Sensor Queues
Key Terms
Data Sensors
General Sequence for Data Sensors
Callback Function
Priorities
Triggering a Data Sensor
Using a Field Sensor
Using the Trigger Node and Field (Advanced)
Other Delay Queue Sensors
General Sequence for One Shot and Idle Sensors
SoOneShotSensor
SoldleSensor
Timer Queue Sensors
General Sequence for Timer Queue Sensors
SoAlarmSensor
SoTimerSensor
Processing the Sensor Queues (Advanced)

Chapter 13
Engines

Introduction to Engines
General Uses of Engines
Types of Engines
Making Field Connections
Multiple Connections
Field Conversion
Reference Counting
Disabling a Connection
Updating Values

Global Fields

Animation Engines
Elapsed Time Engine
One Shot Engine
Time Counter Engine

Gate Engine

Arithmetic Engines
Boolean Engine
Calculator Engine
Using the Calculator to Constrain Object Behavior

Nodes Used for Animation
Rotor Node
Blinker Node

Chapter 14
Node Kits

Why Node Kits?
Hidden Children and SoNodeKitPath
Node Kit Classes
Node Kit Catalog
Parts Created by Default
Selecting Parts and Setting Values
Other Methods: getPart() and setPart()
The getPart() Method
The setPart() Method
Macros for Getting Parts
The SO_GET_PART() Macro
The SO_CHECK_PART() Macro
Specifying Part Names
Creating Paths to Parts
Using List Parts
Using Separator Kits to Create Motion Hierarchies
Examples
Simple Use of Node Kits
Using Node Kits with Editors
Creating a Motion Hierarchy

Chapter 15
Draggers and Manipulators

What Is a Dragger?
Types of Draggers

Manipulators versus Draggers
Simple Draggers
Field Connections
Callback Functions
Using Multiple Draggers
Manipulators
Replacing a Node with a Manipulator
Using the replaceNode() Method
Customizing a Dragger (Advanced)
Parts of a Dragger
Changing a Part after Building the Dragger
Changing the Default Geometry for a Part

Chapter 16
Inventor Component Library

Introduction to Components
Xt Utility Functions
Render Area
Methods
Xt Devices
Using the Overlay Planes (Advanced)
Xt Components
General Model
Construct the Component
Show and Hide the Component
Passing Data to the Application
Viewers
Constructing a Viewer
Specifying the Scene Graph for the Viewer
Methods for SoXtViewer
Methods for SoXtFullViewer
Using the 3D Clipboard
Creating an Instance of SoXtClipboard
Copying Data onto the Clipboard
Pasting Data from the Clipboard

Chapter 17
Using Inventor with OpenGL

Introduction
OpenGL State Variables and Inventor
Color Index Mode

Using an SoCallback Node
Caching
Using a Callback Node
Applying a Render Action Inside a GLX Window

Appendix A
An Introduction to Object Oriented Programming for C Programmers

What Is Object Oriented Programming?
Data Abstraction
Inheritance
Implementing Data Abstraction and Inheritance: Classes
Class Hierarchies
An Example of a Class: Sphere
An Example of Inheritance: HollowSphere
Suggested Reading

Appendix B
An Introduction to the C API

Naming C Functions

Abbreviating C Function Names
Creating and Deleting Objects from C
Overloaded C++ Methods

Calling Functions

C Classes and Manual Pages

A Sample Open Inventor Program in C

Appendix C
Error Handling

Runtime Type Checking
Posting an Error
Handling an Error
Debugging

The Inventor Mentor:
Programming Object Oriented

3D Graphics with Open Inventor [,
Release 2

About This Book

The Inventor Mentointroduces graphics programmers and application developers to Open Inventor,
an object oriented 3D toolkit. Open Inventor is a library of objects and methods used for interactive
3D graphics. Although it is written in C++, Open Inventor also includes C bindings.

For the sake of brevity, the examples included in this book are in C++. All C++ examples, as well as
equivalent examples written in C, are available on line. If you are new to the C++ language, see
Appendix A, "An Introduction to Object Oriented Programming for C Programmers,” to help you
understand the references to classes, subclasses, and other object oriented concepts used throughout
this book. If you are using the C application programming interface, also see Appendix B, "An
Introduction to the C APL."

What This Book Contains

This book describes how to write applications using the Open Inventor tdbkitnventor
Toolmakera companion book for the advanced programmer, describes how to create new Inventor
classes and how to customize existing classes.

The Inventor Mentocontains the following chapters:

» Chapter 1, "Overview," provides a general description of Open Inventor concepts and classes and
how Inventor relates to OpenGL and the X Window System.

« Chapter 2, "An Inventor Sampler," presents a short program that creates a simple object. This
program is then modified to show the use of important Inventor objects: engines, manipulators,
and components.

» Chapter 3, "Nodes and Groups," introduces the concept of a scene graph and shows how to create
nodes and combine them into different kinds of groups.

» Chapter 4, "Cameras and Lights," describes the camera nodes used to view a scene and the light
nodes that provide illumination.

» Chapter 5, "Shapes, Properties, and Binding," describes how to create both simple and complex
shapes and how to use property nodes, including material, draw style, and lighting model nodes.
Binding materials and surface normals to shape nodes is also explained.

» Chapter 6, "Text," shows the use of 2D and 3D text nodes.
» Chapter 7, "Textures," describes how to apply textures to the surfaces of objects in a scene.
» Chapter 8, "Curves and Surfaces," explains how to use NURBS curves and surfaces.

» Chapter 9, "Applying Actions," describes how operations are applied to an Inventor scene graph.
Actions include OpenGL rendering, picking, calculating a bounding box, calculating a
transformation matrix, writing to a file, and searching the scene graph for certain types of nodes.

» Chapter 10, "Handling Events and Selection," explains how Inventor receives events from the
window system. It also describes how the selection node manages a selection list and performs
highlighting.

» Chapter 11, "File Format," describes Inventor’s interchange file format, used for reading files into
Inventor, writing files out from Inventor, and data exchanges such as copy and paste.

» Chapter 12, "Sensors," describes how Inventor sensors watch for certain types of events and

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 About
This Book 1

Chapter 12, "Sensors," describes how Inventor sensors watch for certain types of events and
invoke user supplied callback functions when these events occur.

» Chapter 13, "Engines," describes how you can use Inventor engines to animate parts of a scene
graph, or to create interdependencies among the nodes in the graph.

» Chapter 14, "Node Kits," introduces node kits, a convenient mechanism for creating groups of
related Inventor nodes. Each node kit contains a catalog of nodes from which you select the
desired nodes.

« Chapter 15, "Draggers and Manipulators," describes how to use draggers and manipulators,
which are special objects in the scene graph that respond to user events. Manipulators are nodes
with field values that can be edited directly by the user.

» Chapter 16, "Inventor Component Library," shows how to use Inventor's Xt components, which
are program modules with a built in user interface for changing the scene graph interactively. It
also Chapter 17, "Using Inventor with OpenGL," discusses how to use Inventor with the OpenGL
Library.

There are three appendices:

e Appendix A, "An Introduction to Object Oriented Programming for C Programmers," describes
basic concepts of object oriented programming, including data abstraction and inheritance.

« Appendix B, "An Introduction to the C API," explains the differences between the Open Inventor
C and C++ interfaces.

» Appendix C, "Error Handling," describes Inventor’s error handling mechanism.

How to Use This Book

It's unrealistic to expect anyone to read a lengthy programmer’s guide from start to finish. After you
read a few basic chapters, you can skim others and skip around, depending on your particular needs
and goals. Here are a few suggested paths for making your way through this book.

For a basic understanding of how to create nodes and connect them into scene graphs, read Chapters 1
through 5. Then read Chapter 9, "Applying Actions," and Chapter 10, "Handling Events and
Selection."

If you are mainly interested in reading files into the Inventor database, read Chapters 1 and 2 for an
overview of Inventor, and then jump to Chapter 11, "File Format."

If you are an experienced OpenGL programmer, Chapters 1, 2, 10, and 17, "Using Inventor with
OpenGL," are important chapters to begin with. Again, for a basic understanding of building a scene
graph, you also need to read Chapters 3 through 5 and Chapter 9.

Chapter 15, "Draggers and Manipulators," and Chapter 16, "Inventor Component Library," describe
the programming aspects of Inventor that have an associated user interface. The user interface for
individual components is described in the on line HELP cards provided for each class.

Once you understand the basic material presented in Chapters 1 through 5, you can skip to Chapter
13, "Engines," and Chapter 14, "Node Kits." Engines, like nodes, are basic building blocks in the
scene graph. They allow you to animate parts of the scene graph and to incorporate additional
behavior into scene graph objects. If you are creating scene graphs, node kits offer many shortcuts.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 About
This Book 2

What You Should Know
Before Reading This Book

This book assumes you are familiar with basic concepts of 3D graphics programming. For example, it
assumes you have a reasonable understanding of the followinglightirsg, rendering, vertex,

polygon, light source, picking, matrix, OpenGL, pixel, surface notirthlese terms are new to you,
consult one or two of the sources listed in "Suggestions for Further Reading," later in this
introduction.

In addition, this book assumes you have some familiarity with concepts related to object oriented
programming. See "Suggestions for Further Reading" as well as Appendices A and B for good
background information.

Conventions Used in This Book

This book useboldface textfont for all Inventor classes, methods, and field nafebtode
SoMaterial, getValue() setValue() ambientColor, and center Parentheses indicate methods.
Code examples are in Courier font.

Tips

Several headings are used in paragrahs to highlight different kinds of text. Programming tips are
marked with their own headinigp: .

Advanced Information

Information that is considered advanced, and could be skipped during your first reading, is marked
with their own headingAdvanced) This heading can apply to a single paragraph or to an entire
section or chapter.

Key to Scene Graph Diagrams

Figure In 1 shows the symbols used in the scene graph diagrams that appear throughout this guide.

Suggestions for Further Reading
For a general introduction to computer graphics, see the following:

* Foley, J.D., A. van Dam, S. Feiner, and J.F. HugBemputer Graphics Principles and
Practice,2e. Reading, Mass.: Addison Wesley, 1990.

* Neider, Jackie, Tom Davis, Mason W@penGL Programming Guid®eading, Mass.:
Addison Wesley, 1993.

* Newman, W., and R. SprouPRrinciples of Interactive Computer Graphj@e. New York:
McGraw Hill, 1979.

For an introduction to the C++ language, see the following:

+ Lippman, Stanley B., A C+Primer, 2e. Reading, Mass.:Addison Wesley, 1991.

» Shapiro, JonathaA C++Toolkit Englewood Cliffs, N.J.: Prentice Hall, Inc., 1991.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 About
This Book 3

For an introduction to object oriented programming, see

* Meyer, BertrandDbject Oriented Software Constructidmondon: Prentice Hall International,

The Inventor Mentor:

This Book 4

O

1988.
Transtorm Light
Appearance Manipulator
{ |
\ /
Matric/Topology Node Kit

(&)

Property {Misc.) SoSelection
(-~
Shape Callhack
O
Group Path
O
Separator Render Area/Component
Engine é_u_b_g_r:a_[;h
) -
Switch Field

real Time Global Field

Programming Object Oriented 3D Graphics with Open Inventor , Release 2 About

Figure In 1 Scene Graph Symbols

Acknowledgments

As a student of the Open Inventor toolkit, | am deeply indebted to the original Inventor mentors, who
contributed so much to the development and content of this book: Rikk Carey, Gavin Bell, Alain
Dumesny, Dave Immel, Paul Isaacs, Howard Look, David Mott, Paul Strauss, and Helga
Thorvaldsdottir. Even under the pressures of tight deadlines and numerous competing responsibilities,
the members of the Inventor team consistently met my demands: they answered all questions,
reviewed numerous drafts, and created the code examples that are the core of this book. Rikk Carey
provided dynamic leadership for the Open Inventor project, rigorously questioning and challenging
each decision. Paul Strauss, one of the chief architects of Inventor, probably read the most drafts and
definitely added the most red (and green) ink to those drafts. His insightful and literate reviews were
invaluable to me. Additional eagle eyed reviewers included Ronen Barzel, Sam Chen, Beth Fryer, and
Kevin Goldsmith.

Putting all the pieces of the puzzle togefhscreen shots, line art, color plates, text, code examples

O also required a large cast of people. Rikk Carey created the cover image. Catherine Madonia used
Rikk’s scene to create the black and white images for the part and chapter title pages. Paul Isaacs
showed his creative genilsot to mention his ability to work under brutal deadlinés creating the

many models and scenes for the images shown in Figure In 2 through Figure In 22. I'm also grateful
to Maria Mortati, who designed the color plate section and persuaded me to make massive edits to the
figure captions. Catherine Madonia helped by creating conceptual images and by taking snapshots of
the example programs. The many details of dealing with vendors, coordinating printer tests and
schedules, and producing the book were ably handled by Laura Cooper and Lorrie Williams. Line art
was drawn by Kay Maitz, Cheri Brown, Dan Young, Howard Look, and Lorrie Williams. Helga
Thorvaldsdottir paid special attention to the code examples: writing many of them, and revising and
polishing to the bitter end.

Many thanks to Kirk Alexander, of the Interactive Computer Graphics Laboratory at Princeton
University, who supplied numerous images and revisions to satisfy our requests precisely. The

Out of Box Experience, an application originally designed for the Silicon Graphics Indy workstation,
shown in Figure In 38 through Figure In 41, was created by Leo Blume, Mark Daly, Kevin

Goldsmith, Howard Look, and Chee Yu of Silicon Graphics, and Brad de Graf, Shari Glusker, Jill
Huchital, Karen Hughes, Peter Oppenheimer, Mark Swain, Drew Takahashi, and Phil Zucco of
(Colossal) Pictures. The art gallery tour shown in Figure In 31 is the work of Gavin Bell, Mark Daly,
Kevin Goldsmith, and Linda Roay, all of Silicon Graphics. Many of the models used in the cover scene
were created by Acuris, Inc.

I'd also like to thank Jackie Neider, manager of Developer Publications in the Visual Magic Division
of Silicon Graphics, and the other members of my deparfireatricia Creek, Arthur Evans, Liz

Deeth, Beth Fryer, Jed Hartman, Ken Jones, John Stearns, Eleanor Bassler, and CarébGeary
their consistent support and encouragement during the course of this project (and for sharing the
high speed printer).

And, most important, thanks to my husband, Steve, and my sons, Jeff and Evan, for a warm dinner
and cheerful conversation at the end of some very long days.

Color Plates

This section includes all of the color plates referenced throughout the book.

Rob: Roly T 1| Foom [0 (77 [B6.

Figure In2 Plate 1

A scene showing the effects of directional lights. The scene contains blue and yellow directional
lights; the building itself is white. (Images for Plates 1 through 21 by Paul Isaacs.)

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Color
Plates 1

Rotx Foty NI (IrTm| Zoom | 0

Figure In 3 Plate 2

The same scene, using purple point lights.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Color
Plates 2

Fob! Foky ETTCITITCTOM|

Figure In4 Plate 3

The same scene, using spotlights for a dramatic effect. Gray icons show the placement and orientation
of the spotlights. See Chapter 4.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Color
Plates 3

-._\‘.

Figure In5 Plate 4

Scene rendered with a lighting model of BASE_COLOR.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Color
Plates 4

e S ——]| Zoom

Figure In 6 Plate 5

The same scene, with the lighting model changed to PHONG. See Chapter 5.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Color
Plates 5

File Eo Uewisp Selecfien Eallfors Mamps Lis

R en—"] Zoom[10 Dally

Figure In 7 Plate 6

Scene showing the effects of an SoEnvironment node. The fog type is FOG, and the fog color is
lavender. See Chapter 5.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Color
Plates 6

g —

Figure In 8 Plate 7

An indexed face set using per face material binding.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Color
Plates 7

|Rox Rowy gr————m| Zoom 7] oo Dalty

Figure In9 Plate 8

The same face set using per vertex indexed material binding.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Color
Plates 8

| [Gl | o3 | |

Robe Rty W) Zaom [| 000 |10, Dolly

Figure In 10 Plate 9

The same face set using per face indexed material binding. See Chapter 5.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Color
Plates 9

File EoW Viewing Sefection Cdters Manies LidHs

M Row Rowy g Zoom [0 L DjHs. Doly

Figure In 11 Plate 10

Scene using nontextured surfaces, a white point light in the foreground, and orange point lights in the
background.

Rets Rety T Zoow [T [7[BE - deity

Figure In 12 Plate 11

The same scene, with textures added using a MODULATE texture model.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Color
Plates 10

i

hy -'Tr" S

SR
0
-u'iT-"'%‘-';"r

=

ORO

.

S

¥
>

1y}
2OSR0

@
X!

Figure In 13 Plate 12

The same scene, using a DECAL texture model.

Figure In 14 Plate 13

The same scene, using a BLEND texture model with a gold blend color to achieve a filigree effect.
See Chapter 7.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Color
Plates 11

Figure In 15 Plate 14

Texture mapping using SoTextureCoordinatePlane. The textured square at left (with arrows) is
projected onto four different shapes.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Color
Plates 12

Figure In 16 Plate 15

Texture mapping using SoTextureCoordinateSphere. The textured sphere at right (with arrows) is
projected onto four different shapes.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Color
Plates 13

Figure In 17 Plate 16

Texture mapping using SoTextureCoordinateEnvironment.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Color
Plates 14

et R L L ek L i

Figure In 18 Plate 17

Scene using a variety of texture coordinate function nodes. See Chapter 7.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Color
Plates 15

Figure In 19 Plate 18

Scene using BLEND trans parency type. The order of rendering is background, sphere, cone, black
and gold buildings.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Color
Plates 16

Figure In 20 Plate 19

Scene using DELAYED_BLEND transparency type. Order of rendering is opaque objects
(background, black and gold buildings), then transparent objects (sphere, cone).

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Color
Plates 17

Figure In 21 Plate 20

Scene using SORTED_OBJECT_BLEND transparency type. Order of rendering is opaque objects
(background, black and gold buildings), then transparent objects, sorted from back to front (cone,
sphere). See Chapter 9.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Color
Plates 18

_I¢Inse Proflie Clear Profin] |mu Roby QI iiiom

£ e Seetion Cear Seion] Crcle| Aeverse Order] I Clnse Spine Chear Sping rcie| Semi-rircie I Cange Twist Cluar Tws]

Suve am| Sove Verile:| [Flata22| Al Mormal| ™ Top Cap T Botiom Cap Objeat Hame: [body] E";' Copy Al | A | Rew Ot E

Crease Angle: |50, 0o T Bdin s rows |h._ Bdin nusm cols: |IL_ xh"ﬂ:Ih-Tj?l\"lmnﬂ: W'?‘
) Testur=0nCdf X repeat: IE_m I I‘l"r:pn-: Ih_m [i- 5 IE_III [|

Shape Randaring Typei - Fics 56t Tr Srips - Quadhissh - Baziar w DulirSping -~ OubicToEdoe

Figure In 22 Plate 21

Noodle, an object modeler. The user specifies a cross section, spline, profile, and twist for each object.
The gold airplane is made of Inventor NURBS surfaces. The purple airplane is made of face sets using
the same data.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Color
Plates 19

Edit Color

w .| Speo:
w o Emis:

Shininess: Iﬁ’j

Transg:

- — 13
%_

Rotc Roty o= Zoom []

- PG %S R AR T AT SOl B8 10T B BhOT R 9. 19" eslanted
pale " rdiaklia wchia 2ma. k 0. 1w fully cead.

Figure In 23 Plate 22

Movieola®, a modeling and animation system based on Inventor. This application makes extensive
use of Inventor’s 3D manipulators, components, and node kits to provide intuitive tools for creating
complex shapes. (© 1993 Radiance Software International.)

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Color

Plates 20

Light Direatan:
4 Mo Shacow

«r Follow Light 1
+ Folow Light 2
Cusiom Direclion

Prajezt Parallel Ta:

1l ™ miaenal new matals

] Headlight Light 1 Lighi 2
wr TEGrE cheima -I a i = B

3| Simpde Medels:

| Feeeted [T 0T Smaath
3| Sectioms: cefmd o

| 2015 PR IRIS Showese E |

Copmrchl (T) 15 Slcon Eraphics, Ine [
2CE: 3G P ~ |
pnnsldaeodsh G b npecEl R emanon et |
wresdun s not an Image ik, i

Figure In 24 Plate 23

Showcase, an application for creating multimedia presentations. All 3D support, including rendering,
interaction, and editing, is provided by Inventor. (Image by Rikk Carey.)

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Color
Plates 21

Edit Color

w | P I L
w - Dl I
w | Speec: — (0.7
W .| Emis: I_ 3
Shineness: Ic
Iransgp: L_t__ X
F {n 1 Edk

- Edit

- Edk

Copy
Edi Parts|

Ahoid,

Figure In 25 Plate 24
Textomatic, a simple Inventor application used for interactively defining profiles and materials for 3D

text. (Image by Catherine Madonia.)

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Color

Plates 22

= Fenrer)
Fila Wiewing Editors Maalps Lights

Figure In 26 Plate 25

A hydrodynamics simulation created in Explorer, an application used for visualizing data. Inventor is
used for the 3D rendering module. (Data courtesy of Drew Whitehouse and Gustav Meglicki,
Australian National University Supercomputer Facility. Image by Roy Hashimoto.)

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Color
Plates 23

fite Gt Viewlmg Seicoton Editerr Mamips Lights Andeaslion

KelERlD | (9]

Robe Aoty ST oo Zoom L 3.8 [Drolhy

Figure In 27 Plate 26

Five map layers showing the Mahantango Creek USDA Watershed in Pennsylvania. The layers show
direction of steepest descent, slope, rainfall, soil saturation, and soil category. (Data courtesy of
Dominique Thongs, Department of Civil Engineering; image courtesy of Interactive Computer
Graphics Laboratory, Princeton University.)

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Color
Plates 24

Parthlama

|Frnnt|:mpr“uurT|urnd

Parthlusber

Exil Color

Figure In 28 Plate 27

A multimedia repair manual and inventory database. The user can move the displayed object, zoom in
on selected parts, view demonstration videos, and listen to voice annotations. (Image by Kevin
Goldsmith.)

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Color
Plates 25

Figure In 29 Plate 28

An application displaying radar coverage and status in 3D. Two new shape classes are used: a dome
shape representing movable antenna radars and a pie shape representing phased array radars. (Image
courtesy of Decision Science Applications, Inc.)

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Color
Plates 26

File Gt Ulewing Salection Edtors Mamips Lighee

Pobe Roty i Zoom [T00 [4Ea" Dally

Figure In 30 Plate 29

The Piero Project, an application for teaching art history using interactive 3D computer graphics. This
image shows a reconstruction of the Church of San Francesco in Arezzo, Italy. Clicking on the pink
box brings up the higher resolution image shown at right. Clicking on a white sphere allows the user

to view the scene from that position. White spheres can be connected to create an animated tour of the
church. (Image courtesy of Interactive Computer Graphics Laboratory, Princeton University, and The
Piero Project by Kirk Alexander, Kevin Perry, and Marilyn Aronberg Lavin.)

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Color
Plates 27

Figure In 31 Plate 30

An interactive art gallery tour. (Image by Gavin Bell and Kevin Goldsmith.)

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Color
Plates 28

File Fdw Wewig Seleofion Edfors Mamps gy

=
4.7 i
L 14984 ﬂ

ST O0F DS

Figure In 32 Plate 31

Trenchmaster, an archaeological application. The main window contains shapes representing artifacts
found in an excavation trench. Clicking on a shape brings up additional windows with text and photos.
(Data courtesy of William Childs, Dept. of Art and Archaeology; image courtesy of Interactive
Computer Graphics Laboratory, Princeton Univ.)

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Color
Plates 29

Flle Edit Viewing Seiectin Fetors Mamips Lights Arimation

Foom[| |as.m Dolhy

Figure In 33 Plate 32

A reconstruction of early Islamic Jerusalem. The user can explore the city streets and then walk
through the buildings. (Data for Plates 32 and 33 courtesy of Mohamed Alasad and Oleg Grabar,

Institute for Advanced Study, Princeton, New Jersey.)

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Color
Plates 30

File G Uewing Sefection Coftors Manges Lights Andoadion

Aobe Aoty [IET 0] Zoom EE 450 Dolly

Figure In 34 Plate 33

View inside a mosque, one of the buildings shown in Plate 32. (Images for Plates 32 and 33 courtesy
of Interactive Computer Graphics Laboratory, Princeton Univ.)

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Color
Plates 31

Figure In 35 Plate 34

Cuckoo clock. An engine connected to the real time global field moves the hands of the clock. (Image
by Rikk Carey.)

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Color
Plates 32

Figure In 36 Plate 35

Tetris. A timer sensor animates the falling pieces. (Image by David Immel.)

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Color
Plates 33

- ALIWE! Wersien:2.40 |.||:i | ALIVEl - WarSheet

File Edit W7 R Helpl e ool
b Tme 500 Ovt Time[BGn Tetah 60.000 see 1 prevars
[rum.- Ot mm- m- Tetah 1800 frames T [eirerrcine [
Maode: Real Time ipud- ol [eEndtedEbend i
Iloop[Daplay Tee[iEE Rata[EEEs Freme[EIT Stetve RESET *"“ ::'-“"T-M-‘ :;_
l Layaff Flcmc: Bate lu- h«lm_ T =
| Anti=alias Musber of Paies: no_seak_y [0 : | 5

RN ATOP | RESET tpret | [beddl b bend_Lranlne & head_Tepadal [0
LI Lbend)| [kl L hend_ Lmnize £ b _Lopadet [I

t Materialy Testures Cameras Hiererchiet I [B i e P e T) [

(o

ALIYE! - Render Area w [J]||== ALIVE! - dpShest
e fdodes Tools Selest Hoseleot

Sncii | Usesec AN

o

HHEHHEHHHHEHEHBEHE
$egsgeseseseesess
Tegeleeeeelnzzlelzee

Figure In 37 Plate 36

Moxy Moto, a computer generated character created using Alive, a real time character animation
program based on Inventor. (Moxy was created by (Colossal) Pictures and by the Cartoon Network.
Alive is a product of deGraf/Associates.)

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Color
Plates 34

Figure In 38 Plate 37

Scenes from the Out of Box Experience, an immersive multimedia presentation. This application adds
multimedia nodes to the toolkit and the ability to synchronize Inventor objects with them. Clicking on
one of the moving spheres sends the user to a new "room."

Figure In 39 Plate 38

The Animations Room. Each animated object is surrounded by an invisible Inventor shape. When the
user clicks on an object, a movie is played.

heEREEEY

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Color
Plates 35

Figure In 40 Plate 39

A live video window within the Stop Motion Room. The control panel and background are built with
Inventor objects.

Figure In 41 Plate 40

The Earth Room. The user controls the spinning of the earth within its painted galaxy. When the user
clicks on a pin on the globe, a video or audio clip for that geographical area is played. (Images by
Kevin Goldsmith and (Colossal) Pictures.)

Chapter 1
Overview

Chapter Objectives

After reading this chapter, you'll be able to do the following:

» Identify the key elements that constitute the Open Inventor toolkit
» Explain the relationship of Open Inventor to OpenGL

» Describe several ways to extend Open Inventor

This chapter describes the key elements in Open Inventor and briefly outlines how you can tailor your
use of this toolkit to a particular set of needs. It explains how Inventor relates to programming tools
you may already be familiar with, such as OpenGL and the X Window System. Most of the topics
mentioned in this chapter are covered in detail in later chapters of this book.

What Is Open Inventor?

The Inventor Mentointroduces graphics programmers and application developers to Open Inventor,
an object oriented 3D toolkit. Open Inventor is a library of objects and methods used to create
interactive 3D graphics applications. Although it is written in C++, Inventor also includes C bindings.

Open Inventor is a set of building blocks that enables you to write programs that take advantage of
powerful graphics hardware features with minimal programming effort. Based on OpenGL, the toolkit
provides a library of objects that you can use, modify, and extend to meet new needs. Inventor objects
includedatabase primitivesncluding shape, property, group, and engine objects; interactive
manipulators such as the handle box and trackball; @dponentssuch as the material editor,

directional light editor, and examiner viewer.

Inventor offers the economy and efficiency of a complete object oriented system. In addition to
simplifying application development, Inventor facilitates moving data between applications with its
3D interchange file format. End users of 3D programs can cut and paste 3D scene objects and share
them among a variety of programs on the desktop.

As shown in Figure 1 1, Inventor’s foundation is supplied by OpenGL and UNIX. Inventor represents
an object orientedpplication policybuilt on top of OpenGL, providing a programming model and
user interface for OpenGL programs.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
1, Overview 1

Figure 1 1 Inventor Architecture

The Inventor toolkit is window system-independent. A component library is helpful for using

Inventor with specific window systems. This book describes one component library provided with the
toolkit, which facilitates programming in Inventor using Xt windows and events. A companion to this
book, The Inventor Toolmakeprovides details on how to extend Inventor to work with other window
systems.

Objects, not Drawings

Inventor focuses on creatil®p objects All information about these obje&igheir shape, size,

coloring, surface texture, location in 3D s{ddds stored in a scene database. This information can be
used in a variety of ways. The most common use is to displagnder an image of the 3D objects

on the screen.

For many 3D graphics packages, this image is the ultimatél gophotorealistic representation on
the screen of a 3D scene. But what if a user wants to move one of the objects to a different location,

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
1, Overview 2

and perhaps view another object from a slightly different viewpoint? What if the user wants to
experiment with a different range of colors for the objects and the background of the scene? What if a
chemist wants to rearrange how two molecules align with each other? What if an airplane designer
wants to redesign the curve of the airplane’s wing? If the image exists only as a drawing on the screen,
the programmer must write complicated code to implement these functions. Additional code is

required to animate parts of the scene. With Open Inventor, the ability to make these changes is built
into the programming model. Changing the objects in the scene, adding to the scene, and interacting
with the objects becomes a simple process because such changes are part of Inventor’s well defined
interface, and because they are anticipated by Inventor’'s basic design.

Using Database Objects in a Variety of Ways

Because the Inventor database holds information about the objects as they exist in their own 3D
"world," not just as a 2D array of pixels drawn on the screen, other operations in addition to rendering
can be performed on the objects. The objects in the scene can be picked, highlighted, and manipulated
as discrete entities. Bounding box calculations can be performed on them. They can be printed,
searched for, read from a file, and written to a file. Each of these built in operations opens up a

flexible and powerful arena for the application programmer. In addition, this programming model is
intuitive because it is based on the physical and mechanical world we live in.

Animation

Inventor objects can also encapsulate behavior into the description stored in the scene database.
Example 1 1, an excerpt from an Inventor file, describes a windmill whose blades spin at a specified
rate. When this file is read into an Inventor program and displayed on the screen, the windmill is
drawn and the blades are animated. No additional application code is used to make the blades spin;
this description is part of the windmill object itself. Figure 1 2 shows an image of this windmill.

Example 1 1 File Describing a Spinning Windmill

#lnventor V2.0 ascii

Separator {
Separator {
RotationXYZ {
axis Z
angle 0 =
ElapsedTime { # Engine to rotate blades
speed 0.4
}
. timeOut # Engine output connected to
angle of rotation
}
Transform {
translation 0 0 0.5
}
Separator { # Shaft for blades
Material {

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
1, Overview 3

diffuseColor 0.05 0.05 0.05

}

Transform {
rotation 1 0 0 1.5708
scaleFactor 0.2 0.5 0.2

}

Cylinder {

}

}

DEF Blade Separator { # Blade geometry and properties
Transform { # Blade interior
translation 0.45 2.9 0.2

rotation 01 0 0.3
}
Separator {
Transform {
scaleFactor 0.6 2.5 0.02
}
Material {
diffuseColor 0.5 0.3 0.1
transparency 0.3
}
Cube {
}
}

Separator { # Blade frame
.... (Details omitted)
}

}
Separator { # Second blade

RotationXYZ {
axis Z
angle 1.5708

}
USE Blade

}
Separator { # Third blade
RotationXYZ {
axis Z
angle 3.14159

}
USE Blade

}
Separator { # Fourth blade
RotationXYZ {
axis Z
angle 1.5708

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
1, Overview 4

}
USE Blade
}
}

Separator { # Windmill tower
... (Details omitted)

How Does Open Inventor Relate to OpenGL?

If you are familiar with OpenGL, you are probably curious about how OpenGL relates to Open
Inventor. This section supplies an overview of how the two libraries interrelate. Chapter 17, "Using
Inventor with OpenGL," provides additional information on how to use Open Inventor and OpenGL
in a single program taking advantage of the fast, flexible 3D rendering of OpenGL and the

high level objects and versatile scene database offered by Inventor.

Open Inventor uses OpenGL for rendering. In OpenGL, however, rendering is explicit, whereas in
Inventor, rendering, along with other operations such as picking, reading, writing, and calculating a
bounding box, is encapsulated in the objects.

OpenGL provides immediate mode access to the frame buffer. It can also use a display list to record
drawing commands for objects. This display list can then be played back on demand.

Open Inventor does not provide immediate access to the frame buffer. As described previously in the
section "Objects, not Drawings", it is based on an object oriented programming model that creates

high level, editable objects stored in a database. Each of these objects encapsulates a set of operations
that can be applied to it: rendering, picking, database querying and searching, and bounding box
calculation. In Inventor, rendering to the frame buffer occurs when the render action is invoked. If an
Inventor program never issues this command (either directly or indirectly), no drawing will appear.

A simple analogy may help to convey a feel for how Open Inventor contrasts to OpenGL. Suppose it
is the year 2020 and you have the time, money, and skills required to build your dream house. You
can choose one of two basic approaches, or you can combine elements of both approaches.

The first approach is to go to the Handyperson Builder's Emporium and purchase all the required
materials separatélynails, wood, pipes, wires, switches, concrete, and so on. This approach gives
you complete flexibility, but it also requires detailed knowledge and skill on your part to determine
which parts you need and how to construct all elements of the house.

The second approach is to order a collection of prebuilt units froBrédsen Home Catalqg

published by a ten year old firm that bases its product on concepts of Japanese home building,
modular office construction, and the highly successful prefabricated window companies of the 90s.
The catalog provides a wide variety of wall frame units, concrete forms, siding packages, windows,
and doors.

The first approadh starting with raw materidlsis analogous to using OpenGL for interactive

graphics applications. Building a house with this method, you have complete flexibility over how the
raw materials are used. You need to be familiar with the details of home construction, and you need
different skills to build each part of the home from scrdtplumbing, electrical, carpentry.

The second approddtselecting prebuilt units from a catalddgs loosely analogous to creating an

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
1, Overview 5

application with Inventor. The wall panels are prewired with the electrical, security, and plumbing
connections. This prewiring can be compared to the built in event model provided by Inventor. In
addition, the complete inventory of parts, sizes, and costs is automatically computed by the catalog
firm when you place the order. In a similar way, all operations (rendering, picking, bounding box
calculation, and so on) are built into Inventor objects. You do not need to add extra code (or, in the
case of the house, perform extra calculations) to obtain this information. Because the catalog company
has been buying parts from the Handyperson Builder's Emporium for years, it knows the exact
material and sizes to use for maximum economy and minimum waste. Similarly, Open Inventor
achieves high performance from its use of OpenGL.

Although the catalog offers a collection of ready made modules, you have choices about which
modules you use and how to put them together. Whenever you purchase modulesBraanthe

Home Catalogstandard sizes are used to facilitate replacing, repairing, and updating different parts of
the house. With Open Inventor, applications achieve a common look and feel because Inventor
provides a set of components with a unified user interface.

If you require parts not available in the catalog, the company also allows you to design your own
custom parts and buy the pieces directly from the Handyperson Builder's Emporium. Perhaps you
want curved corners on your wall units rather than right angled corners. Inventor, too, allows you to
design your own objects (throughbclassingdescribed iThe Inventor ToolmakgrWith this added
flexibility, you are not constrained to the catalog parts, but you can use them to save time and money
when they’re suitable.

If you want to save even more time, you can choose a complete house kit fidreaheHome
Catalog It offers many different models: A frame, Ranch, Victorian, Colonial. These house kits are
analogous to Inventortsode kitswhich provide packaged sets of objects commonly used together.

When each house has been completed, it takes a highly trained eye to determine which house was
constructed from raw materials and which was constructed with catalog parts. Both houses have fine
quality finishing, are made of the best materials, and exhibit sturdy construction. Both exhibit touches
of creativity and distinctive design.

The same could be said of applications built with OpenGL and those built with Open Inventor. The
approach taken must suit the needs of the builder, and the two approaches can be combined as desired,
using a combination of prebuilt Inventor objects and components and OpenGL commands.

The Inventor Toolkit

Inventor provides programming support at a variety of levels. At the end user interface level, Inventor
offers a unified look and feel for 3D graphics interfaces. At the programming level, the Inventor
toolkit (shown previously in Figure 1 1) offers the following tools, which are explained in greater
detail later in this chapter:

» A 3D scene databaskat includes shape, property, group, engine, and sensor objects, used to
create a hierarchical 3D scene

» A set ofnode kitghat provide a convenient mechanism for creating prebuilt groupings of
Inventor nodes

» A set ofmanipulatorsjncluding the handle box and trackball, which are objects in a scene
database that the user can interact with directly

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
1, Overview 6

» AnlInventor Component Librarpr Xt, including a render area (a window used for rendering),
material editor, viewers, and utility functions, used to provide some high level interactive tasks

This book explains Open Inventor from the bottom up, starting with the 3D scene database.

The Scene Database

Thenodeis the basic building block used to create three dimensional scene databases in Inventor.
Each node holds a piece of information, such as a surface material, shape description, geometric

transformation, light, or camera. All 3D shapes, attributes, cameras, and light sources present in a
scene are represented as nodes.

An ordered collection of nodes is referred to aseme graph(Figure 1 3 shows a simple scene

graph. Figure In 1, in "About This Book," has the key to the icons used in scene graph diagrams
throughout this book.) This scene graph is stored in the Inveéatabaselnventor takes care of

storing and managing the scene graph in the database. The database can contain more than one scene
graph.

After you have constructed a scene graph, you can apply a number of operaimnsto it,
including rendering, picking, searching, computing a bounding box, and writing to a file.

Classes of database primitives inclsti@pe nodefor example, sphere, cube, cylinder, quad mesh),
property nodegfor example, material, lighting model, textures, environment)gamap nodegfor

example, separator, level of detail, and switch). Other special database primitieegiaezand
sensorsEngines are objects that can be connected to other objects in the scene graph and used to
animate parts of the scene or constrain certain parts of the scene in relation to other parts (seeChapter
13, "Engines”). A sensor is an object that detects when something in the database changes and calls a
function supplied by the application. Sensors can respond to specified timing requirements (for
example, "Do this eveny seconds”) or to changes in the scene graph data (see Chapter 12, "Sensors"

).

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
1, Overview 7

Separator

Transform

Property Transform Shape

E— Path

Figure 1 2 Example of a Scene Graph

Node Kits

Node kits facilitate the creation of structured, consistent databases. Each node kit is a collection of
nodes with a specified arrangement. A template associated with the node kit determines which nodes
can be added when necessary and where they should be placed. For example, the SoShapeKit node kit
is used for any Inventor shape object. If you use this node kit, you don’t have to create and arrange
each node individually. By default, the template forSo&hapeKitcontains aitsoCubenode, and it

allows a material, geometric transformation, and other properties to be inserted in the correct place
when required.

Another use of node kits is to define application specific objects and semantics. For example, a

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
1, Overview 8

flight simulation package might include a variety of objects representing airplanes. Each of these
airplanes consists of the same general scene graph struftuexample, fuselage, wings, and

landing gedrn as well as some airplane specific methiodsr examplepankLeft(),

raiseLandingGear(). To an application writer using this package, each type of airplane can be dealt
with in a similar way. There is no need to know the details of the structure of the subgraph
representing the landing gear to raise it, since the general metisetlandingGear(), exists.

Creating these new objects and methods requires extending Open Inventor by subclassing, which is
described immhe Inventor Toolmakelt is highly recommended that you use some form of node kits

in your application to maintain order and policy.

Manipulators

A manipulator is a special kind of node that reacts to user interface events and can be edited directly
by the user. Manipulators typically have parts that render in the scene and provide a means for
translating events into changes to the database. An example of a manipulatbaigitedoxwhich

is a bounding box of another object with handles at the corners and sides. In Figure 1 4, handle boxes
surround the knights. By picking on a handle and dragging it, the user can change the scale or position
of the box and thus the object inside it. Manipulators provide an easy way for applications to
incorporate direct 3D interaction.

File Gl Wewiny Selection Doitors Manipe Lights

Figure 1 3 Handle Box Manipulator

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
1, Overview 9

Inventor Component Library

The Inventor Component Library provides window system support and integration with the X
Window System. This library includes the following features:

* Arender area (window) object

* Main loop and initialization convenience routines
* An event translator utility

» Editors

* Viewers

The render area accepts an X event, translates it into an Inventor event, and then passes it to "smart"
objects, such as manipulators, that may handle the event.

The Inventor Component Library also contains a set of viewers and editors that fall into the general
category otomponentsComponents are reusable modules that contain both a render area and a user
interface. They are used for editing scene graph nodes (materials, lights, transformations) as well as
for viewing scenes in different ways. Rather than solving the same problems over and over again, you
can simply select an Inventor component and plug it into your application. If you need added
functionality, you can write your own component and add it to Inventoil (génventor Toolmaker

). Examples of components are the material editor, directional light editor (see Figure 1 5), fly viewer
("flies" through the scene), and examiner viewer (looks at a single object from any perspective).

[=| Scenslliewer Cxaminer) =
File P Viewing Selection Eelilors M Lights

3|

B T

Hotd Koty T | Zoom g g M58 Dolly

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
1, Overview 10

Figure 1 4 Example of a Component: Directional Light Editor (lower right)

Inventor Class Tree

Figure 1 6 summarizes the Inventor class tree. Base classes are at the left, and derived classes are at
the right.SoBaséds the base class fS8oFieldContainer, from which both nodes and engines are

derived. Action classes are derived fr@mAction SoXtComponentis another base class. The Xt

render area, as well as the viewers and editors, are all derive@é&$t@omponent Classes to the

right in the treénheritthe fields and methods of the classes they are derived from.

Extending the Toolkit

One of the most important aspects of Inventor is the ability to program new objects and operations as
extensions to the toolkit. One way to extend the set of objects provided by Inventor is to derive new
classes from existing ones. Jd® Inventor Toolmakdor specific examples of creating new classes.

Another way to include new features in Inventor is by usailpack functionswhich provide an

easy mechanism for introducing specialized behavior into a scene graph or prototyping new nodes
without subclassing. A callback function is a user written function that is called under certain
conditions. Callback functions provided by Inventor include the following:

» SoCallback] a generic node in the database that provides a callback function for all database
actions (see Chapter 17, "Using Inventor with OpenGL")

» SoCallbackActiond generic traversal of the database with a callback function at each node (see
Chapter 9, "Applying Actions")

» SoEventCallback] a node in the database that calls a user defined function when it receives an
event (see Chapter 10, "Handling Events and Selection®)

» SoSelectiofl selection callback node (see Chapter 10, "Handling Events and Selection”)

* Manipulator§] provide callback functions for event processing
(see Chapter 15, "Draggers and Manipulators")

* SoXtcomponents support their own callback functions when a change occurs (see Chapter 16,
"Inventor Component Library").

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
1, Overview 11

SolircticnallightDmgger

— SoMode SoBazeHit Solntermction Hit SobragPeintD moger
(e Chaper 14
SoeHandkeBexDragger
— SoCamera SeSeaked Drgger
e Chapher 4,
& T 4 Sofcak?Drgger ...
Chs, 15
— SoCocrdinated fes Chaptor 18}

SoBase—E SoFieldContainer
SoPath

— ScBventCallBack

— SoGroup SoSeparator SeSelection
— SolLight SBoBwitch
{5 Chaper 4

— Sedlaterial

— So5hape SoCube

— SoTextur? SohurbeCune Fee Chapfsr 4
BoMurbefurane
SoBphere

BoTextd ses Chapier 6

SoVertexShape...
— SoTransformation SoTransfom SoTrmnsformianip ...
L (s Chapler 15}
— SoEnging — SoBocelDperation
— SoCakculator
— SoGate

boldface = abstract class

Figure 15 Inventor Class Tree Summary (Part 1 of 3)

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
1, Overview 12

— SoCallbackaction

ZoBeoxHighlightFenderaction
— SoGlLRenderaction {

SolineHighlightRenderacticon
— SoiEetBounding Boxaction

SoAction————— SoGethilatrixaction
s Chaptar &) — SoHandleBventaction

— SoPickéction —————— SoRavPickaction

— Sodeamhaction

— SeWmitedction
ScDB

SolebugErmer
SoError - ZohlemervErmor
G A ppsndfc O SoReadErmer
Salnput
SeCutput
SoSenzor SoDelayQuedeSenzor SoDatasenzar SoFiedSensor
fres Chapar 12) _E SeldkeSensor Soblodebenszor
BoilneShot Bensor SoPathEensor
ZoTimerduauesensor EoakarmSensor
_I: BoTimerdensor
SoHeyboamdEvent

— SoButton Event EoftzuzebuntonEvant
ZoBEvert —)
(see Chepfer 0y [Solocaticnz Bvent EobpasebalButenEvent

— SolictiznAErent

— BoConeDetal
SoDetail]
{Fem Chapiar O) — SoCu beDetail

— Sy linderCetail

— SoTextDetail

— SotodekitDetadl

— SofFaceDetail

— SclineDetail

— SoPointDetail

boldface = abstect class

Figure 1 6 Inventor Class Tree Summary (Part 2 of 3)

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
1, Overview 13

okt
fsms Chapber 16

—3ciDirectionallightEditor

SotCom ponent —
e Chapfer 16} 5 cxtaLWidget SedtRenderarss. SaktViewer S atFulliewer
5o thiterial Ed itor S oxtConstrainedyiewer
S thizterial List S tFhWiewer
—2ctPrintDiakg So izl iswer
—% 01 5liders etBaze Soxtsliderset SoXtExaminertiswer
SoXtClipboard SoXtLightSliderset SoXtPlhneViswer
[SaktnputFeous Soxtiatenalliderset
S oiDavice —Sciieyboard ZodfTransformSliderSat
F—Saticuse
S tSpacebal

baoldface = abstract class

Figure 1 7 Inventor Class Tree Summary (Part 3 of 3)

Chapter 2
An Inventor Sampler

Chapter Objectives
After reading this chapter, you'll be able to do the following:
» Explain the basic structure of an Inventor program

» Describe the conventions used by Inventor

This chapter provides an overview of the 5 percent of Inventor that is part of any program. It includes
a short program that draws a red cone in a window. This program is gradually augmented to show the
use of some important Inventor objects: engines, manipulators, and components. Inventor naming
conventions and basic data types are also described.

"Hello, Cone"

This chapter begins with a set of sample programs that illustrate the key aspects of Inventor.Example
2 1 creates a red cone and then renders it in a window ("A Red Cone"). This example uses an Inventor
Xt window, which is part of the Inventor Component Library. This library provides utilities for

window management and event processing and also contains a set of Inventor components (viewers
and editors).

The code shown in Example 2 1 constructs a simple scene graph composed of a camera node, a light
node, a material node, and a cone node. Later chapters go into specifics on creating nodes, setting
values in fields, structuring the database, and applying actions. The purpose of this chapter is simply to
convey a feel for the tools Inventor offers and to help you get started writing an Inventor program.

A Red Cone
The first example program illustrates the basic steps in writing an Inventor program.

1. Create a window where the scene will be rendered. This exampkax@&enderAreg the
Inventor Xt window.

2. Build the scene graph by creating property and shape nodes and combining them into groups.

Example 2 1 gives the code to create the cone shown in "A Red Cone".

This figure
(/usr/share/Insight/library/SGI_bookshelves/SGI_Developer/books/Inv_Mentor/figures/fig2_1.iv) is
an INLINE object and can not be printed.

Media A Red Cone

Example 2 1 Basic "Hello, Cone" Program

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/SoXtRenderArea.h>
#include <Inventor/nodes/SoCone.h>

#include <Inventor/nodes/SoDirectionalLight.h>

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
2, An Inventor Sampler 1

#include <Inventor/nodes/SoMaterial.h>
#include <Inventor/nodes/SoPerspectiveCamera.h>
#include <Inventor/nodes/SoSeparator.h>

main(int , char **argv)
{
/I Initialize Inventor. This returns a main window to use.
/I If unsuccessful, exit.
Widget myWindow = SoXt::init(argv[0]); // pass the app name
if (myWindow == NULL) exit(1);

/I Make a scene containing a red cone

SoSeparator *root = new SoSeparator;

SoPerspectiveCamera *myCamera = new SoPerspectiveCamera;
SoMaterial *myMaterial = new SoMaterial;

root >ref();

root >addChild(myCamera);

root >addChild(new SoDirectionalLight);

myMaterial >diffuseColor.setValue(1.0, 0.0, 0.0); // Red

root >addChild(myMaterial);

root >addChild(new SoCone);

/I Create a renderArea in which to see our scene graph.
/I The render area will appear within the main window.
SoXtRenderArea *myRenderArea = new SoXtRenderArea(myWindow);

/l Make myCamera see everything.
myCamera >viewAll(root, myRenderArea >getViewportRegion());

/I Put our scene in myRenderArea, change the title
myRenderArea >setSceneGraph(root);
myRenderArea >setTitle("Hello Cone™);
myRenderArea >show();

SoXt::show(myWindow); // Display main window
SoXt::mainLoop(); // Main Inventor event loop

Using Engines to Make the Cone Spin

Example 2 2 illustrates how to use engines to make the cone spin. An engine is attached to the angle
field of anSoRotationXYZ node in the scene graph. The engine changes the angle value in the
rotationXYZ node in response to changes in the real time clock, which in turn causes the cone to
rotate. After each change, the scene is automatically rendered again by the render area. Successive
rotations give the desired effect of a spinning cone.

Example 2 2 "Hello, Cone" Using Engines

#include <Inventor/Xt/SoXt.h>

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
2, An Inventor Sampler 2

#include <Inventor/Xt/SoXtRenderArea.h>

#include <Inventor/engines/SoElapsedTime.h>
#include <Inventor/nodes/SoCone.h>

#include <Inventor/nodes/SoDirectionalLight.h>
#include <Inventor/nodes/SoMaterial.h>

#include <Inventor/nodes/SoPerspectiveCamera.h>
#include <Inventor/nodes/SoRotationXYZ.h>
#include <Inventor/nodes/SoSeparator.h>

main(int , char **argv)

{
/I Initialize Inventor and Xt
Widget myWindow = SoXt::init(argv[0]);
if (myWindow == NULL) exit(1);

SoSeparator *root = new SoSeparator;

root >ref();

SoPerspectiveCamera *myCamera = new SoPerspectiveCamera,
root >addChild(myCamera);

root >addChild(new SoDirectionalLight);

/I This transformation is modified to rotate the cone
SoRotationXYZ *myRotXYZ = new SoRotationXYZ;
root >addChild(myRotXYZ);

SoMaterial *myMaterial = new SoMaterial;

myMaterial >diffuseColor.setValue(1.0, 0.0, 0.0); // Red
root >addChild(myMaterial);

root >addChild(new SoCone);

/I An engine rotates the object. The output of myCounter

/l'is the time in seconds since the program started.

/I Connect this output to the angle field of myRotXYZ
myRotXYZ >axis = SoRotationXYZ::X; // rotate about X axis
SoElapsedTime *myCounter = new SoElapsedTime;
myRotXYZ >angle.connectFrom(&myCounter >timeOut);

SoXtRenderArea *myRenderArea = new SoXtRenderArea(myWindow);
myCamera >viewAll(root, myRenderArea >getViewportRegion());
myRenderArea >setSceneGraph(root);

myRenderArea >setTitle("Engine Spin");

myRenderArea >show();

SoXt::show(myWindow);
SoXt::mainLoop();

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor
2, An Inventor Sampler 3

, Release 2 Chapter

Adding a Trackball Manipulator

The next two examples show additional methods for editing a node in the scene graph. Example 2 3
adds a manipulator (a trackball) to the first example (see "Cone with Trackball Manipulator"). The
trackball itself appears as three rings around the cone. When the left mouse button is pressed on the
trackball, it highlights itself in a different color to show it is active. While it is active, the mouse can be
used to rotate the trackball and the object (here, the cone) inside it. In this example, a trackball is
constructed instead of tB®RotationXYZ node in Example 2 2. Each time the user rotates the

trackball, its values change and the cone rotates as well. Because the render area has a sensor attached
to the scene graph, the scene is automatically rendered again after each edit, and the cone appears to
move.

This figure
(/usr/share/Insight/library/SGI_bookshelves/SGI_Developer/books/Inv_Mentor/figures/fig2_2.iv) is
an INLINE object and can not be printed.

Media Cone with Trackball Manipulator

Example 2 3 "Hello, Cone" with a Trackball Manipulator

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/SoXtRenderArea.h>

#include <Inventor/manips/SoTrackballManip.h>
#include <Inventor/nodes/SoCone.h>

#include <Inventor/nodes/SoDirectionalLight.h>
#include <Inventor/nodes/SoMaterial.h>

#include <Inventor/nodes/SoPerspectiveCamera.h>
#include <Inventor/nodes/SoSeparator.h>

main(int , char **argv)

{
/I Initialize Inventor and Xt
Widget myWindow = SoXt::init(argv[0]);
if (myWindow == NULL) exit(1);

SoSeparator *root = new SoSeparator;
root >ref();

SoPerspectiveCamera *myCamera = new SoPerspectiveCamera,
root >addChild(myCamera); /I child O

root >addChild(new SoDirectionalLight); // child 1

root >addChild(new SoTrackballManip); // child 2

SoMaterial *myMaterial = new SoMaterial;
myMaterial >diffuseColor.setValue(1.0, 0.0, 0.0);
root >addChild(myMaterial);

root >addChild(new SoCone);

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
2, An Inventor Sampler 4

SoXtRenderArea *myRenderArea = new SoXtRenderArea(myWindow);
myCamera >viewAll(root, myRenderArea >getViewportRegion());
myRenderArea >setSceneGraph(root);

myRenderArea >setTitle("Trackball");

myRenderArea >show();

SoXt::show(myWindow);
SoXt::mainLoop();

Adding the Examiner Viewer

Example 2 4 replaces the render area in the first example with the examiner viewer, a component.
This viewer, shown in ,"Cone with Examiner Viewer" modifies the camera node, which lets you view
the cone from different positions. It provides a user interface that allows use of the mouse to modify
camera placement in the scene. (Note that this example looks similar to the trackball in Example 2 3.
Here, however, the camera is moving, not the cone itself.) This program does not need to set up a
camera and calliewAll() because the viewer does this automatically.

This figure
(/usr/share/Insight/library/SGI_bookshelves/SGI_Developer/books/Inv_Mentor/figures/fig2_3.iv) is
an INLINE object and can not be printed.

Media Cone with Examiner Viewer

Example 2 4 "Hello, Cone" Using the Examiner Viewer

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>
#include <Inventor/nodes/SoCone.h>

#include <Inventor/nodes/SoDirectionalLight.h>
#include <Inventor/nodes/SoMaterial.h>

#include <Inventor/nodes/SoPerspectiveCamera.h>
#include <Inventor/nodes/SoSeparator.h>

main(int , char **argv)

{
Widget myWindow = SoXt::init(argv[0]);
if (myWindow == NULL) exit(1);

SoSeparator *root = new SoSeparator;

root >ref();

SoMaterial *myMaterial = new SoMaterial;
myMaterial >diffuseColor.setValue(1.0, 0.0, 0.0);
root >addChild(myMaterial);

root >addChild(new SoCone);

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
2, An Inventor Sampler 5

/I Set up viewer:
SoXtExaminerViewer *myViewer =

new SoXtExaminerViewer(myWindow);
myViewer >setSceneGraph(root);
myViewer >setTitle("Examiner Viewer");
myViewer >show();

SoXt::show(myWindow);
SoXt::mainLoop();

Naming Conventions

Basic types in Inventor begin with the lett8is(for scene basic; see the next section, "Scene Basic
Types"). For example:

e SbColor

* SbViewVolume

All other classes in Inventor are prefixed with the letBeréfor scene object). For example:

 SoCone

» SoPerspectiveCamera

» SoMaterial

» SoTransform

Methods and variables begin with a lowercase letter. Each word within a class, method, or variable
name begins with an uppercase letter. For example:

* getNormal()

* setSceneGraph()

* myCube

Enumerated type values are in UPPERCASE. For example:
* FILLED

* PER_PART

Scene Basic Types

This section discusses InventoBb classes, a set of basic types that are used in many Inventor
objects. Inventor includes useful methods for converting between different types and performing
specific 3D operations on them.

Inventor defines the following types:
ShBool Boolean value (TRUE or FALSE)

SbBoxix 2D or 3D box that has planes parallel to the major axes and is specified by two

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
2, An Inventor Sampler 6

points on a diagonal (includ&bBox3f SbBox2f SbBox23; nis the number of
values in the type (2 or 3), and x is the value type (f for float, s for short)

ShColor RGB (red/green/blue) color value with conversion routines to other color spaces

SbCylinder cylinder

SbLine directed 3D line

SbMatrix 4x4 matrix

SbName character string stored in a special table for fast and easy comparison, typically
for identifiers

SbhPList list of generic\(oid *) pointers

SbPlane oriented 3D plane

SbhRotation representation of a 3D rotation about an arbitrary axis

SbSphere sphere

ShString "smart" character strings that have many convenience methods for easy string
manipulation

ShTime representation of tinhéin seconds; seconds and microseconds; or using the
timeval structure

ShVeax 2D or 3D vector, used to represent points or directions (inciludsc2f
ShVec3f SbVec23; n is the number of values in the type (2, 3, or 4)xasthe
value type (f for float; s for short)

SbViewportRegion

SbViewVolume

Methods

EachSb class has useful operators associated with it. For example, you can negate a variable of type

active viewport region within a display window

view volume (for example, s&&pCameras getViewVolume()method in the
Open Inventor C++ Reference Manyal

SbVec3f multiply it by a matrix, or normalize it to unit length. The following code creates a
unit length vector, based on the specified direction:

SbVec3f v(1.0, 2.0, 3.0); // declares and initializes the vector
v.normalize(); // normalizes the vector to unit length

Similarly, SbMatrix has useful methods includinqultVecMatrix() , which multiplies a row vector
by the matrix and returns the result, aoite(), which sets the matrix to rotate by a given amount.
See theDpen Inventor C++ Reference Mandal a complete description of the available methods

for eachSbclass.

Types versus Fields

Chapter 3, "Nodes and Groups," contains a complete discusdieligsfwhich are the structures that
store parameters for nodes. A field contains a value of a certain type. Fields are always contained
within Inventor nodes. Many fields contain a correspon8intype. For example:

The Inventor Mentor:
2, An Inventor Sampler 7

Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter

» Afield of typeSoSFVec3tontains arsbVec3f
» Afield of typeSoSFRotationcontains atsbRotation

» Afield of typeSoSFNameontains arsbName

Coordinate Systems in Inventor

Inventor uses a right handed coordinate system for 3D datayavitbming out of the screen. All

angles are specified in radians. Objects are described in their own local coordinate space, known as
object coordinate spacéfter all transformations have been applied to the objects in the scene graph,
they are said to be imorld coordinate spacéhis world coordinate space includes the camera and
lights.

Include Files

Inventor contains include files for every class. You need to include the appropriate file for each class
used in your program. For exampBgSphereandSoTransform nodes require you to include the

files SoSphere.andSoTransform.hMost include files are found in a subdirectdrfpor example,
nodes/SoSphereamdsensors/SoNodeSensor.h

In addition, you need to include tBeXt.Hile if you are writing an interactive program that uses the
Inventor Component Library.

If you are programming using the C application programming interface, useéimor_cdirectory
instead of thénventordirectory.

Chapter 3
Nodes and Groups

Chapter Objectives
After reading this chapter, you'll be able to do the following:

» Build scene graphs using shape, property, and group nodes

Explain how nodes inherit values in the scene graph
» Describe why separator nodes are useful
» Explain the advantages of shared instancing of nodes in the scene graph
» Define the ternpathand explain why paths are needed
» Set and query field values
» Ignore specified fields in a node
» Explain how nodes are deleted in Open Inventor
e Use Inventor’s runtime type checking mechanism
This chapter illustrates how to construct scene graphs from shape, property, and group nodes. It

explains general rules for traversing a scene graph, focusing on GL rendering traversal. The concepts
of database actions and traversal state are introduced.

The Scene Database

The Inventoiscene databasmnsists of information representing one or more 3D scenes. This
database5oDB can contain severatene graphsas shown in Figure 3 1. Each scene graph consists
of a related set of 3D objects and attributes. In Figure 3 1, for example, the scene graphs might
represent a car, a small house, another car, a large house, and a person.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
3, Nodes and Groups 1

Small Big
Car House House Person

O OO

y¥olo

..&cene databasa...

Figure 31 An Inventor Database

You can perform two basic operationsp@thodsdirectly on the scene database. First,igitialize
it:

SoDB::init()

This must be the first Inventor call you make. If you use the Inventor Component Library, the
database is initialized automatically when you 8alKt::init() (see Chapter 16, "Inventor

Component Library"). If you are not using components, but you are using interaction or node kits, or
both, callSolnteraction::init() , which initializes the database, interaction, and node Kkits.

Second, you careadfrom a file into the scene database, which adds new scene graphs to it:

SoSeparator readAll (Solnput *n)
or
ShBool read (Solnput* in, SoNode *& rootNode) const

or
SbhBool read (Solnput* in, SoPath *& path) const

Using the first syntax, Inventor reads all graphs from a file specifiéuldoyd returns a pointer to a
separator that contains the root nodes of all the scene graphs in the file. Using the second syntax,
Inventor reads from a file specified ioyand returns a pointer to the resulting root nodetod¢.

Using the third syntax, Inventor reads a file specifiethtand returns a pointer to the resulting path (
path. (See "Paths") If an error occurs, the methods return FALSE. (Also see Chapter 11, "File

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
3, Nodes and Groups 2

Format" for more information dBolnput.)

Scene Graphs

A scene graph consists of one or maodes each of which represents a geometry, property, or
grouping object. Hierarchical scenes are created by adding nodes as children of grouping nodes,
resulting in airected acyclic graph.

Note: Although Inventor nodes are organized into graphs, Inventor has no enforced policy on how
the scene database is organized. You could, for example, create your own nodes that are organized
into structures that are not graphs. (Bee Inventor Toolmakdor more information on extending

the Open Inventor toolkit.)

Figure 3 1 shows a simple database containing five scene graphs. The top node of a scene graph is
called a root node (nodes A through E). Notice how node H is connected to two different parent

nodes. This is calleshared instancingdlso note that node E is not connected to any other node in

the database. Usually this is a temporary state, and the node is attached to other nodes as you build the
scene graph.

Types of Nodes

A nodeis the fundamental element of a scene graph. It contains data and methods that define some
specific 3D shape, property, or grouping. When a node is created, it is automatically inserted into the
database as a root node. Usually, you connect the node to other nodes in the database to construct a
hierarchy.

Nodes are divided into three basic categories:
» Shape nodesvhich represent 3D geometric objects
» Property nodeswhich represent appearance and other qualitative characteristics of the scene

» Group nodeswhich are containers that collect nodes into graphs

These categories are not strict and are used only to help you learn about Inventor classes.

Creating Nodes

Use thenew operator to create nodes. For example:

SoSphere *headSphere = new SoSphere;

Do not allocate nodes in arrays. (See "How Nodes Are Deleted".)

Note: Although you create nodes using tresv operator, you cannot delete them ugietgte See

"How Nodes Are Deleted" for a description of how and when nodes are deleted in Inventor. An
understanding of reference counting is vital to your use of Inventor, since you must be aware of the
conditions under which a node is automatically deleted.

What's in a Node?

Each node is composed of a set of data elements, kndiretdasthat describe the parameters of the
node. For example, a point light source node (of cBointLight) contains four fieldsintensity
color, location andon. Theintensity field contains a value from 0.0 (no illumination) to 1.0

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
3, Nodes and Groups 3

(maximum illumination). Theolor field specifies a Red/Green/Blue illumination color for the light
source. Théocationfield specifies the position of the light. Thefield specifies whether the light is
on.

Inventor defines a number of field types. Each field type has unique methods to get and set its values.
Within each node, the fields are named according to their usage. For example, here are a few nodes
and their fields:

Node Fields

SoCoordinate3 point

SoNormal vector
SoMaterial ambientColor
diffuseColor

specularColor
emissiveColor
shininess
transparency

SoPerspectiveCamera
viewportMapping
position
orientation
aspectRatio
nearDistance
farDistance
focalDistance
heightAngle

Note that fields that contain multiple values, such apdina field in SoCoordinate3 have singular
names.

What Happens When You Apply an Action to a Node? (Advanced)

Each node implements its own action behavior. When you want to perform a particular action on a
scene, you create an instance of the action class (for ex&o@é&RenderAction or
SoGetBoundingBoxAction) and then apply it to the root node of the scene graph. For each action, the
database managesraversal statewhich is a collection of elements or parameters in the action at a
given time. Typically, executing an action involves traversing the graph from top to bottom and left to
right. During this traversal, nodes can modify the traversal state, depending on their particular
behavior for that action.

This chapter focuses on tpenGL rendering actigisince one of the primary reasons for
constructing a 3D database is to view and manipulate

objects. The rendering traversal state consists of a set of elements, each of which can be altered by a
given class of nodes. When a rendering action is applied, each element is used and interpreted in a
specified manner. A few of the elements in the traversal state include the following:

e Current geometric transformation

» Current material components

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
3, Nodes and Groups 4

Current lighting model
Current drawing style
Current text font
Current coordinates
Current normals
Current lights

Current viewing specification

An SoMaterial node, for example, sets the current values in the various material elements of the
traversal state. ABoDrawStylenode sets the current value in the drawing style element of the
traversal state. Shape nodes, sucBa®phere are especially important in rendering traversal, since
they cause their shape to be drawn, using the current values in the traversal state.

Shape Nodes

Shape nodeepresent 3D geometric objects. They are unique because they describe physical matter
that is affected by property and group nodes, and during a rendering action, they actually cause their
shape to be drawn on the screen. Classes of shape nodes Sujdere SolndexedFaceSetand

SoText3 Figure 3 2 shows the portion of the class tree that contains the shape node classes.

— Soilone

— SoiCube
SoBasze

ZoFieldContainer

SDNDEIE—@ SoShape—

— SoCylinder

F— Solndexed MurbsCun

— SehlurbeCunre
— SohlurbsSurace
— SoSpher

— SoTentd

F—SoTextd

L— SaovertexShapes —-

Figure 3 2 Shape Node Classes

Property Nodes

The Inventor Mentor:
3, Nodes and Groups 5

=]

— Solndexed MurbsSuface

— S olndexeds hapegE

—=S oMonlndexed>hape

ZolndexedFacetat
Solndexedlinesat

SolndexedTriangkeStripSet

SoFaneiat
SBolinedat
ZoPoint2et
Zoluadikesh

SoTrangkesStripset

Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter

Property nodesepresent appearance and qualitative characteristics of the scene, such as surface
material, drawing style, or geometric transformation. Figure 3 3 shows the portion of the class tree
that contains the property node classes. Since property nodes fall naturally into several subgroupings,
the scene graph diagrams use three different icons for property nodes:

» Thetransformicon is used for nodes that perform transformations, susbhEsnsform,
SoRotation SoScaleSoTranslation, SoRotationXYZ, andSoResetTransform These nodes
are all derived fronSoTransformation

» Theappearancécon is used forodes thatodify an bject’'s appearance, suchSsMaterial,
SoMaterialBinding, SoBaseColoy SoComplexity, SoDrawStyle SoLightModel, andSoFont

e Themetricsicon is used for nodes that contain coordinate, normal, and other geometric
information, such aSoCoordinate3 SoCoordinate4 SoProfileCoordinate2
SoProfileCoordinate3 SoNormal, and SoNormalBinding.

In general, a property nodeplaceghe values in a corresponding element of the traversal state with
its own new values. Geometric transformations are one exception to this ruleombatenatevith
the current transformation.

Let's take the material node as an example. This node represents the surface and spectral (color)
properties of an object. To create a bronze material, first create the material node and then set the field
values appropriately:

SoMaterial *bronze = new SoMaterial;

/I set field values

bronze >ambientColor.setValue(.33, .22, .27);
bronze >diffuseColor.setValue(.78, .57, .11);
bronze >specularColor.setValue(.99, .94, .81);
bronze >shininess = .28;

If you do not explicitly set the field values for a particular node, Inventor uses the default values for
those fields (see ti@pen Inventor C++ Reference Mandal individual nodes). For example, in the
preceding example, transparency remains 0.0.

SoTransform nodes, which produce geometric transformations, include fields for scaling, rotating,
and translating. The following code defines a transform node that translates ¥ diréution:

SoTransform *myXform = new SoTransform;

/I set field value
myXform >translation.setValue(0.0, 1.0, 0.0);

In order for this translation to take effect, it must be inserted appropriately into a scene graph (that is,
beforethe shape node to translate).

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
3, Nodes and Groups 6

I @SDMauerialai-di—g
I @Soh'laberialhdex

— @Somon'nal

Sahads L @Somon'nalﬁi'di'g

SoBase

SoFiedContainer

- OSDP'.: kStyle
I—SoLrearPerlle

| AR coProfile
@ L sohutbePmiie
@&Pmﬁwmmme

- @&Pmﬁwmmmm

I @&TexmreeTmrsbn'n
— @ SoTeumCoomrnaes — SoTenustoodiratelet uk
—— () TextuCoominaeBindng | soTeumCoomrateErvimrment
— @ soTextureCoomdinateFunction — | STedueCoomiratePhne
I @ ZaTransformation SoArtiSquih
Sallnkrowan hoda — SoMatri: Trarsfom
femaa CGhepmrid)
—— SoResstTrarsfomn
SoPerdulumn
e
SoRoior
— SoRotatiorsE
— SoScak
— SoSumundSez ke
—SoTrmrefomn —— SoTmrsfombanp ..
fraa Chanerds)
—— 50T mrsk fion ———— Sofhutte
L—— Solnie

Figure 3 3 Property Node Classes

Groups

A group nodss a container for collecting child objects. Groups collect property, shape, and other
group nodes into graphs. Figure 3 4 shows the portion of the class tree that contains the group node

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
3, Nodes and Groups 7

classes. There are a variety of different group node classes, each with a specialized grouping
characteristic.

When a group node is created, it has no children. The base class for all group So@sig, and
all nodes derived from it have addChild() method.

— S Tay
F— SeleuelDfDetail

— SchiuftipleComy

ZoBase

SoBekection
SoBlinker

— ScPathSwitch
SoFieldContainar ZoMode OSoGroup Sodinnctation
—e SoSeparator—[

Soduwitch

L— EoTransformsSeparator

Figure 34 Group Node Classes

Creating Groups

Suppose you want to combine the transform node, the material node, and the sphere node created
earlier into a single group, the "head" group for a robot object. First, cre&eGneup Then use the
addcChild() method for each child node, as follows:

SoGroup *head = new SoGroup;

head >addChild(myXform);
head >addChild(bronze);
head >addChild(headSphere);

Figure 3 5 shows a diagram of this group. All scene graph diagrams use the icons shown in Figure
In 1. By convention, all figures show the first child in the group on the left, and ordering of children is
from left to right.

head

PO @

myXform bronze headSphere

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
3, Nodes and Groups 8

Figure 35 Simple Group

Ordering of Children

TheaddChild() method adds the specified node toehdof the list of children in the group, as
shown in the preceding code. Each child added to the group has an associated index. The first child in
a group has an index of 0, the second child in a group has an index of 1, and so on.

TheinsertChild() method
void insertChild (SoNode * child , int newChildindex);
inserts a child node into a group at the location specifiegtelyChildindexFor example,

SoDrawStyle *wireStyle;

wireStyle = new SoDrawStyle;

wireStyle >style = SoDrawStyle::LINES;

I/l Insert as child 1 (the node right after the first child,
// which is child 0.

body >insertChild(wireStyle, 1);

inserts a wireframe drawing style node as the second child of the body group.

Other group methods allow you to find out how many children are in a group, to find the index of a
particular child, to access the child with a given index, and to remove children.

Why Is Order Important?

Each node class has its own way of responding to a given database action. For this discussion,
assume you are dealing only with the renderingaction (here called simphgndering.

« If the node to be rendered igi@upnodeit invokes the rendering action on each of its children in
order, typically from left to right in the scene graph.

e Each child node in turn executes its own rendering method, which then affects the traversal state
in some way (see Chapter 9, "Applying Actions"). If the child nodeisperty nodeit
modifies one or more elements in the traversal state, such as the value used for diffuse color, the
value used for scaling an object, or the value used for line width. Most property nodes simply
replacethe values for an element in the traversal state.
(A bronze material node replaces values in the material element with its own new values.)
Geometric transformations are exceptions becausetmlyinewith each other to make
composite transformations.

« If the child node is ahape nodgit draws itself using the current traversal state.
During rendering, the scene graph is traversed, starting from the root node, from left to right and from

top to bottom. Nodes to the right (and down) in the graph inherit the traversal state set by nodes to the
left (and above).

Figure 3 6 shows how nodes inherit state. WhenviterMoleculenode is rendered, it visits its first
child, oxygen Theoxygengroup then visits each of its children, as follows:

1. The material nodeddPlastig changes the material element to a shiny red surface.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
3, Nodes and Groups 9

2. The sphere nodspghere) causes a sphere to be rendered using the current traversal state. A
shiny red sphere is drawn at the origin.

The graph traversal continues to the next group on the higthtpgen1which in turn visits each of its
children in order from left to right:

1. The transform nodéydrogenXformilmodifies the transformation matrix (let's say it scales by a
factor of 0.75 irx, y, and2. It also modifies the transformation matrix by adding a translation of
0.0, 1.2, 0.0 (ix, y, andd.

2. The material nodevpitePlasti¢ changes the material element to a shiny white surface.

3. The sphere nodsphere causes another sphere to be rendered using the modified traversal
state. This sphere is white. AdditionalbphereZappears in a new location and is scaled down in
size, the result of theoTransform node in its group.

Next, thehydrogenyroup visits its children, from left to right:

1. The transform nodéydrogenXformPmaodifies the transformation matrix, translating inttke
and+y directions.

2. The sphere nodsphere}causes the third sphere to be rendered using the modified traversal
state. This sphere is still white and scaled by 0.75 because it inherits these attributes from the
hydrogenigroup.

wateriMolecule

C) oxXygen C) hydrogeni C) hydrogen2

® 0O 0

redPlastic sphere1 hydrogenXformi whitePlastic sphere2 hydrogenXtorm2 sphere3

Figure 36 Combining Groups

Example 3 1 shows the code to create this molecule.

Example 31 Molecule.c++

Il Construct all parts
SoGroup *waterMolecule = new SoGroup; // water molecule

SoGroup *oxygen = new SoGroup; /I oxygen atom
SoMaterial *redPlastic = new SoMaterial;
SoSphere *spherel = new SoSphere;

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
3, Nodes and Groups 10

SoGroup *hydrogenl = new SoGroup; // hydrogen atoms
SoGroup *hydrogen2 = new SoGroup;

SoTransform *hydrogenXforml = new SoTransform;
SoTransform *hydrogenXform2 = new SoTransform;
SoMaterial *whitePlastic = new SoMaterial;

SoSphere *sphere2 = new SoSphere;

SoSphere *sphere3 = new SoSphere;

/I Set all field values for the oxygen atom
redPlastic >ambientColor.setValue(1.0, 0.0, 0.0);
redPlastic >diffuseColor.setValue(1.0, 0.0, 0.0);
redPlastic >specularColor.setValue(0.5, 0.5, 0.5);
redPlastic >shininess = 0.5;

/I Set all field values for the hydrogen atoms
hydrogenXforml >scaleFactor.setValue(0.75, 0.75, 0.75);
hydrogenXform1 >translation.setValue(0.0, 1.2, 0.0);
hydrogenXform2 >translation.setValue(1.1852, 1.3877, 0.0);
whitePlastic >ambientColor.setValue(1.0, 1.0, 1.0);
whitePlastic >diffuseColor.setValue(1.0, 1.0, 1.0);
whitePlastic >specularColor.setValue(0.5, 0.5, 0.5);
whitePlastic >shininess = 0.5;

/I Create a hierarchy

waterMolecule >addChild(oxygen);
waterMolecule >addChild(hydrogen1);
waterMolecule >addChild(hydrogen?2);

oxygen >addChild(redPlastic);

oxygen >addChild(spherel);

hydrogenl1 >addChild(hydrogenXform1l);
hydrogenl >addChild(whitePlastic);
hydrogenl >addChild(sphere2);
hydrogen2 >addChild(hydrogenXformz2);
hydrogen2 >addChild(sphere3);

Separators

To isolate the effects of nodes in a group, us8@®eparatornode, which is a subclass®dGroup
Before traversing its children, &wSeparatorsaves the current traversal state. When it has finished
traversing its children, tHg@oSeparatorrestores the previous traversal state. Nodes within an
SoSeparatorthus do not affect anything above or to the right in the graph.

Figure 3 7, for example, shows the body and head for a robohcotlygroup, a separator, contains
SoTransform andSoMaterial nodes that affect the traversal state used by the cylinder in that group.
These values are restored when all children itdidygroup have been visited, so tieadgroup is
unaffected by thbodygroup nodes. Because theadgroup is also a separator group, the traversal

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
3, Nodes and Groups 11

state is again saved when group traversal begins and restored when group traversal finishes.

Separators are inexpensive to use and help to structure scene graphs. You will probably use them
frequently.

Tip: The root node of a scene graph should be a separator if you want the state to be reset between
successive renderings.

robot

@ body head

DO @ e

bronze myCylinder silver mySphere

Figure 3 7 Separator Groups
Code for the robot body and head groups is shown below:

Il create body parts
SoTransform *xfl = new SoTransform;
xfl >translation.setValue(0.0, 3.0, 0.0);

SoMaterial *bronze = new SoMaterial,

bronze >ambientColor.setValue(.33, .22, .27);
bronze >diffuseColor.setValue(.78, .57, .11);
bronze >specularColor.setValue(.99, .94, .81);
bronze >shininess = .28;

SoCylinder *myCylinder = new SoCylinder;
myCylinder >radius = 2.5;
myCylinder >height = 6

Il construct body out of parts
SoSeparator *body = new SoSeparator;
body >addChild(xf1);

body >addChild(bronze);

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
3, Nodes and Groups 12

body >addChild(myCylinder);

Il create head parts

SoTransform *xf2 = new SoTransform;
xf2 >translation.setValue(0, 7.5, 0);

xf2 >scaleFactor.setValue(1.5, 1.5, 1.5);

SoMaterial *silver = new SoMaterial,
silver >ambientColor.setValue(.2, .2, .2);
silver >diffuseColor.setValue(.6, .6, .6);
silver >specularColor.setValue(.5, .5, .5);
silver >shininess = .5;

SoSphere *mySphere = new SoSphere;

/I construct head out of parts
SoSeparator *head = new SoSeparator;
head >addChild(xf2);

head >addChild(silver);

head >addChild(mySphere);

// add head and body

SoSeparator *robot = new SoSeparator;
robot >addChild(body);

robot >addChild(head);

Other Subclasses of SoGroup

In addition toSoSeparator other subclasses 8bGroupinclude the following:

+ SoSwitch

* SolevelOfDetall

* SoSelection (see Chapter 10, "Handling Events and Selection")

In the robot exampleSoSeparatornodes are used to contain the effects of nodes within a particular
group in the scene graph; you do not want the head to inherit the transformation or material attributes

from the body group. Conversely, the molecule exampleSs€soupnodes to accumulate a set of
properties to apply to other nodes later in the graph.

SoSwitch

An SoSwitchnode is exactly like aBoGroupexcept that it visits only one of its children. It contains
one field,whichChild, which specifies the index of the child to traverse. For example, the following
code specifies to visit nodef switchs

SoSwitch *s = new SoSwitch;
s >addChild(a); /I this child has an index of 0
s >addChild(b); /I this child has an index of 1

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
3, Nodes and Groups 13

s >addChild(c); /I this child has an index of 2
s >addChild(d); /I this child has an index of 3
s >whichChild = 2; I specifies to visit child(c)

The default setting afthichChild is SO_SWITCH_NONE, which specifies to traverse none of the
group’s children.

You can use aSoSwitchnode to switch between several different camera nodes for viewing a scene.
You can also use @&oSwitchnode for rudimentary animation. By cycling through a series of groups,
you can, for example, make the wings on a duck flap up and down or make a robot walk across the
screenSoBlinker, derived fromSoSwitch cycles among its children (see Chapter 13, "Engines") and
provides some additional controls useful for animation.

SolevelOfDetail

The SoLevelOfDetail node allows you to specify the same object with varying levels of detail. The
children of this node are arranged from highest to lowest level of detail. The size of the objects when
projected into the viewport determines which child to use. This node is very useful for applications
requiring the fastest rendering possible. It has one field:

screenArea(SoMFFloat)
areas on the screen to use for comparison with the bounding box of the
level of detail group. By default, this value is 0.0, so the first child in the group is
traversed.

To determine which child to traverse, Inventor computes the 3D bounding box of all children in the
level of detail group. It projects that bounding box onto the viewport and then computes the area of
the screen aligned rectangle that surrounds the bounding box. This area is then compared to the areas
stored in thecreenAreafield. For example, Figure 3 8 shows a level of detail node with three

children. Suppose ttsereenAreafield contains the values [400.0, 100.0]. If the bounding box

projection of the group is 390.0 square pixels (that is, less than 400.0 but greater than 100.0), then
childBis traversed. If the bounding box projection of the group is 450.0 pixels (that is, greater than
400.0, therchildAis traversed. If the bounding box projection is less than 166ildCis traversed.

The SoComplexitynode, discussed in Chapter 5, "Shapes, Properties, and Binding", also affects the
child selection for the level of detail node. If complexity is 0.0 or is of type BOUNDING_BOX, the

last child inSoLevelOfDetailis always traversed. If complexity is 1.0, the first child is always used.

If the complexity value is greater than 0.0 and less than 0.5, the computed size of the bounding
rectangle is scaled down appropriately to use a less detailed representation. If the complexity value is
greater than 0.5, the size of the bounding rectangle is scaled up appropriately. If the complexity is 0.5,
Inventor uses the computed size of the bounding rectangle as is.

Figure 3 9 shows an object modeled with different levels of detail. Each group of candlesticks is
arranged with the most detailed model at the left, a medium level of detail in the middle, and the least
detailed model at the right. When the candlestick is close to the camera (as in the first group at the left
of Figure 3 9), the most detailed model would be used. This model uses a texture on the base of the
candlestick and has a detailed candle with a wick. When the object is farthest away, the least detailed
model can be used since the details are not visible anyway. When the object is mid range (the center
group of Figure 3 9), the middle model would be used.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
3, Nodes and Groups 14

Most detailed .
version

Level of detal

C
) Least detailed
S S S\ version

100 < area < 400

40 < area

Figure 3 8 Scene Graph with Level of Detail Node

Figure 3 9 Different Levels of Detail for an Object

Shared Instancing of Nodes

You can add any node to more than one group. A bicycle, for example, might use the same basic
wheel group for both the front and rear wheels, with slight modifications for size and location of the
two wheels. The termshared instancingefers to such cases, where a single node has more than one

parent.

The Inventor Mentor:

Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter

3, Nodes and Groups 15

The robot example can instance libggroup twice to form a left and right leg, as shown inFigure

3 10. The basiteg group contains nodes for a cylinder (the thigh), a transformed cylinder (the calf),
and a transformed cube (the foot). The left and right leg groups (the peggritegandleftLeg

each contain an addition@bTransform node to position the complete legs correctly onto the robot’s
body.

Any change made within theg group is reflected in all instances of it. Here, for example, if the
height of the cube in tHeotnode is doubled, both the left and right feet double in height.

Shared instancing offers database and program economy, since objects can be reused without
duplicating them. You save both time and space by reusing nodes (and groups) when possible.

Do not, however, create cycles within a given scene graph. A node can connect to multiple parents but
should not be a child of itself or any of its descendants.

rabot

@ é silver
é bronze bodyCylinder %Leg rightleg head Transform headSphere
bodyTransform %@

lefiTransform rnightTransform

call é@ foot

thigh
calf Transform footTransform

/'\

@%

®7

Figure 310 Scene Graph Showing Shared Instancing of the Leg Group

Example 3 2 shows the code for the robot as described up to this point. The rendered image is shown
in Figure 3 11.

Example 32 Robot.c++

// Robot with legs

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
3, Nodes and Groups 16

/I Construct parts for legs (thigh, calf and foot)
SoCube *thigh = new SoCube;

thigh >width = 1.2;

thigh >height = 2.2;

thigh >depth = 1.1,

SoTransform *calfTransform = new SoTransform;
calfTransform >translation.setValue(0, 2.25, 0.0);

SoCube *calf = new SoCube;
calf >width = 1;

calf >height = 2.2;

calf >depth = 1;

SoTransform *footTransform = new SoTransform;
footTransform >translation.setValue(0, 2, .5);

SoCube *foot = new SoCube;
foot >width = 0.8;

foot >height = 0.8;

foot >depth = 2;

I/l Put leg parts together
SoGroup *leg = new SoGroup;
leg >addChild(thigh);

leg >addChild(calfTransform);
leg >addChild(calf);

leg >addChild(footTransform);
leg >addChild(foot);

SoTransform *leftTransform = new SoTransform;
leftTransform >translation = SbVec3f(1, 4.25, 0);

/I Left leg

SoSeparator *leftLeg = new SoSeparator;
leftLeg >addChild(leftTransform);

leftLeg >addChild(leg);

SoTransform *rightTransform = new SoTransform;
rightTransform >translation.setValue(1, 4.25, 0);

/l Right leg

SoSeparator *rightLeg = new SoSeparator;
rightLeg >addChild(rightTransform);
rightLeg >addChild(leg);

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
3, Nodes and Groups 17

Il Parts for body
SoTransform *bodyTransform = new SoTransform;
bodyTransform >translation.setValue(0.0, 3.0, 0.0);

SoMaterial *bronze = new SoMaterial,

bronze >ambientColor.setValue(.33, .22, .27);
bronze >diffuseColor.setValue(.78, .57, .11);
bronze >specularColor.setValue(.99, .94, .81);
bronze >shininess = .28;

SoCylinder *bodyCylinder = new SoCylinder;
bodyCylinder >radius = 2.5;
bodyCylinder >height = 6;

/I Construct body out of parts
SoSeparator *body = new SoSeparator;
body >addChild(bodyTransform);

body >addChild(bronze);

body >addChild(bodyCylinder);

body >addChild(leftLeg);

body >addChild(rightLeg);

/l Head parts

SoTransform *headTransform = new SoTransform;
headTransform >translation.setValue(0, 7.5, 0);
headTransform >scaleFactor.setValue(1.5, 1.5, 1.5);

SoMaterial *silver = new SoMaterial;
silver >ambientColor.setValue(.2, .2, .2);
silver >diffuseColor.setValue(.6, .6, .6);
silver >specularColor.setValue(.5, .5, .5);
silver >shininess = .5;

SoSphere *headSphere = new SoSphere;

// Construct head

SoSeparator *head = new SoSeparator;
head >addChild(headTransform);

head >addChild(silver);

head >addChild(headSphere);

// Robot is just head and body
SoSeparator *robot = new SoSeparator;
robot >addChild(body);

robot >addChild(head);

Tip: When constructing a complicated scene graph, you may want to define the graph using the

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
3, Nodes and Groups 18

Inventor file format (see Chapter 11, "File Format") and read the graph from a file or from a string in

memory. This approach can be easier and less error prone than constructing the scene graph
programmatically.

| B+ e e |~ | e [T

Rate Haty [0 | Zoom [g [¥5.0 | Dally

Figure 311 Rendered Image of the Robot

Paths

Pathsare used to isolate particular objects in the scene graph. Suppose you want to refer to the left
foot of the robot. Which node in Figure 3 10 represents the left foot? You can't refer simplipta the
node, since that node is used for both the left and right feet. The answer is that the left foot is
represented by the path, or chain, starting atabetnode (the root), and leading all the way down

the graph to thibotnode. Figure 3 12 indicates the path for theféeftnode.

A path contains references to a chain of nodes, each of which is a child of the previous node. A path
represents a scene graph or subgraph (part of a scene graph). In scene graph diagrams in this book, a
path is represented by a heavy line that connects the chain of nodes.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
3, Nodes and Groups 19

robot

body head

@ ‘é’ %@ silver
g@ bronze bodyCylinder JlefiLeg rightLeg headTransform headSphere
body Transform
lefiTransform nightTransform | leg
thigh é calf %@ foot
calfTransform foot Transtorm

— Path

Figure 312 Path Representing the Left Foot

Where Do Paths Come From?

Paths are returned bypi&ckingor searchaction, and you can construct your own path. (See Chapter 9,
"Applying Actions," for a detailed description of interactive picking.) The user of an interactive
application might click the mouse over an object on the screen, causing the object to be picked, and
then perform an operation on that objéébr example, moving it, changing its color, or deleting it.

The selection node manages a list of paths as the currently selected objects.

What Are Paths Used For?

All actions that can be performed on a node can also be performed on a path. These actions include
calculating a bounding box and origin for the path, accumulating a transformation matrix for it, and
writing the path to a file.

How you use the information included in a path depends on your application. You may use the whole
path, or only part of the path. If your user clicks the mouse on the robot’s left foot, is the user

selecting the whole robot, the left leg, or just the left foot? (Perhaps one click selects the whole robot,
and subsequent clicks select parts of the robot that are lower in the graph, such as the left leg and foot.)

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
3, Nodes and Groups 20

Fields within a Node

When you create a node, its fields are already set to predefined values. Afterward, you can change the
values in its fields directly. The syntax for setting the value of a field depends on the type of the field
and whether it is a single value or multiple value field. The following example creates a drawing style
node and sets its fields:

SoDrawStyle *d = new SoDrawStyle;

d >style.setValue(SoDrawStyle::LINES) ;
d >lineWidth.setValue(3) ;

d >linePattern.setValue(0xf0f0);

The current drawing style is now nonfilled, dashed outlines, with a line width of 3 pixels. If you do not
set the field values explicitly, Inventor uses the default values for that node. Default values for
SoDrawStylenodes are as follows:

Field Default Values

style SoDrawStyle::FILLED
lineWidth 1

linePattern Oxffff (solid)
pointSize 1

The following sections discuss setting and getting values for different types of fields. See also
Chapter 13, "Engines,", which discusses field to field connections as well as several special types of
fieldsO globalfields andrigger fields.

Why Fields? (Advanced)

You may be wondering why Inventor nodes have fields instead of simple member variables. This
section outlines a few of the mechanisms provided by fi€lusInventor Toolmakegrovides
additional background on these topics.

First, fields provide consistent methods for setting and inquiring values, as described in the following
sections and in th@pen Inventor C++ Reference Manu&lecond, fields provide a mechanism for
Inventor to detect changes to the database. Third, you can connect fields in one node to fields in
another node, as described in Chapter 13, "Engines,". Finally, fields provide a consistent and
automatic way to read and write node values.

Single versus Multiple Value Fields

A single value field has one value of a given type. Single value fields include the $&ttertheir
class name. For example:

SoSFBool contains arsbBool
SoSFFloat contains a singl#ioat
SoSFRotation

contains arsbRotation

SoSFName contains arsbName

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
3, Nodes and Groups 21

SoSFColor contains a singl8bColor

Single value fields are used for nodes that have no use for arrays of values, such as a line pattern, a
translation value, a rotation value, or a camera aspect ratio.

A multiple value field contains an array of values. Multiple value fields include the Igtteis their

class name for example SoMFBool SoMFFloat, SoMFVec3f andSoMFColor. Multiple value

fields are used for coordinate points and normal vectors. They are also used for materials, so that you
can assign different colors to different vertices. Most fields haveSfeeimdMF forms. See th®pen
Inventor C++ Reference Manu#dr descriptions of fields within each node class.

Single Value Fields: Setting and Getting Values

The examples earlier in this chapter show how to declare and create nodes. This section provides
additional examples of the syntax for setting and getting values for single value fields within the
nodes. (Most fields havesatValue()andgetValue()method and can also use the = operator to set
values.)

Floats, Longs, and Shorts

This first example sets the value in treght field of anSoOrthographicCameranode through use
of thesetValue()method. This field is of typ8oSFFloat

SoOrthographicCamera *cam = new SoOrthographicCamera;
cam >height.setValue(1.);

or
cam >height = 1.; // = operator has been defined for this field
To get the value for this field, use thetValue()method:

float result = cam >height.getValue();

Vectors

You can specify aBoSFVec3field in several different formats. Each defines a 3D vector:
* You can set it from a vector (&bVec3j.
* You can set it from three floats (either a vector or three separate values).
* You can set it from an array of three floats.

The following examples show how to set valuesSo5FVec3fields.

An SoTransform node has a fieldranslation, which is arSoSFVec3field that contains one value
of typeSbVec3f The variableformis a transform node instance.

SoTransform *xform = new SoTransform;
/(1) Setting the field from a vector
ShVec3f vector;

vector.setValue(2.5, 3.5, 0.0);
xform >translation.setValue(vector);

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
3, Nodes and Groups 22

/I or: xform >translation = vector;

//(2a) Setting the field from a vector of three floats

xform >translation.setValue(ShVec3f(2.5, 3.5, 0.0));
/I or: xform >translation = SbVec3f(2.5, 3.5, 0.0);

//(2b) Setting the field from three floats

float x =2.5,y=3.5,2=0.0;
xform >translation.setValue(x, y, z);

//(3) Setting the field from an array of three floats

float floatArray[3];
floatArray[0] = 2.5;
floatArray[1] = 3.5;
floatArray[2] = 0.0;
xform >translation.setValue(floatArray);

Use thegetValue()method to get values for a field. This example copies the vector, changes it, and
copies it back:

SbVec3f t = xform >translation.getValue();

t[0] += 1.0;
xform >translation.setValue(t);
I or: xform >translation = t;

Rotations

A rotation field specifies a rotation in 3D space. Sinc&BRotation represents rotation around an
axis by an angle, you can set its value by specifying the axis and angle:

SbRotation r;

SbVec3f axis(0., 1., 0.);

float angle = M_PI; //from math.h
r.setvalue(axis, angle);

Il or SbRotation r(SbVec3f(0., 1., 1.), M_PI);

You can also define a rotation to rotate one direction vector into another, as follows:
ShRotation r(SbVec3f(0.0, 0.0, 1.0), SbVec3f(0.0, 1.0, 0.0));
To set the value of thetation field of anSoTransform node:

SoTransform *xform = new SoTransform;
xform >rotation =r;

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
3, Nodes and Groups 23

You can also usgetValue()to set the value of mtation field and supply an axis and angle, a
quaternion, or two vectors.

The = (assignment) operator can be used to set a field's value from another field of the same type. As
with vectorsgetValue()returns the value of the field.

Tip: If you want to specify a rotation as an axis/angle, you must p&svat3fand a float.
Passing four floats specifies a quaternion.
Multiple Value Fields: Setting and Getting Values

The SoMaterial node contains the following fields:

Field Name Class

ambientColor SoMFColor
diffuseColor SoMFColor
specularColor SoMFColor
emissiveColor SoMFColor
shininess SoMFFloat
transparency SoMFFloat

These examples show different styles for setting the fields bitaterial node. Theransparency
field is of typeSoMFFloat, so it contains one or more values of tfipat. ThediffuseColor field is
of typeSoMFColor, so it contains one or more values of tgolor. The syntax for setting
multiple values in asoMFFloat field is as follows:

nodeName> fieldName .setValues (starting index, number of values,
pointer to array of values);

For example:

SoMaterial *mtl;
float vals[3];

vals[0] = 0.2;
vals[1] = 0.5;
vals[2] = 0.9;

mtl >transparency.setValues(0, 3, vals);

Space for the array is reallocated when necessary. The values are copied in from the array. An
example of setting a multiple value field that usesanype is as follows:

SoMaterial *mitl;
ShVec3f vals[3];

vals[0].setValue(1.0, 0.0, 0.0);
vals[1].setValue(0.0, 1.0, 0.0);
vals[2].setValue(0.0, 0.0, 1.0);
mtl >diffuseColor.setValues(0, 3, vals);

If you want to set only one value in 8oMFFloat field, you can use the following shorthand
method:

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
3, Nodes and Groups 24

nodeName> fieldName . setValue (valuel);
For example:

mtl >transparency.setValue(.25);
/lor mtl >transparency = .25;

This short method sets the number of values equal to 1 and sets the field to the specified value.
However, it also throws away any subsequent values that were previously set in the array, so you
should use it only to set the field to have one value. Use the longer methéalfe$ or the
setlValue()method if you want to change one value in the array and preserve the rest of the values.

You can use the [] operator to get a particular value within a multiple value field as follows:
f = myMtl >transparency[13]; // get 14th value of array
You can also create loops to access all values in the field:

for (i = 0; i < myMtl >transparency.getNum(); i++) {
printf("transparency value %d is %g\n", i,
myMtl >transparencyli]);

}

To insert values in the middle of a field:

float newValues|[2];
newValues[0] = 0.1;
newValues[1] = 0.2;

Il First, make space; after this, myMtl >transparency[10]
/I and myMtl >transparency[11] will have arbitrary values:

myMtl >transparency.insertSpace(10, 2);
/I Set the space created to the right values:

myMtl >transparency.setValues(10, 2, newValues);
To delete values from a field:

I/l Delete myMtl >transparency[8] and myMtl >transparency[9];
I the values in myMtl >transparency[10] on up will be moved
// down to fill in the missing space, and the transparency

Il array will have two fewer values.

myMtl >transparency.deleteValues(8, 2);

See th@®pen Inventor C++ Reference Mandal additional methods used to eMliF fields.

Ignore Flag (Advanced)

Every field has an Ignore flag associated with it. Uses¢hignored() method to set or reset the
Ignore flag. When this flag is set, the field is disregarded. This flag enables you to ignore certain
fields in a node and to use others. For example, to ignore the specular color field in a material node so

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
3, Nodes and Groups 25

the value is inherited from the previous material:

SoMaterial *bronze = new SoMaterial;

bronze >ambientColor.setValue(.33, .22, .27);
bronze >diffuseColor.setValue(.78, .57, .11);
bronze >specularColor.setlgnored(TRUE);
bronze >shininess = .28;

To turn the Ignore flag off:
bronze >specularColor.setlgnored(FALSE);
Theislgnored() method returns TRUE if the Ignore flag for this field is set:

if (bronze >specularColor.islgnored()) {
printf("Yes, specular is ignored\n™);

}

Some fields are not inherited and are thus not affected by the Ignore flag. Examples of fields that are
notinherited are the fields of shape nodes, light source nodes, some groups, and cameras, as well as
the fields in the&SoEnvironmentnode. If you set the Ignore flag for a field whose values are not
inherited, Inventor simply uses the field's default values.

Override Flag (Advanced)

Every node has an Override flag associated with it. The Override flag is a powerful mechanism
typically used (sparingly) near the top of a scene graph. When this flag is set, any nodes of the same
type encountered later in the graph are ignored even if they also have their Override flag set. For
example, you might insert a line sty@@DrawStylenode at the top of a graph to ensure that the

whole scene is drawn as wireframe objects, regardless of drawing styles specified lower in the scene
graph. Use theetOverride() method to set and reset the Override flag.i3@eerride() method

returns the state of the Override flag.

For example:

I/ This function toggles the given draw style node between
I/l overriding any other draw style nodes below it in the scene
I/l graph, and not having any effect at all on the scene graph.
I
void
toggleWireframe(SoDrawStyle *myDrawStyle)
{
if (myDrawStyle >isOverride()) {
myDrawStyle >style.setlgnored(TRUE);
myDrawStyle >setOverride(FALSE);
}else {
myDrawStyle >style = SoDrawStyle::LINES;
myDrawStyle >style.setlgnored(FALSE);
myDrawStyle >setOverride(TRUE);

}
}

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
3, Nodes and Groups 26

Normally, the Override flag is not used within a scene graph for modeling. Use it in applications
where you need to specify a temporary change to the whole graph.

Note: The Override flag is not written to a file (see Chapter 11, "File Format,").

Setting the Override flag on a node whose field values are not inherited (for example, on a sphere with
a radius of 7) has no effect on other nodes in the graph of that type.

References and Deletion

Although nodes are created in the usual C++ fashion, the procedure for deleting nodes differs from the
C++ style. The following discussion explains how a node counts references to itself and when these
references are incremented and decremented. It outlines the proper procedure for unreferencing a
node, which results in the node’s deletion.

Reference Counting

Each node stores the number of references made to that node within the database. There are several
different types of references for nodes:

» Parent child link
« Path node link
Engines also store a reference count (see Chapter 13, "Engines,"). This count is incremented when

the output of an engine is connected to a field. You can also increment or decrement the reference
count manually, by callingef() or unref().

Figure 3 13 shows the reference counts for nodes in a small subgraph. Whenever you create a
reference to a node, you increment its count. The action

A >addChild(B)

adds node B to node A and also increments the reference count for node B by 1. In Figure 3 13 node
C has a reference count of 2 because it has been added to two different parent groups. At this point,
nodes A and D contain 0O references.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
3, Nodes and Groups 27

Figure 3 13 Reference Counts

Referencing a node in a path also increments the node’s reference count, as shown inFigure 3 14. The
reference count for node A now becomes 1, and the reference count for node B becomes 2.

o P

1 2 2

Figure 3 14 Incrementing the Reference Count

Tip: Be sure to reference the root of the scene graph: root >ref(). This node is not referenced by
being a child of anything else.

How Nodes Are Deleted

Inventor uses a reference counting mechanism to delete nodes and subgraphs of nodes. To understand
how nodes are deleted, you need to know how a node’s reference count is incremented and
decremented, as detailed in this section.

When you remove a reference to a node, its reference count is decremented. Removing a child
decrements the reference count. When a node’s count returns to 0, it is deleted from the database.
Consider the following cases, however, where deleting a node causes problems (refer to Figure 3 13
for this discussion):

Problem 1: If you remove node B from node A, the reference count for node B goes to 0 and
the node is deleted. But what if you still want to use node B?

Problem 2: How do you delete node A? Its reference count has always been 0.

Problem 3: What if someone applies an action to a node that has a reference count of 0? The
action creates a path, which references the node. When the action finishes, the
path is removed, and the node is deleted.

The solution to these problems is that when you want to prevent a node from being deleted, you
reference it:

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
3, Nodes and Groups 28

B >ref();

Referencing a node increments its count by 1 and ensures that the node is not accidentally deleted.
After you have explicitly referenced node B, you can safely remove it as a child of A without fear of
deleting node B

(Problem 1).

Similarly, to prevent node A from being deleted (Problem 3), you
reference it:

A >ref();

If you want to delete A (Problem 2), you can unreference it, which decrements the reference count.
Node A is now deleted, since you were the only one with a reference to it:

A >unref();

When a group is deleted, all of its children are removed and their reference counts are decremented by
1. InFigure 3 15, for example, if you specify

P >unref(); // reference count for P goes to 0
the reference counts for the child nodes are decremented as follows:
1. Qgoesto0
2.Sgoestol
3.Rgoesto 0
4,Sgoesto 0

Since all reference counts now equal 0, all nodes are deleted.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
3, Nodes and Groups 29

P P retl); P unref();

i 1m0

—
—

(e ()

2 2pipo

Figure 3 15 Decrementing the Reference Count

Tip: Do not allocate nodes, paths, or engines in arrays. This creates problems when one reference
count goes to 0 and Inventor tries to free the space allocated for one object in the array.

When you apply an action to a node, the action automatically creates a path that references the node.
When the action finishes, it automatically removes the path, and thus decrements the node’s reference
count. Here again, if the node originally has a reference count of 0, it is deleted when the action
finishes.

Tip: Random memory errors are often caused by unreferenced nodes that have been deleted. If such
errors occur, check your program to be sure that it is not trying to use nodes that have been deleted.
The debugging version of the Inventor library catches many common reference

counting mistakes.

Nodes with Zero References

A node, path, or engine should be created only méthand never declared on the stack. These
objects should be freed only when their reference count goes to 0, not when they go out of scope.

A newly created node has a reference count of 0. This does not mean that it immediately disappears,
since a node is deleted only when the reference codatismentetb 0. Sometimes it is important
to be able to restore a

node to its original state (that is, reference count equals 0, but it still exists). For example:

/I Create a sphere of a certain radius and returns its bounding
// box. NOTE: BUGGY VERSION; provided for discussion only!

SoSphere *makeSphere(float radius, SbBox3f &box)
{

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
3, Nodes and Groups 30

sphere = new SoSphere; // reference count of 0
sphere >radius.setValue(radius);

ba = new SoGetBoundingBoxAction;
ba >apply(sphere); // does a ref/unref
box = ba >getBoundingBox();

return sphere; // ERROR! returning node that
/l was deleted when ref count
/I went back to zero!

}

In this example, the sphere node is referenced and unreferen8e@eiBoundingBoxAction
When unreferenced, the sphere’s reference count goes to 0, and it is deleted. The sphere needs to be
referenced before the action is applied.

You can use thenrefNoDelete()method in cases such as this one, where you want to return the
sphere to its original "fresh" state, with a reference count of 0 (but not deleted). Here is an example of
usingunrefNoDelete()

/I Create a sphere of a certain radius and returns its bounding
I/ box. NOTE: CORRECT VERSION

SoSphere *makeSphere(float radius, SbBox3f &box)
{
sphere = new SoSphere; // reference count of 0
sphere >ref(); // we want it to stay around
sphere >radius.setValue(radius);

ba = new SoGetBoundingBoxAction;
ba >apply(sphere); // does a ref/unref
box = ba >getBoundingBox();

sphere >unrefNoDelete(); // ref count goes to zero,
/I but sphere stays around

return sphere; // returns sphere with ref
/I count of zero

}

Summary of References and Deletion

Table 3 1 summarizes the occurrences that increment and decrement reference counts of nodes and
engines. Note that connecting an engine to a field in a node does not increment the node’s reference
count. (Engines are discussed in Chapter 13.)

Increments Reference Count by 1 Decrements Reference Count by 1

Adding a node as a child of another node Removing a node as a child of another node
increments child’s reference count

Adding a node to a path Removing a node from a path

Applying an action to a node or path When traversal for the action
finishes, all nodes that were

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
3, Nodes and Groups 31

increments reference count of all nodes that
are traversed traversed are unreferenced

Adding a node to an SoNodeList node Removing a node from an SoNodelList
Setting an SoSFNode or SoMFNode value Gbanging an SoSFNode or SoMFNode
point to a node value to point to a different node or to

NULL, or deleting the value

Connecting an output of an engine to a fieldisconnecting an engine’s output from the
in a node or engine increments the enginefeld decrements the engine’s reference
reference count count

Table 31 References and Deletion

Node Types

Inventor provides runtime type checking through 8ud ypeclass. Use thgetTypeld() method on
an instance to obtain tiB®Typefor that instance. Runtime type checking is available for most
Inventor classes, including nodes, engines, actions, details, and events.

The SoTypeclass has methods that enable you to find the parent class of getparént(), to
create an instance of a particular typeedtelnstance(), and to obtain aBbNamefor the class type
(getName(). For example, the following code returns a name, such as

Material or Group, which you could then use to print some information about the node:
node >getTypeld().getName();

The following two statements both return ®eTypefor anSoMaterial node (the first is more
efficient):

(1)

SoMaterial::getClassTypeld();

11(2)

SoType::fromName("Material");

To determine whether an instance is of a particular type, use the == operator, as follows:

if (myNode >getTypeld() == SoGroup::getClassTypeld())
/l'ls this an SoGroup?

To determine whether an instance is of the same type or derived from a particular class, use the
isOfType() method or th&oType::derivedFrom() method (the two methods have the same effects):

(1)
if (myNode >isOfType(SoGroup::getClassTypeld()))
/l'Is this an SoGroup, SoSeparator, SoSwitch, and so on

I1(2)
if (myNode >getTypeld().isDerivedFrom(
SoGroup::getClassTypeld()))

Also see the description in Chapter 9 of 8@SearchAction which allows you to search the scene
graph for nodes of a particular type, or derived from a type.

Naming Nodes

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
3, Nodes and Groups 32

You can assign a name to a node, path, or engine and then search for the object by name. Because the
names are preserved when the objects are written to or read from files, they are also a useful way of
identifying objects. The base cl&sBaserovides thesetName()method, which allows you to

specify a name for a node, path, or engine. It also providggetName()method, which returns the

name for the given object.

Any node, path, or engine has one name, which does not have to be unique. Names can be any
SbName An SbNamecan start with any uppercase or lowercase letter (A Z) or an underscore ().
All characters in aBbNamemust be digits 0 9, upper/lowercase A Z, or underscores. The default
name for an object is the empty string ("").

Use thesoNodemethodgetByName()to find a node or nodes with a given nans@Rathand
SoEngineprovide similagetByName()methods.) The search action also allows you to search for an
object or objects with a given name (see Chapter 9).

An example of how names might be used is a slot car racer program that allows users to create their
own slot cars, following simple conventions for how big the cars are, which direction is up, and how
the standard nodes or engines in the slot cars are named. For example, the guidelines might specify
that theSoTransform node that is the steering wheel's rotation is always named
SteeringWheelRotationThe slot car program could then read in the scene graph for a given car,
search for th&teeringWheelRotatiarode, and then animate the steering wheel using that node.

Example 3 3 shows naming several nodes sgtiName() then usingietByName()to return specific
nodes. The child node namdgCubeis removed from the parent nanfedot

Example 3 3 Naming Nodes

#include <Inventor/SoDB.h>

#include <Inventor/nodes/SoCube.h>
#include <Inventor/nodes/SoSeparator.h>
#include <Inventor/nodes/SoSphere.h>
#include <Inventor/sensors/SoNodeSensor.h>

void RemoveCube(); // Defined later...

main(int , char **)

{
SoDB::init();

/I Create some objects and give them names:
SoSeparator *root = new SoSeparator;

root >ref();

root >setName("Root");

SoCube *myCube = new SoCube;

root >addChild(myCube);

myCube >setName("MyCube");
SoSphere *mySphere = new SoSphere;
root >addChild(mySphere);

mySphere >setName("MySphere");

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
3, Nodes and Groups 33

}

RemoveCube();

void
RemoveCube()

{

/I Remove the cube named 'MyCube’ from the separator named
/I’'Root’. In areal application, isOfType() would probably

/I be used to make sure the nodes are of the correct type

/I before doing the cast.

SoSeparator *myRoot;
myRoot = (SoSeparator *)SoNode::getByName("Root");

SoCube *myCube;
myCube = (SoCube *)SoNode::getByName("MyCube");

myRoot >removeChild(myCube);

oy
} EEEEE 205 ({61 — aponos — sauiewoopia0s — ssegos

Chapter 4
Cameras and Lights

Chapter Objectives
After reading this chapter, you'll be able to do the following:

» Add different types of cameras to a scene, experimenting with a variety of camera positions,
orientations, and viewport mappings

» Add different types of lights to a scene, experimenting with a variety of light types, intensities,
and colors

Chapters 4 through 8 focus on several different classes of nodes. Cameras and lights are discussed
first because the objects you create are not visible without them. Then, in the following chapters, you
learn more about other kinds of nodes in the scene database, including shapes, properties, bindings,
text, textures, and NURBS curves and surfaces. Feel free to read selectively in this group of chapters,
according to your interests and requirements.

Using Lights and Cameras

The previous chapters introduced you to group, property, and shape nodes and showed you how to
create a scene graph using these nodes. Now you’'ll move on to two classes of nodes that affect how
the 3D scene appealights andcamerasin Inventor, as in the real world, lights provide illumination

so that you can view objects. If a scene graph does not contain any lights and you're using the default
lighting model (Phong lighting), the objects are in darkness and cannot be seen. Just as the real world
provides a variety of illumination typ@dight bulbs, the sun, theatrical spotlightswventor provides
different classes of lights for you to use in your scene.

Cameras are our "eyes" for viewing the scene. Inventor provides a class of camera with a lens that
functions just as the lens of a human eye does, and it also provides additional cameras that create a 2D
"snapshot" of the scene with other kinds of lenses. This chapter discusses cameras first and assumes
that the scene has at least one light at the top of the scene graph.

Tip: Viewer components create their own camera and light automatically. See Chapter 16 for more
information on viewers.

Cameras

A camera node generates a picture of everything after it in the scene graph. Typically, you put the
camera near the top left of the scene graph, since itprecstdehe objects you want to view. A

scene graph should contain only one active camera, guakit®onin space is affected by the current
geometric transformation.

Tip: A switch node can be used to make one of several cameras active.

SoCamera

Camera nodes are derived from the abstract baseSa&@samera
(see Figure 4 1).

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
4, Cameras and Lights 1

Figure 4 1 Camera Node Classes
SoCamerahas the following fields:

viewportMapping (SoSFEnum)
treatment when the camera’s aspect ratio is different from the viewport's aspect
ratio. (See "Mapping the Camera Aspect Ratio to the Viewport".)

position (SoSFVec3f)
location of the camera viewpoint. This location is modified by the current
geometric transformation.

orientation (SoSFRotation
orientation of the camera’s viewing direction. This field describes how the camera
is rotated with respect to the default. The default camera looks from (0.0, 0.0, 1.0)
toward the origin, and the up direction is (0.0, 1.0, 0.0). This field, along with the
current geometric transformation, specifies the orientation of the camera in world
space.

aspectRatio(SoSFFloat)
ratio of the camera viewing width to height. The value must be greater than 0.0. A
few of the predefined camera aspect ratios includ&b®@amera.are
SO_ASPECT_SQUARE (1/1)
SO_ASPECT_VIDEO (4/3)
SO_ASPECT_HDTV (16/9)

nearDistance(SoSFFloat)
distance from the camera viewpoint to the near clipping plane.

farDistance(SoSFFloat)
distance from the camera viewpoint to the far clipping plane.

focalDistance(SoSFFloat)
distance from the camera viewpoint to the point of focus (used by the examiner
viewer).

Figure 4 2 and Figure 4 3, later in this chapter, show the relationship between the camera position,
orientation, near and far clipping planes, and aspect ratio.

When a camera node is encountered during rendering traversal, Inventor performs the following
steps:

1. During a rendering action, the camera is positioned in the scene (based on its specified position
and orientation, which are modified by the current transformation).

2. The camera createviaw volumebased on the near and far clipping planes, the aspect ratio, and
the height or height angle (depending on the camera type). A view volume, also referred to as a
viewing frustumis a six sided volume that contains the geometry to be seen (refer to sections on
each camera type, later in this chapter, for diagrams showing how the view volume is created).
Objects outside of the view volume atgped or thrown away.

3. The next step is to compress this 3D view volume into a 2D image, similar to the photographic
snapshot a camera makes from a real world scene. This 2D "projection” is now easily mapped to
a 2D window on the screen. (See "Mapping the Camera Aspect Ratio to the Viewport".)

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
4, Cameras and Lights 2

4. Next, the rest of the scene graph is rendered using the projection created by the camera.

You can also use thmintAt() method to replace the value in a cameoa'sntation field. This

method sets the camera’s orientation to point toward the specified target point. If possible, it keeps the
up direction of the camera parallel to the positieis. Otherwise, it makes the up direction of the
camera parallel to the positizaxis.

The syntax for theointAt() method is as follows:
void pointAt (const SbVec3f &targetPoint)

Two additional methods f@oCameraareviewAll() andgetViewVolume() TheviewAll() method is

an easy way to set the camera to view an entire scene graph using the current orientation of the
camera. You provide the root node of the scene to be viewed (which usually contains the camera) and
a reference to the viewport region used by the render actiorsladigarameter is used to position

the near and far clipping planes.skackvalue of 1.0 (the default) positions the planes for the

"tightest fit" around the scene. The syntaxviewAll() is as follows:

void viewAll (SoNode *sceneRoot |, const SbViewportRegion &vpRegion
float slack =1.0)

TheviewAll() method modifies the camepasition, nearDistance andfarDistance fields. It does
not affect the camera orientation. An example showing the wsevoAll() appears in "Viewing a
Scene with Different Cameras".

ThegetViewVolume()method returns the camera’s view volume and is usually used in relation to
picking.

Subclasses of SoCamera

The SoCameraclass contains two subclasses, as shown in Figure 4 1:

» SoPerspectiveCamera

* SoOrthographicCamera

SoPerspectiveCamera

A camera of clasSoPerspectiveCameramulates the human eye: objects farther away appear
smaller in size. Perspective camera projections are natural in situations where you want to imitate how
objects appear to a human observer.

An SoPerspectiveCameraode has one field in addition to those defineBaCamera

heightAngle (SoSFFloat)
specifies the vertical angle in radians of the camera view volume.

The view volume formed by @oPerspectiveCameraode is a truncated pyramid, as shown in
Figure 4 2. The height angle and the aspect ratio determine the width angle as follows:

widthAngle = heightAngle * aspectRatio

SoOrthographicCamera

In contrast to perspective cameras, cameras of $a9sthographic
Cameraproduceparallel projections, with no distortions for distance. Orthographic cameras are

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
4, Cameras and Lights 3

Camera produceparallel projections, with no distortions for distance. Orthographic cameras are
useful for precise design work, where visual distortions would interfere with exact measurement.

An SoOrthographicCameranode has one field in addition to those defineBdCamera
height (SoSFFloat) specifies the height of the camera view volume.

The view volume formed by é@oOrthographicCameranode is a rectangular box, as shown in
Figure 4 3. The height and aspect ratio determine the width of the rectangle:

width = height * aspectRatio

. widthAngle = heightAngle
aspectRatio = xy

position

}4— nearDistance —>{

height Angle

|l ; -
e farDistance »

— View Direction
{-Z rotated by orientation)

Figure 4 2 View Volume and Viewing Projection for an SoPerspectiveCamera Node

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
4, Cameras and Lights 4

height

position

—3 View Direction
{-7 rotated by orientation)

Figure 4 3 View Volume and Viewing Projection for an SoOrthographicCamera Node

Mapping the Camera Aspect Ratio to the Viewport

A viewportis the rectangular area where a scene is rendered. By default, the viewport has the same
dimensions as the windoB@XtRenderAreg. The viewport is specified when the
SoGLRenderActionis constructed (see Chapter 9).

TheviewportMapping field of SoCameraallows you to specify how to map the camera projection
into the viewport when the aspect ratios of the camera and viewport differ. The first three choices
crop the viewport to fit the camera projection. The advantage to these settings is that the camera
aspect ratio remains unchanged. (The disadvantage is that there is dead space in the viewport.)

* CROP_VIEWPORT_FILL_FRAME adjusts the viewport to fit the camera (see Figure 4 4). It
draws the viewport with the appropriate aspect ratio and fills in the unused space with gray.

+ CROP_VIEWPORT_LINE_FRAME adjusts the viewport to fit the camera. It draws the border
of the viewport as a line.

» CROP_VIEWPORT_NO_FRAME adjusts the viewport to fit the camera. It does not indicate the
viewport boundaries.
These two choices adjust the camera projection to fit the viewport:

« ADJUST_ CAMERA adjusts the camera to fit the viewport (see Figure 4 4). The projected image

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
4, Cameras and Lights 5

is not distorted. (The actual values stored inatsectRatioandheightheightAnglefields are
not changed. These values are temporarily overridden if required by the viewport mapping.) This
is the default setting.

e LEAVE_ALONE does not modify anything. The camera image is resized
to fit the viewport. A distorted image is produced (see Figure 4 4).

Figure 4 4 shows the different types of viewport mapping. In this example, the camera aspect ratio is 3
to 1 and the viewport aspect ratio is 1.5 to 1. The top camera uses

CROP_VIEWPORT_FILL_FRAME viewport mapping. The center camera uses

ADJUST_CAMERA. The bottom camera uses LEAVE_ALONE. Figure 4 4 also shows three stages

of mapping. At the left is the initial viewport mapping. The center column of drawings shows how the
mapping changes if the viewport is compressed horizontally. The right hand column shows how the
mapping changes if the viewport is compressed vertically.

Viewing a Scene with Different Cameras

Example 4 1 shows a scene viewed by an orthographic camera and two perspective cameras in
different positions. It uses a blinker node (described in Chapter 13) to switch among the three

cameras. The scene (a park bench) is read from a file. Figure 4 5 shows the scene graph created by this
example. Figure 4 6 shows the image created by this example.

O

Cameta
Viswport
Initial Mapping if Mapping if
Mapping Wiewport Viewport
Reduced Reduced
Horizontally Vertically

CROP_WIEWPORT_FILL_FRAME
CROP_WIEWPORT_LINE_FRAME
CROP_MIEWPORT_NO_FRAME

ADJUST_CAMERA Q

LEAVE ALONE O

O

74NN

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
4, Cameras and Lights 6

Figure 4 4 Mapping the Camera Aspect Ratio to the Viewport

root
myBlinker i; %
directional myhdat enal iilé&ﬁtents
light

orthoViewAll perspViewAll perspOfiCenter

Figure 45 Scene Graph for Camera Example

Example 4 1 Switching among Multiple Cameras

#include <Inventor/SbLinear.h>

#include <Inventor/SoDB.h>

#include <Inventor/Solnput.h>

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/SoXtRenderArea.h>

#include <Inventor/nodes/SoBlinker.h>

#include <Inventor/nodes/SoDirectionalLight.h>
#include <Inventor/nodes/SoMaterial.h>

#include <Inventor/nodes/SoOrthographicCamera.h>
#include <Inventor/nodes/SoPerspectiveCamera.h>
#include <Inventor/nodes/SoSeparator.h>

#include <Inventor/nodes/SoTransform.h>

main(int, char **argv)
{
/I Initialize Inventor and Xt
Widget myWindow = SoXt::init(argv[0]);
if (myWindow == NULL)
exit(1);

SoSeparator *root = new SoSeparator;
root >ref();

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
4, Cameras and Lights 7

Figure 4 6 Camera Example

/I Create a blinker node and put it in the scene. A blinker
/I switches between its children at timed intervals.
SoBlinker *myBlinker = new SoBlinker;

root >addChild(myBlinker);

/I Create three cameras. Their positions will be set later.

/I This is because the viewAll method depends on the size

/I of the render area, which has not been created yet.
SoOrthographicCamera *orthoViewAll = new SoOrthographicCamera;
SoPerspectiveCamera *perspViewAll = new SoPerspectiveCamera;
SoPerspectiveCamera *perspOffCenter = new SoPerspectiveCamera;
myBlinker >addChild(orthoViewAll);

myBlinker >addChild(perspViewAll);

myBlinker >addChild(perspOffCenter);

/I Create a light
root >addChild(new SoDirectionalLight);

/I Read the object from a file and add to the scene
Solnput mylnput;
if (! mylnput.openFile("parkbench.iv"))

return 1,
SoSeparator *fileContents = SoDB::readAll(&myInput);
if (fileContents == NULL)

return 1,

SoMaterial *myMaterial = new SoMaterial;
myMaterial >diffuseColor.setValue(0.8, 0.23, 0.03);
root >addChild(myMaterial);

root >addChild(fileContents);

SoXtRenderArea *myRenderArea = new SoXtRenderArea(myWindow);

/l Establish camera positions.

/I First do a viewAll() on all three cameras.

/I Then modify the position of the off center camera.
ShViewportRegion myRegion(myRenderArea >getSize());
orthoViewAll >viewAll(root, myRegion);

perspViewAll >viewAll(root, myRegion);

perspOffCenter >viewAll(root, myRegion);

SbVec3f initialPos;

initialPos = perspOffCenter >position.getValue();

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
4, Cameras and Lights 8

float x, vy, z;
initialPos.getValue(x,y,z);
perspOffCenter >position.setValue(x+x/2., y+y/2., z+z/4.);

myRenderArea >setSceneGraph(root);
myRenderArea >setTitle("Cameras");
myRenderArea >show();

SoXt::show(myWindow);
SoXt::mainLoop();
}

After you view this example, experiment by modifying the fields in each camera node to see how
changes in camera position, orientation, aspect ratio, location of clipping planes, and camera height
(or height angle) affect the images on your screen. Then try usipgititdt() method to modify the
orientation of the camera node. Remember that a scene graph includeseadiive camera at a

time, and it must be placéeforethe objects to be viewed.

Lights

With the default lighting model (Phong), a scene graph also needs at least one light before you can
view its objects. During a rendering action, traversing a light node in the scene graph turns that light
on. The position of the light node in the scene graph determines two things:

* What the light illuminates a light illuminates everything that follows it in the scene graph. (The
light is part of the traversal state, described in Chapter 3. USeSaparatornode to isolate the
effects of a particular light from the rest of the scene graph.)

» Where the light is located in 3D spacteertain light source nodes (for exampgsPointLight)
have docationfield. This light location is affected by the current geometric transformation.
Other light source nodes have a specifi@@ction (for exampleSoDirectionalLight), which is
also affected by the current geometric transformation.

Another important fact about all light source nodes is that lights accumulate. Each time you add a light
to the scene graph, the scene appears brighter. The maximum number of active lights is dependent on
the OpenGL implementation.

(Advanced)

In some cases, you may want to separate the position of the light in the scene graph from what it
illuminates. Example 4 2 uses tBeTransformSeparatornode to move only the position of the

light. Sensors and engines are also a useful way to affect a light's behavior. For example, you can
attach a sensor to a sphere object; when the sphere position changes, the sensor can change the light
position as well. Or, you can use an engine that finds the path to a given object to affect the location
of the light that illuminates that object (s@@ComputeBoundingBoxn theOpen Inventor C++

Reference Manupl

SoLight

All lights are derived from the abstract base ci&asight. This class adds no new methods to
SoNode Its fields are as follows:

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
4, Cameras and Lights 9

on (SoSFBool) whether the light is on.

intensity (SoSFFloat)
brightness of the light. Values range from 0.0 (no illumination) to 1.0 (maximum
illumination).

color (SoSFColor) color of the light.

Subclasses of SoLight

The SolLight class contains three subclasses, as shown in Figure 4 7:
» SoPointLight

e SoDirectionalLight

* SoSpotLight

ZoBase
SoFieldContainer —— SobirecticnalLight —— oDirctionalLighthianip
SoMode @ SoLight ————— SoPointLightt——— EnPointLightilanip
— SoSpotlight ————— oS petlighthlanip

Figure 4 7 Light Node Classes

Figure 4 8 shows the effects of each of these light types. The left side of the figure shows the direction
of the light rays, and the right side shows the same scene rendered with each light type. Figure In 2,
Figure In 3 and Figure In 4 show additional use of these light types.

Tip: Directional lights are typically faster than point lights for rendering. Both are typically faster
than spotlights. To increase rendering speed, use fewer and simpler lights.

SoPointLight

A light of classSoPointLight, like a star, radiates light equally in all directions from a given location
in 3D space. AsoPointLight node has one additional field:

location (SoSFVec3f)
3D location of a point light source. (This location is affected by the current
geometric transformation.)

SoDirectionalLight

A light of classSoDirectionalLight illuminates uniformly along a particular direction. Since it is
infinitely far away, it has no location in 3D space.2aDirectionalLight node has one additional
field:

direction (SoSFVec3f)
specifies the direction of the rays from a directional light source. (This direction is
affected by the current geometric transformation.)

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
4, Cameras and Lights 10

[Bae Chapter 5)
Brnbiank Light

2

Spot Light
-

Figure 4 8 Light Types

Tip: A surface composed of a single polygon (such as a large rectangle) with one normal at each
corner will not show the effects of a point light source, since lighting is computed (by OpenGL) only
at vertices. Use a more complex surface to show this effect.

With anSoDirectionalLight source node, all rays of incident light are parallel. They are reflected
equally from all points on a flat polygon, resulting in flat lighting of equal intensity, as shown in
Figure 4 8. In contrast, the intensity of light fromSoPointLight source on a flat surface would

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
4, Cameras and Lights 11

vary, because the angle between the surface normal and the incident ray of light is different at
different points of the surface.

SoSpotLight

A light of classSoSpotLightilluminates from a point in space along a primary direction. Like a
theatrical spotlight, its illumination is a cone of light diverging from the light's position. An
SoSpotLightnode has four additional fields (see Figure 4 9):

location (SoSFVec3f)
3D location of a spotlight source. (This location is affected by the current
geometric transformation.)

direction (SoSFVec3f)
primary direction of the illumination.

dropOffRate (SoSFFloat)
rate at which the light intensity drops off from the primary direction (0.0 =
constant intensity,
1.0 = sharpest drop off).

cutOffAngle (SoSFFloat)
angle, in radians, outside of which the light intensity is 0.0. This angle is
measured from one edge of the cone to the other.

Using Multiple Lights

You can now experiment by adding different lights to a scene. Example 4 2 contains two light
sources: a stationary red directional light and a green point light that is moved back and forth by an
SoShuttlenode (see Chapter 13). Figure 4 10 shows the scene graph created by this example.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
4, Cameras and Lights 12

location

cutOffAngle

dropOffRate

direction

Figure 4 9 Fields for SoSpotLight Node

Example 4 2 Using Different Types of Lights

#include <Inventor/SoDB.h>

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>
#include <Inventor/nodes/SoCone.h>

#include <Inventor/nodes/SoDirectionalLight.h>
#include <Inventor/nodes/SoMaterial.h>

#include <Inventor/nodes/SoPointLight.h>

#include <Inventor/nodes/SoSeparator.h>

#include <Inventor/nodes/SoShuttle.h>

#include <Inventor/nodes/SoTransformSeparator.h>

main(int , char **argv)
{
/I Initialize Inventor and Xt
Widget myWindow = SoXt::init(argv[0]);
if (myWindow == NULL)
exit(1);

SoSeparator *root = new SoSeparator;
root >ref();

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
4, Cameras and Lights 13

/l Add a directional light

SoDirectionalLight *myDirLight = new SoDirectionalLight;
myDirLight >direction.setValue(0, 1, 1);

myDirLight >color.setValue(1, 0, 0);

root >addChild(myDirLight);

[/l Put the shuttle and the light below a transform separator.
/I A transform separator pushes and pops the transformation
/l'just like a separator node, but other aspects of the state
/I are not pushed and popped. So the shuttle’s translation
/I will affect only the light. But the light will shine on
/I the rest of the scene.
SoTransformSeparator *myTransformSeparator =
new SoTransformSeparator;
root >addChild(myTransformSeparator);

/I A shuttle node translates back and forth between the two
/I fields translationO and translationl.

/I This moves the light.

SoShuttle *myShuttle = new SoShuttle;
myTransformSeparator >addChild(myShuttle);

myShuttle >translation0.setValue(2, 1, 3);

myShuttle >translationl.setValue(1, 2, 3);

/I Add the point light below the transformSeparator
SoPointLight *myPointLight = new SoPointLight;
myTransformSeparator >addChild(myPointLight);
myPointLight >color.setValue(0, 1, 0);

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
4, Cameras and Lights 14

root

my TranstormSeparator

myDirLight cone

myShuttle myPointLight

Figure 4 10 Scene Graph for Light Example

root >addChild(new SoCone);

SoXtExaminerViewer *myViewer =
new SoXtExaminerViewer(myWindow);
myViewer >setSceneGraph(root);
myViewer >setTitle("Lights");
myViewer >setHeadlight(FALSE);
myViewer >show();

SoXt::show(myWindow);
SoXt::mainLoop();

Chapter 5
Shapes, Properties, and Binding

Chapter Objectives
After reading this chapter, you'll be able to do the following:

e Use a variety of shapes in the scene, including complex shapes that use information from
coordinate and normal nodes

» Explain how indexed shapes specify their own order for using coordinate, material, normal, and
texture values

» Experiment with different effects for color values, shininess, and transparency

* Render a scene using different drawing styles for different parts of the scene

» Render a scene using different light models

» Create a scene with fog in it

» Use the shape hints, complexity, and level of detail nodes to speed up performance

* Experiment with different types of material and normal binding

For convenience, shapes are divided into two categsiiaple shapeandcomplex shapesSimple
shapes are self contained nodes that hold their own geometrical parameters. Complex shapes, in
contrast, may refer to other nodes for their coordinates and normals. This chapter also discusses
important property nodes, including material, draw style, and lighting

style nodes. Other chapter examples illustrate key concepts pertaiggmnetric transformations
and tobinding nodedor materials and normals.

Simple Shapes

All shape nodes are derived from the abstract base®tedsapeInventor provides the following
simple shapes:

» Cube (you specify the width, height, and depth)
e Cone (you specify the height and bottom radius)
» Sphere (you specify the radius)

e Cylinder (you specify the height and the radius)

Figure 5 1 shows the portion of the class tree that contains shape classes.

Complex Shapes

Complex shapes, such as triangle strip sets and face sets, require at least a set of coordinates. If the
lighting is set to PHONG, complex shapes also require a set of surface normals, as shown inFigure
5 2. Coordinates and normals are defined by separate nodes in the scene graph so that this
information can be shared by other nodes.

Examples of complex shapes include the following:

* Face set, indexed face set

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
5, Shapes, Properties, and Binding 1

* Line set, indexed line set

» Triangle strip set, indexed triangle strip set
+ Point set

* Quad mesh

 NURBS curve and surface

— Soone
— SoCube
SoBasze
— S0ty linder

ZaFialdContainer | ®olrdexed MurbeCunie

SoNnde—@ So5hape—— BolndexedNurbeBurace

— SohurbeCune

— SohurbeSurface

— Sosphere

— SoText2

—SoTextd SolndexedFanetet

L— S oWertexShape ————=5 olndaxeds hapegESolndexedLineSet
SolndexedTrizngleStripRet
SoFarebat
Solinelet

—3% oNonlndexedShape SoPointBat

Bouadiesh

SoTrianglestripseat

Figure 51 Shape Node Classes

An SoCoordinate3node sets the current coordinates in the rendering state to the specified points.
This node contains one fielddint), which is of typesSoMFVec3f For example:

ShVec3f verts[6];

SoCoordinate3 *coord = new SoCoordinate3;
/I ...Initialize vertices array ...

coord >point.setValues(0, 6, verts);

An SoNormal node sets the current surface normals in the rendering state
to the specified vectors. This node contains one field, vector, oStyljiéVec3ft

Tip: Normals can also be generated automatically by Inventor, in which case you do not need an
SoNormalnode. See "Generating Normals Automatically” for further information.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
5, Shapes, Properties, and Binding 2

/ g é
BN ‘HH E

coord normal faceSet

Figure 52 Nodes Used to Create a Simple Indexed Face Set

Face Set

An SoFaceSeis a shape node that represents a polygonal object formed by constructing faces out of
the current coordinates, current normals, current materials, and current textures. It uses the values
within each node in the order they are given. (To use coordinates, normals, and materials in a different
order, use th8olndexedFaceSehode, described in the next section.)

Example 5 1 creates an obelisk using a face set composed of eight faces. The scene graph for this
example is shown in Figure 5 3. Ignore the normal binding node for now. This node is explained in
"Binding Nodes"."Face Set Example"shows the image created by this example.

obelisk

myNormals @ myMatenal @ myF aceSet

myNormalBinding myCoords

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
5, Shapes, Properties, and Binding 3

Figure 5 3 Scene Graph for Face Set Example

This figure
(/usr/share/lnsight/library/SGI_bookshelves/SGI_Developer/books/Inv_Mentor/figures/05.4.FaceSet.i
v) is an INLINE object and can not be printed.

Media Face Set Example

Example 51 Creating a Face Set

/I Eight polygons. The first four are triangles
/I The second four are quadrilaterals for the sides.
static float vertices[28][3] =

{
{0, 30, 0}, {2,27, 2}, { 2,27, 2}, [ffront tri
{0, 30, 0}, {2,27, 2}, { 2,27, 2}, Heft tri
{0, 30, 0}, { 2,27, 2}, { 2,27, 2}, [lrear tri
{0, 30, 0},{2,27, 2}, { 2,27, 2}, [Iright tri

{2,27,2},{4,0, 4}, {4,0, 4},{ 2,27, 2}, //front quad
{2,27,2},{4,0,4},{4,0, 4}, { 2,27, 2}, /lleft quad
{2,27,2},{4,0,4},{4,0,4},{2,27, 2}, /lrear quad
{2,27,2},{4,0,4},{4,0,4},{2,27,2} /lright quad
3

/l Number of vertices in each polygon:
static long numvertices[8] ={3, 3, 3, 3, 4, 4, 4, 4}

/l Normals for each polygon:
static float norms[8][3] =
{
{0, .555, .832},{.832, .555, 0}, //front, left tris
{0, .555, .832}, {.832, .555, 0}, //rear, right tris
{0, .0739, .9973}, {.9972, .0739, 0},//front, left quads
{0, .0739, .9973}, {.9972, .0739, 0},//rear, right quads

k

SoSeparator *

makeObeliskFaceSet()

{
SoSeparator *obelisk = new SoSeparator();
obelisk >ref();

// Define the normals used:

SoNormal *myNormals = new SoNormal;

myNormals >vector.setValues(0, 8, norms);

obelisk >addChild(myNormals);

SoNormalBinding *myNormalBinding = new SoNormalBinding;
myNormalBinding >value = SoNormalBinding::PER_FACE;
obelisk >addChild(myNormalBinding);

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
5, Shapes, Properties, and Binding 4

/I Define material for obelisk

SoMaterial *myMaterial = new SoMaterial;
myMaterial >diffuseColor.setValue(.4, .4, .4);
obelisk >addChild(myMaterial);

/I Define coordinates for vertices

SoCoordinate3 *myCoords = new SoCoordinate3;
myCoords >point.setValues(0, 28, vertices);
obelisk >addChild(myCoords);

// Define the FaceSet

SoFaceSet *myFaceSet = new SoFaceSet;

myFaceSet >numVertices.setValues(0, 8, numvertices);
obelisk >addChild(myFaceSet);

obelisk >unrefNoDelete();
return obelisk;

}

Tip: When you construct a scene graph, be sure that you have used as few nodes as possible to
accomplish your goals. For example, to create a multifaceted polygonal shape, it's best to put all the
coordinates for the shape into @@Coordinatenode and put the description of all the face sets into

a singleSoFaceSefor SolndexedFaceS¢tode rather than using multiple nodes for each face.

Indexed Face Set

An SolndexedFaceSetode is a shape node that represents a polygonal object formed by constructing
faces out of the current coordinates, using the current surface normals, current materials, and current
texture. In contrast to tf@oFaceSehode, this node can use those values in any order. This node class
contains four fields with indices that specify the ordering:

coordindex (SoMFLong)
contains indices into the coordinates list. These indices connect coordinates to
form a set of faces. A value of SO_END_FACE_INDEX (1) indicates the end of
one face and the start of the next face. This field is always used.

materiallndex (SoMFLong)
contains indices into the current material(s) for the materials of the face set. This
field is used only when some type of indexed material binding is specified in the
SoMaterialBinding node. See "Binding Nodes".

normallndex (SoMFLong)
contains indices into the current normals for the vertices of the face set. This field
is used only when indexed normal binding (either per vertex or per face) is
specified in th&&oNormalBinding node. See "Binding Nodes".

textureCoordindex (SoMFLong)
contains indices of the texture coordinates that are applied to the shape (see
Chapter 7).

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
5, Shapes, Properties, and Binding 5

Be sure that the indices contained in the indexed face set can actually be found in the coordinates and
normals lists, or errors will occur.

Note: If you use th&oShapeHintsnode to specify that the vertices are counterclockwise, you must
specify the vertex indices according to thght hand rule The right hand rule states that if you place
the fingers of your right hand around the face following the direction in which the vertices are
specified, your thumb points in the general direction of the geometric normal. Alternatively, you can
specify the vertices in clockwise order. In this case, the direction of the geometric normal is
determined by the left hand rule.

Example 5 2 creates the first stellation of the dodecahedron from an indexed face set. Each of the
twelve intersecting faces is a pentagon. The scene graph diagram for this example is shown inFigure
5 4. "Indexed Face Set Example" shows the image created by this example.

result

@

myhdatenals myCoords

myMatenialBinding myF aceSet

Figure 54 Scene Graph for Indexed Face Set Example

Example 52 Creating an Indexed Face Set

/I Positions of all of the vertices:
I
static float vertexPositions[12][3] =

{
{0.0000, 1.2142, 0.7453}, // top

{0.0000, 1.2142, 0.7453}, // points surrounding top
{1.2142, 0.7453, 0.0000},
{0.7453, 0.0000, 1.2142},
{0.7453, 0.0000, 1.2142},
{1.2142, 0.7453, 0.0000},

{0.0000, 1.2142, 0.7453}, // points surrounding bottom
{1.2142, 0.7453, 0.0000},

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
5, Shapes, Properties, and Binding 6

{0.7453, 0.0000, 1.2142},
{0.7453, 0.0000, 1.2142},
{1.2142, 0.7453, 0.0000},

{0.0000, 1.2142, 0.7453}, // bottom

This figure
(/usr/share/lnsight/library/SGI_bookshelves/SGI_Developer/books/Inv_Mentor/figures/05.6.Indexed
FaceSet.iv) is an INLINE object and can not be printed.

Media Indexed Face Set Example

I/l Connectivity, information; 12 faces with 5 vertices each },
I (plus the end of face indicator for each face):

static long indices[72] =

{
1, 2, 3, 4,5, SO_END_FACE_INDEX, // top face

, 8, 7,3, SO_END_FACE_INDEX, // 5 faces about top
, 7, 6,4, SO_END_FACE_INDEX,

6, 10, 5, SO_END_FACE_INDEX,

, 10, 9,1, SO_END_FACE_INDEX,

, 9, 8,2, SO_END_FACE_INDEX,

O 0o oo
O A WN R

9, 5,4,6,11, SO END_FACE_INDEX, // 5 faces about bottom
10, 4, 3,7, 11, SO_END_FACE_INDEX,
6, 3,2,8,11, SO_END_FACE_INDEX,
7, 2,1,9,11, SO_END_FACE_INDEX,
8, 1,5,10, 11, SO_END_FACE_INDEX,

6, 7, 8,9, 10, SO _END_FACE_INDEX, // bottom face
h

/I Colors for the 12 faces

static float colors[12][3] =

{

{1.0,.0,0}{.0, .0, 1.0}, {0, .7, .7}, {.0, 1.0, 0O},
{.7,.7,04,{.7, .0, .7}, {0, .0,1.0} {.7, .0,.7},
{.7,.7,0},{.0,1.0, .0}, {0, .7, .7}, {1.0, .0, O}
3

// Routine to create a scene graph representing a dodecahedron
SoSeparator *
makeStellatedDodecahedron()

{

SoSeparator *result = new SoSeparator;

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
5, Shapes, Properties, and Binding 7

result >ref();

/I Define colors for the faces

SoMaterial *myMaterials = new SoMaterial,

myMaterials >diffuseColor.setValues(0, 12, colors);

result >addChild(myMaterials);

SoMaterialBinding *myMaterialBinding = new SoMaterialBinding;
myMaterialBinding >value = SoMaterialBinding::PER_FACE;
result >addChild(myMaterialBinding);

/! Define coordinates for vertices

/I Define coordinates for vertices

SoCoordinate3 *myCoords = new SoCoordinate3;
myCoords >point.setValues(0, 12, vertexPositions);
result >addChild(myCoords);

// Define the IndexedFaceSet, with indices into

/I the vertices:

SolndexedFaceSet *myFaceSet = new SolndexedFaceSet;
myFaceSet >coordindex.setValues(0, 72, indices);

result >addChild(myFaceSet);

result >unrefNoDelete();
return result;

Triangle Strip Set

The SoTriangleStripSetnode constructs triangle strips out of the vertices located at the current
coordinates. Itis one of the fastest ways to draw polygonal objects in Inventor. The triangle strip set
uses the current coordinates, in order, starting at the index specifiedstgrthegdex field. (If no

index is specified, it starts at the first index.)

ThenumVerticesfield indicates the number of vertices to use for each triangle strip in the set. The
triangle strip set is described as follows:

static long numVertices[2] =
{
32, /Il flag
8 /I pole
%
SoTriangleStripSet *myStrips = new SoTriangleStripSet;
myStrips >numVertices.setValues(0, 2, numVertices);

Because thaumVerticesfield contains an array with two values, two triangle strips are created. The
first strip (the flag) is made from the first 32 coordinate values. The second strip (the flagpole) is
made from the next 8 coordinates. Face 0 determines the vertex drderihis case,

counterclockwise.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
5, Shapes, Properties, and Binding 8

The Inventor Mentor:
5, Shapes, Properties, and Binding 9

Tip: Triangle strip sets and quad meshes are generally faster to render than face sets.

Example 5 3 shows the code for creating a pennant shaped flag. Figure 5 5 shows the scene graph for
this example. "Triangle Strip Set Example" shows the resulting image.

S &

)

myHints myMaterials myMaterialBinding myCoords myStrips

Figure 55 Scene Graph for Triangle Strip Set Example

This figure

(/usr/share/Insight/library/SGI_bookshelves/SGI_Developer/books/Inv_Mentor/figures/figs_8.iv) is

an INLINE object and can not be printed.
Media Triangle Strip Set Example

Example 5 3 Creating a Triangle Strip Set

/I Positions of all of the vertices:

static float vertexPositions[40][3] =

{
{0, 12, 0}, { O, 15, 0},
{2.1,12.1, .2},{2.1,14.6, .2},
{ 4,125, .7},{ 4,145, .7},
{4.5,12.6, .8},{4.5,614.4, .8},
{5127, 1},{ 5,144, 1},
{4.5,12.8, 1.4},{45, 14.6, 1.4},
{ 4,129, 1.6},{ 4,148, 1.6},
{3.3,12.9, 1.8},{3.3, 14.9, 1.8},
{3, 13, 2.0}, { 3,14.9, 2.0},
{3.3,13.1, 2.2},{3.3,15.0, 2.2},
{ 4,132, 25},{ 4,15.0, 2.5},
{ 6,135, 2.2},{ 6,14.8, 2.2},
{8,134, 2}, { 8,146, 2},
{10,13.7, 1.8},{ 10, 14.4, 1.8},
{12, 14, 1.3},{ 12,145, 1.3},
{15,14.9, 1.2},{ 15, 15, 1.2},

Programming Object Oriented

3D Graphics with Open Inventor , Release 2 Chapter

The Inventor Mentor:
5, Shapes, Properties, and Binding 10

{.5,15 0},{ .50, 0}, //theflagpole
{015 5} { 0,0, .5}
{015 5},{ 0,0, .5},
{515 0} { .50, 0}

/l Number of vertices in each strip.
static long numVertices[2] =
{

32, /Il flag

8 /I pole

h

Il Colors for the 12 faces
static float colors[2][3] =
{
{.5,.5, 1}, /I purple flag
{.4, .4, .4}, /] grey flagpole
h

// Routine to create a scene graph representing a pennant.
SoSeparator *
makePennant()
{
SoSeparator *result = new SoSeparator;
result >ref();

/I A shape hints tells the ordering of polygons.
/I This ensures double sided lighting.
SoShapeHints *myHints = new SoShapeHints;

myHints >vertexOrdering = SoShapeHints:: COUNTERCLOCKWISE;

result >addChild(myHints);

/I Define colors for the strips

SoMaterial *myMaterials = new SoMaterial,

myMaterials >diffuseColor.setValues(0, 2, colors);

result >addChild(myMaterials);

SoMaterialBinding *myMaterialBinding = new SoMaterialBinding;
myMaterialBinding >value = SoMaterialBinding::PER_PART;
result >addChild(myMaterialBinding);

/I Define coordinates for vertices

SoCoordinate3 *myCoords = new SoCoordinate3;
myCoords >point.setValues(0, 40, vertexPositions);
result >addChild(myCoords);

Programming Object Oriented 3D Graphics with Open Inventor

, Release 2 Chapter

/I Define the TriangleStripSet, made of two strips.
SoTriangleStripSet *myStrips = new SoTriangleStripSet;
myStrips >numVertices.setValues(0, 2, numVertices);
result >addChild(myStrips);

result >unrefNoDelete();
return result;

Quad Mesh

The SoQuadMeshnode constructs quadrilaterals from the vertices located at the current coordinates.
It uses the coordinates in order, starting at the index specified battladex field. (If no index is
specified, it starts at the first index.)

TheverticesPerColumnandverticesPerRowfields indicate the number of vertices in the columns
and rows of the mesh. Example 5 4 creates a quad mesh as follows:

SoQuadMesh *myQuadMesh = new SoQuadMesh;
myQuadMesh >verticesPerRow = 12;
myQuadMesh >verticesPerColumn = 5;

Each row in this quad mesh contains 12 vertices. Each column contains 5 vertices. Figure 5 6 shows
the scene graph for this example. "Quad Mesh Example" shows the resulting image.

result

5 O

myMatenal my Coords myQuadiesh

Figure 56 Scene Graph for Quad Mesh Example

This figure
(/usr/share/Insight/library/SGI_bookshelves/SGI_Developer/books/Inv_Mentor/figures/figs_10.iv) is
an INLINE object and can not be printed.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
5, Shapes, Properties, and Binding 11

Media Quad Mesh Example

Example 54 Creating a Quad Mesh

I/l Positions of all of the vertices:

static float vertexPositions[160][3] =

{ Il 1st row
{13.0, 0.0,1.5},{10.3,13.7,1.2},{ 7.6, 21.7, 1.0},
{ 5.0,26.1,0.8},{ 2.3,28.2,0.6},{ 0.3, 28.8, 0.5},
{ 0.3,28.8,0.5}, { 2.3,28.2,0.6},{ 5.0, 26.1, 0.8},
{76,217, 1.0} {10.3,13.7,1.2}, { 13.0, 0.0, 1.5},
/l 2nd row
{10.0, 0.0,1.5},{ 7.9,13.2,1.2},{ 5.8, 20.8, 1.0},
{ 3.8,25.0,0.8},{ 1.7, 27.1, 0.6}, { 0.2, 27.6, 0.5},
{0.2,27.6,0.5}, { 1.7, 27.1, 0.6}, { 3.8, 25.0,0.8},
{ 5.8,20.8, 1.0}, { 7.9,13.2, 1.2}, {10.0, 0.0, 1.5},
/l 3rd row
{10.0, 0.0,1.5},{ 7.9,13.2,1.2},{ 5.8, 20.8, 1.0},
{ 3.8,25.0,0.8},{ 1.7, 27.1,0.6}, { 0.2, 27.6, 0.5},
{ 0.2,27.6,0.5},{ 1.7,27.1,0.6}, { 3.8, 25.0,0.8},
{5.8,20.8,1.0},{ 7.9, 13.2,1.2},{10.0, 0.0, 1.5},
/I 4th row
{13.0, 0.0,1.5},{10.3,13.7,1.2},{ 7.6, 21.7, 1.0},
{ 5.0,26.1,0.8},{ 2.3, 28.2,0.6},{ 0.3, 28.8, 0.5},
{ 0.3,28.8,0.5},{ 2.3,28.2,0.6},{ 5.0, 26.1, 0.8},
{76,21.7,1.0},{10.3,13.7,1.2}, { 13.0, 0.0, 1.5},
/I 5th row
{13.0, 0.0,1.5},{10.3,13.7,1.2},{ 7.6,21.7, 1.0},
{ 5.0,26.1,0.8},{ 2.3,28.2,0.6},{ 0.3, 28.8, 0.5},
{ 0.3,28.8,0.5}, { 2.3,28.2,0.6},{ 5.0, 26.1, 0.8},
{76,217,61.0}{10.3,13.7,1.2}, {13.0, 0.0, 1.5}

// Routine to create a scene graph representing an arch.
SoSeparator *
makeArch()
{
SoSeparator *result = new SoSeparator;
result >ref();

/I Define the material

SoMaterial *myMaterial = new SoMaterial;
myMaterial >diffuseColor.setValue(.78, .57, .11);
result >addChild(myMaterial);

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
5, Shapes, Properties, and Binding 12

/I Define coordinates for vertices

SoCoordinate3 *myCoords = new SoCoordinate3;
myCoords >point.setValues(0, 60, vertexPositions);
result >addChild(myCoords);

/I Define the QuadMesh.
SoQuadMesh *myQuadMesh = new SoQuadMesh;
myQuadMesh >verticesPerRow = 12;

myQuadMesh >verticesPerColumn = 5;
result >addChild(myQuadMesh);

result >unrefNoDelete();
return result;

Property Nodes

This section describes a number of important property classes, all of which are derivédNiaie

SoMaterial, which sets the ambient color, diffuse color, specular color, emissive color, shininess,
and transparency of the current material

SoDrawStyle which tells shape nodes which drawing technique to use during rendering
SoLightModel, which tells shape nodes how to compute lighting calculations during rendering

SoEnvironment, which allows you to simulate various atmospheric effects, such as fog, haze,
pollution, and smoke, and to describe other global environmental attributes such as ambient
lighting and light attenuation

SoShapeHints which provides additional information regarding vertex shapes to allow Inventor
to optimize certain rendering features

SoComplexity, which allows you to specify the extent to which shape objects are subdivided
into polygons, as well as the general degree of texture complexity and level of detail

SoUnits which allows you to define a standard unit of measurement for all subsequent shapes in
the scene graph

Each of these classes affects different elements of the rendering state, as described later in this section.
Figure 5 7 shows the portion of the class tree for property nodes.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
5, Shapes, Properties, and Binding 13

I @SDMauerialai-di—g
I @Soh'laberialhdex

— @Somon'nal

Sahads L @Somon'nalﬁi'di'g

SoBase

SoFiedContainer

- OSDP'.: kStyle
I—SoLrearPerlle

| AR coProfile
@ L sohutbePmiie
@&Pmﬁwmmme

- @&Pmﬁwmmmm

I @&TexmreeTmrsbn'n
— @ SoTeumCoomrnaes — SoTenustoodiratelet uk
—— () TextuCoominaeBindng | soTeumCoomrateErvimrment
— @ soTextureCoomdinateFunction — | STedueCoomiratePhne
I @ ZaTransformation SoArtiSquih
Sallnkrowan hoda — SoMatri: Trarsfom
femaa CGhepmrid)
—— SoResstTrarsfomn
SoPerdulumn
e
SoRoior
— SoRotatiorsE
— SoScak
— SoSumundSez ke
—SoTrmrefomn —— SoTmrsfombanp ..
fraa Chanerds)
—— 50T mrsk fion ———— Sofhutte
L—— Solnie

Figure 57 Property Node Classes

Material Node
An SoMaterial node includes the following fields:

ambientColor (SoMFColor)

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
5, Shapes, Properties, and Binding 14

default value for this field is [0.2, 0.2, 0.2].

diffuseColor (SoMFColor)
an object’s base color. The default value for this field is
[0.8, 0.8, 0.8].

specularColor (SoMFColor)
reflective quality of an object’s highlights. The default value for this field is [0.0,
0.0, 0.0].

emissiveColor(SoMFColor)
light produced by an object. The default value for this field is [0.0, 0.0, 0.0].

shinines§SoMFFloat)
degree of shininess of an object’s surface, ranging from 0.0 for a diffuse surface
with no shininess to a maximum of 1.0 for a highly polished surface. The default
value for this field is 0.2.

transparency (SoMFFloat)
degree of transparency of an object’s surface, ranging from 0.0 for an opaque
surface to 1.0 for a completely transparent surface. The default value for this field
is 0.0.

Tip: The transparency type is specified in the render action (see Chapter 9).
An example of setting values in &oMaterial node is the following:

SoMaterial *gold = new SoMaterial;
//Set material values

gold >ambientColor.setValue(.3, .1, .1);
gold >diffuseColor.setValue(.8, .7, .2);
gold >specularColor.setValue(.4, .3, .1);
gold >shininess = .4;

Since gold is opaque, you can use the default value of 0.0 for the transparency field.

SoBaseColor another class derived frdBoNode replaces only the diffuse color field of the current
material and has no effect on other material fields.

Tip: If you are changing only the diffuse color of an object, useadBaseColomode in place of an
SoMaterial node. For example, to represent a complex terrain that uses many different diffuse colors,
use oné&oMaterial node for the ambient, specular, and emissive color values, and then use one
SoBaseColomode with multiple values for the changing diffuse colors. S&aseColorclass is

also useful when the light model is BASE_COLOR (see "Light Model Node").

Draw Style Node
An SoDrawStylenode includes the following fields:
style(SoSFEnum) current drawing style. Values for this field are

SoDrawStyle::FILLED
filled regions (default)
SoDrawStyle::LINES
nonfilled outlines

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
5, Shapes, Properties, and Binding 15

SoDrawStyle::POINTS
points
SoDrawsStyle::INVISIBLE
not drawn at all

pointSize (SoSFFloat)
(for POINTS style) radius of points, in printer’s points. The default value is 0.0.
A value of 0.0 indicates to use the fastest value for rendering, which is typically
1.0. If this value is not 0.0, the point size is scaled by the amount required to keep
it a constant size, which depends on the pixels per inch of the viewport region.

Tip: Draw style LINES and POINTS look best with a BASE_COLOR lighting model.

lineWidth (SoSFFloat)
(for LINES style) line width, in printer’s points (1 inch = 72.27 printer’s points).
Values can range from 0.0 to 256.0. The default value is 0.0, which indicates to
use the fastest value for rendering.

linePattern (SoSFUShort)
(for LINES style) current line stipple pattern. Values can range from 0 (invisible)
to Oxffff (solid). The default value is Oxffff.

"Drawing Styles (FILLED, LINES, POINTS)" shows the same object rendered in different drawing
styles.

This figure
(/usr/share/Insight/library/SGI_bookshelves/SGI_Developer/books/Inv_Mentor/figures/05.12.DrawSt
yle.iv) is an INLINE object and can not be printed.

Media Drawing Styles (FILLED, LINES, POINTS)

Light Model Node
An SoLightModel node includes the following field:

model (SoSFEnum)
current lighting model applied to all subsequent shape nodes in the scene graph.
The lighting model tells the shape node how to compute lighting calculations
during rendering. Values for this field are as follows:

SoLightModel::BASE_COLOR
ignores light sources and uses only the diffuse color and transparency of the
current material.

SoLightModel::PHONG

uses the OpenGL Phong lighting model, which takes into account all light sources
in the scene and the object’s surface orientation with respect to the lights. This
lighting model (the default) usually requires at least one light in the scene. (There
may be emissive color and ambient lighting also.)

Note: In Inventor, shading (such as Gouraud or flat) is dictated by the combination of the material
specification of the object, the lighting model, and the normal bindings. A shading model is not

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
5, Shapes, Properties, and Binding 16

explicitly specified.

Figure In5 and Figure In 6 show the same scene with the different lighting models. (Figure In 5 uses
BASE_COLOR, and Figure In 6 uses PHONG.)

SoMaterial andSoBaseColorcan be used along with any drawing style and any lighting model. In
some cases, however, some of the material attributes might be ignored. For example, if you specify
BASE_COLOR for thé&oLightModel modelfield, only the diffuse color and transparency of the
current material are used. But what happens if you specify only a base col@qRabeColoy and
subsequently select the Phong lighting modeBimtightModel? In this case, Inventor uses the base
color for the diffuse color and the default or current material element values for theaditagerial

fields.

Note: By default, the light model is PHONG. For images to render correctly, you need to specify
normals and light sources. If you want to see only colored objects, change the light model to
BASE_COLOR and usgoBaseColorto specify only the base (diffuse) color.

Environment Node

You can use th8oEnvironmentnode to simulate various atmospheric effects such as fog, haze,
pollution, and smoke. For general purposes, these atmospheric effects are grouped unddoghe term
The difference between fog and haze, for example, is simply the color and density.

Specifically, theSoEnvironmentnode allows you to specify the color and intensity of the ambient
lighting, the light attenuation for point lights and spotlights, and the type, color, and visibility factor
for fog. Figure In 7 shows the effects of @oEnvironmentnode. This image uses a value of FOG

for the fog type. ThéogColoris (0.2, 0.2, 0.46).

An SoEnvironmentnode includes the following fields:

ambientintensity (SoSFFloat)
intensity of ambient light in the scene. This field is used with Phong lighting.

ambientColor (SoSFColor)
color of ambient light in the scene. This field is used with Phong lighting.

attenuation (SoSFVec3f)
defines how light drops off with distance from a light source. You can specify
squared, linear, and constant attenuation coefficients with respect to the distance
of the light from the object’s surface. (The three components of the vector are the
squared, linear, and constant coefficients, in that order.) This field is used with
Phong lighting.

fogType (SoSFEnum)
type of fog. Values for this field are

SoEnvironment::NONE

no fog (default)

SoEnvironment::HAZE

opacity of the fog increases linearly with the distance from the camera
SoEnvironment::FOG

opacity of the fog increases exponentially with the distance from the camera

SoEnvironment::SMOKE

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
5, Shapes, Properties, and Binding 17

increase in fog opacity is an exponential squared increase with the distance from
the camera

fogColor (SoSFColor)
color of the fog.

fogVisibility (SoSFFloat)
the distance at which fog totally obscures the objects in the scene. For the default
value (0.0), this distance is adjusted to equal the far plane of the camera.
Otherwise, it is used as is.

Tip: For realistic scenes, clear the window to the fog color before drawing the fogged objects (see the
SoXtRenderArea:setBackgroundColor()method.)

Shape Hints Node

By default, Inventor does not assume anything about how the vertices in a vertex shape are ordered,
whether its surface is closed or open, or whether the faces of the shape are convex or concave. If you
know that the vertices are in a consistent order, that the shape is closed, or that the shape faces are
convex, you can use ti8mShapeHintsnode to notify Inventor so that it can optimize certain

rendering features.

The SoShapeHintsnode has four fields:

vertexOrdering (SOSFEnum)
provides hints about the ordering of the faces of a vertex based shape derived
from SoVertexShapeThis field describes the ordering of all the vertices of all the
faces of the shape when it is viewed from the outside.

Values for this field are

SoShapeHints::UNKNOWN_ORDERING

the ordering of the vertices is not known (the default)
SoShapeHints::CLOCKWISE

the vertices for each face are specified in clockwise order

SoShapeHints::COUNTERCLOCKWISE

the vertices for each face are specified in counterclockwise order

shapeTypg(SoSFEnum)
SoShapeHints::UNKNOWN_SHAPE_TYPE
the shape type is not known (the default)
SoShapeHints::SOLID
the shape is a solid object (not an open surface)

faceType(SoSFEnum)
SoShapeHints::UNKNOWN_FACE_TYPE
the face type is not known
SoShapeHints::CONVEX
all faces of the shape are convex
(the default)

creaseAnglgSoSFFloat)
used for automatic normal generation. See "Generating Normals Automatically".

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
5, Shapes, Properties, and Binding 18

If theshapeTypeis SOLID and theertexOrdering is either CLOCKWISE or
COUNTERCLOCKWISE, Inventor turns on backface culling and turns off two sided lighting. If the
shapeTypeis not SOLID and theertexOrdering is either CLOCKWISE or

COUNTERCLOCKWISE, Inventor turns off backface culling and turns on two sided lighting. In all
other cases, backface culling and two sided lighting are both off. If you uSe$#apeHintsnode,

be sure to describe the object accurately; otherwise, objects may be rendered incorrectly.

Tip: In general, the more information you specify with the shape hints node, the faster the rendering
speed. The exception to this rule is wekapeTypeis not SOLID and theertexOrdering is either
CLOCKWISE or COUNTERCLOCKWISE. In this case, rendering may be slower because two sided
lighting is automatically turned on and backface culling is turned off.

Complexity Node

Use thesoComplexity node to indicate the amount of subdivision into polygons for subsequent shape
nodes in the scene graph. This node has three fields:

type (SOoSFEnum)
general type of complexity. Values for this field are

SoComplexity::OBJECT_SPACE

(the default) bases the subdivision on the object itself, regardless of where it is on
the screen or which parts are closer to the viewer.

SoComplexity:: SCREEN_SPACE

bases the complexity on the amount of screen space occupied by the object.
Objects requiring the full screen require more detail; small objects require less
detail. The result is that objects that are closer to the viewer usually receive more
detail than objects that are farther away. This type of complexity is more
expensive to compute than the others. In addition, it invalidates the render cache
when the camera moves (see the discussion of render caching in Chapter 9).
SoComplexity::BOUNDING_BOX

renders a bounding box in place of the shape. This type is used for speed, when
exact shapes are not required. It uses the current drawing style to render the box.

value (SoSFFloat)
a value that provides a hint about the amount of subdivision desired, where 0.0 is
minimum complexity and 1.0 is maximum complexity. The default is 0.5.

textureQuality (SoSFFloat)
a value that provides a hint about the quality of texture mapping used on the
object. The trade off is between speed of rendering and quality of texturing. A
value of 0.0 indicates maximum speed (possibly turning off texturing
completely), and 1.0 indicates finest texture quality. The default is 0.5.

"Specifying Different Levels of Complexity (left: OBJECT_SPACE; right: SCREEN_SPACE)"

shows the same object with different levels of complexity. The spheres at the left use object space
complexity and a complexity value of .5. The spheres at the right use screen space complexity and a
complexity value of .06. The NURBS examples in Chapter 8 useaBemplexity node.

This figure
(/usr/share/Insight/library/SGI_bookshelves/SGI_Developer/books/Inv_Mentor/figures/05.13.Comple

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
5, Shapes, Properties, and Binding 19

xity.iv) is an INLINE object and can not be printed.
Media Specifying Different Levels of Complexity (left: OBJECT_SPACE; right:
SCREEN_SPACE)

Tip: Simpler scenes render more quickly than complex scenes. For example, to increase rendering
speed, use fewer lights, turn off textures or specify a lower texture quality value, and choose a simpler
drawing style, such as wireframe, and a lower complexity value. The viewer pop up menu allows you
to disable certain of these features for faster rendering.

Units Node

Inventor lets you define your data in a variety of different units. It uses meters as its default units, but
you can use th8oUnitsnode to specify a different unit of measurement. The units node acts like a
scale node by scaling subsequent shapes into the specifie@ahitstscan adjust the amount it

scales an object by checking to see if any other units have been defined. The units node adjusts the
scale so that the previously defined units are no longer in effect.

The SoUnitsnode has one field:

units (SoSFEnum) defines the current unit of measurement to be applied to all subsequent shapes in
the scene graph. Possible values are as follows:
SoUnits::METERS
SoUnits::CENTIMETERS
SoUnits::MILLIMETERS
SoUnits::MICROMETERS
SoUnits::MICRONS
SoUnits::NANOMETERS
SoUnits::ANGSTROMS
SoUnits::KILOMETERS
SoUnits::FEET
SoUnits::INCHES
SoUnits::POINTS
SoUnits::YARDS
SoUnits::MILES
SoUnits::NAUTICAL_MILES

To render your data in units other than these, uSmdnitsnode to set the current units back to
meters, followed by a scale node that scales from meters into the desired units.

Binding Nodes

Materials and normals are bound to shape nodes in different ways. The first part of this discussion
focuses omaterial bindingwhich is how the current materials specified irBaMaterial node are

mapped onto the geometry of the shape nodes that use that particular material. Since normal binding
is analogous to material binding, this initial discussion focuses on material binding. (See Example 5 1
earlier in this chapter for an example of using a normal binding node.)

An SoMaterialBinding node contains a value that describes how to bind materials to shapes. These
values include the following:

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
5, Shapes, Properties, and Binding 20

SoMaterialBinding::DEFAULT
uses the "best" binding for each shape. Most shapes interpret this binding as
OVERALL.

SoMaterialBinding::NONE
uses no material.

SoMaterialBinding::OVERALL
uses the first current material for the entire shape.

SoMaterialBinding::PER_PART
binds one material to each part in the shape. The definitiparodepends on the
shape. For face sets and cubes, a part is a face. For line sets, a part is a line
segment. For cylinders, a part is the sides, top, or bottom.

SoMaterialBinding::PER_PART_INDEXED
binds one material to each part by index.

SoMaterialBinding::PER_FACE
binds one material to each face in the shape.

SoMaterialBinding::PER_FACE_INDEXED
binds one material to each face by index (for indexed vertex shapes).

SoMaterialBinding::PER_VERTEX
binds one material to each vertex in the shape.

SoMaterialBinding::PER_VERTEX_INDEXED
binds one material to each vertex by index (for indexed vertex shapes).

Each shape node interprets the binding type somewhat differently. For exan§o&pduerenode

does not have parts, faces, or indices, so those binding types (PER_PART, PER_FACE,
PER_VERTEX) are meaningless for spheres. You can regard the value specified in the

material binding node ashantto the shape about binding. If you specify a value that makes no sense

for a particular shape, such as PER_FACE for a cylinder, the shape interprets the information the best
it can (in this case, it uses OVERALL, since a cylinder has no faces). Sepehdnventor C++

Reference Manudbr information on how each shape interprets the different binding types.

Suppose you specify PER_PART for a cylinder. The cylinder has three parts (sides, top, bottom). If
the current material contains three valuiésr example, orange, purple, yelldinthose values are

used for the three parts of the cylinder, producing orange sides, a purple top, and a yellow bottom. But
what happens if the number of current materials is greater than the number of parts? As you might
guess, Inventor simply ignores the extra materials if they’re not required. (If the current material list
contains five values, your cylinder ignores the last two values.)

If the current material contaifswervalues than the binding requires, Inventor cycles through the
current values as often as needed. For example, if you specify PER_FACE for a cube and the current
materials list contains three values (violet, periwinkle, teal), the results are as follows:

Face 1 violet
Face 2 periwinkle
Face 3 teal

Face 4 violet

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
5, Shapes, Properties, and Binding 21

Face 5 periwinkle

Face 6 teal

Indexed Binding

So far, you've been using the values in the current maiteidatier. You can, however, also use the
current material values in a new order if you specify either PER_FACE_INDEXED or
PER_VERTEX_INDEXED for an indexed vertex shape or PER_PART_INDEXED for a shape that
has parts. When you use these types of binding, Inventor refers to the materials index field of the
shape node (for exampteglndexedFaceSeSolndexedLineSel Instead of starting with the first
material and working through the list, Inventor indexes into the materials list in whatever order you
specify.

As an example, consider a tetrahedron, representedsadratexedFaceSefThe current materials
list (in anSoMaterial node) contains the following values:

Material List

0 peach
1 khaki
2 white

and thanateriallndex field (in anSolndexedFaceSetode) contains these values:
Material Index

1

1

0

2

If you specify PER_FACE (not indexed), Inventor ignoresniaerialindex field and cycles
through the materials list in order:

Face 1 peach
Face 2 khaki
Face 3 white
Face 4 peach

On the other hand, if you specify PER_FACE_INDEXED, Inventor usandterialindex field to
pull values out of the materials list as follows:

Face 1 khaki
Face 2 khaki
Face 3 peach
Face 4 white

This indexing is economical, since you can use a single, small set of materials for a wide variety of

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
5, Shapes, Properties, and Binding 22

objects and purposes.

Binding per Vertex

Inventor offers two types of per vertex binding: PER_VERTEX and PER_VERTEX_INDEXED.

With nonindexed material binding per vertex, Inventor simply selects materials in order from the
materials list and assigns a material to each vertex of the shape node. It then interpolates the materials
between the vertices and across the faces of the shape.

Nuances (Advanced)

An SoMaterial node contains six fields, each of which holds multiple values. However, the number of
values in these six fields may not be equal. You might have five different values in the ambient,
diffuse, specular, and emissive fields, but only two values in the shininess field and one in the
transparency field. In such cases, Inventor chooses a cycle equal to the field with the greatest number
of values (in this case, five). In a field with fewer values, its last value is repeated until the end of the
cycle.

When PER_VERTEX binding is specified, a value of 1 (the default) fantteriallndex field or
thenormalindex field in anSolndexedFaceSetor any other indexed shape node) indicates to use the
coordinate indices for materials or normals. The defined constants SO_END_LINE_INDEX,
SO_END_FACE_INDEX, and SO_END_STRIP_INDEX can be used for this specification. This
saves time and space and ensures that the indices match up. When you use a "special" coordinate
index (such as SO_END_FACE_INDEX), the corresponding material index is skipped over so that
the arrays of indices match.

Tip: For better performance, use PER_FACE or PER_FACE_INDEXED binding with one material
node and one face set node that defines multiple polygons, instead of OVERALL binding with
multiple material nodes and multiple face set nodes.

Using a Material Binding Node

Example 5 5 illustrates different types of material binding using the dodecahedron created in Example
5 2 (the common code has been omitted here). The scene graph for the example is shown inFigure
5 8. When you run the program, you can type a number to select the type of material binding, as
follows:

e 0for PER_FACE (see Figure In 8)
* 1 for PER_VERTEX_INDEXED (see Figure In 9)

» 2for PER_FACE_INDEXED (see Figure In 10)

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
5, Shapes, Properties, and Binding 23

result

myBinding myMatenals my Coords myFaceSet

Figure 5 8 Scene Graph for Material Binding Example

Example 55 Using Different Material Bindings

/' Which material to use to color the faces
/I half red & half blue
static long materiallndices[12] = {
0,0,0,0,0,0,
1,1,1,1,1,1,
3

switch(whichBinding) {

case 0O:
/I Set up binding to use a different color for each face
myBinding >value = SoMaterialBinding::PER_FACE;
break;

case 1:
/I Set up binding to use a different color at each
Il vertex, BUT, vertices shared between faces will
I/l have the same color.
myBinding >value = SoMaterialBinding::PER_VERTEX_INDEXED;
break;

case 2:
myBinding >value = SoMaterialBinding::PER_FACE_INDEXED;
mylndexedFaceSet >materiallndex.setValues(

0, 12, materiallndices);

break;

Normal Binding

Normals are bound to shapes in almost the same manner as materials. The type of hormal binding
specified in ailBoNormalBinding node is dintto the shape node about how to apply the current

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
5, Shapes, Properties, and Binding 24

normals to that shape. Indexed shape nodes subliadexedFaceSedndSolndexedTriangle
StripSet contain anormalindex field used to store indices into the normals list (i8@Normal

node). If the type of binding specified does not require indices (for example, PER_VERTEX), the
normallndex field is not used.

The main difference between indexed normals and indexed materials is that indexed normals do not
cycle. If used, normals must match up exactly with the faces, vertices, or parts of the object. If the
normals do not match exactly, then default normals are generated (see the following section). You
mustspecify enough normals to bind to faces, parts, or vertices.

Generating Normals Automatically

Normals can be generated automatically for any shape derive&t@ertexShapeBecause this

process involves a great deal of computation, we recommend that you use automatic caching or
explicitly turn on render caching so that the results are saved and can be reused (see Chapter 9 for
more information on caching). Inventor generates normals automatically if needed for rendering and

» DEFAULT normal binding is used and

e You do not specify any normatds the number of normals is different from the number of
vertices

When Inventor generates normals automatically, it looks ardaseAnglefield of the

SoShapeHintsnode. Therease anglés defined as the angle between the normals for two adjoining
faces. This angle indicates the maximum angle size at which separate normals are drawn for adjoining
faces. For example, if the crease angle is one radian and the normals for two adjoining faces form an
angle less than or equal to one radian, the faces share the same normal, which causes the edge to be
shaded smoothly. If the normals for the faces form an angle greater than one radian, Inventor
calculates separate normals for each face, which creates a crease. If you want an object to appear
sharply faceted, specify 0 as ttreaseAngle If you want an object to appear completely smooth,

specify Pl as thereaseAngle

Transformations

Unlike other property nodes, transformation nodes doapt&cethe current geometric
transformation element in the action state. Instead, they lawawativesffect on the current
geometric transformation. In Figure 5 9, for example, the transformations irximtlare applied
first, followed by the transformations in naden2.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
5, Shapes, Properties, and Binding 25

S0 00

cube sphere

Figure 59 Cumulative Effect of Transformation Nodes

The cube is affected by only the transformatiorfinl The sphere, however, is affected by both
xfmZlandxfm2

SoTransform Node
An SoTransform node includes the following fields:

translation (SoSFVec3f)
the translation i, y, andz The default value is
[0.0 0.0 0.0].

rotation (SoSFRotation)
the rotation in terms of an axis and an angle. The default value is [0.0 0.0 1.0],
0.0.

scaleFactor(SoSFVec3f)
the scaling factor ix, y, andz The default value for this field is [1.0 1.0 1.0].

scaleOrientation(SoSFRotation)
the rotation to applipeforethe scale is applied. The default value is [0.0 0.0 1.0],
0.0.

center (SoSFVec3f)
the center point for rotation and scaling. The default value for this field is [0.0 0.0
0.0].

Tip: If you are using only one of the fields in&oTransform node, you can substitute the
corresponding "lightweight" version. For rotations, 8s®otationor SoRotationXYZ; for
translations, us8oTranslation, and for scaling, useoScale

Order of Transformations

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
5, Shapes, Properties, and Binding 26

Within eachSoTransform node, the fields are applied so that the last field in the nodee(ites)
affects the shape objditst. The order is first the center, followed by the scale orientation, the scaling
factor, the rotation, and the translation.

Figure 5 10 and "Effects of Ordering Transformation Fields" show how different ordering of
transformations produces different results. At the left of , "Effects of Ordering Transformation Fields"
the temple is scaled, rotated, and then translated. The transforrolosekto the shape object

affects the objedirst. You thus need to read backward through the code to see how the effects of the
transformations are felt. At the right of , "Effects of Ordering Transformation Fields" the temple is
rotated, then scaled and translated. Example 5 6 shows the code for the two sets of transformations.

root

@ leftSep @ rightSep

left Translation myRotation myScale fileContents

rightTranslation

Shared Instance

Figure 510 Two Groups with Transformations in Different Order

This figure
(/usr/share/lnsight/library/SGI_bookshelves/SGI_Developer/books/Inv_Mentor/figures/05.17.Transfo
rmOrdering.iv) is an INLINE object and can not be printed.

Media Effects of Ordering Transformation Fields

Example 56 Changing the Order of Transformations

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>
#include <Inventor/SoDB.h>

#include <Inventor/nodes/SoMaterial.h>

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
5, Shapes, Properties, and Binding 27

#include <Inventor/nodes/SoRotationXYZ.h>
#include <Inventor/nodes/SoScale.h>
#include <Inventor/nodes/SoSeparator.h>
#include <Inventor/nodes/SoTranslation.h>

main(int, char **argv)

{
/I Initialize Inventor and Xt
Widget myWindow = SoXt::init(argv[0]);
if (myWindow == NULL) exit(1);

SoSeparator *root = new SoSeparator;
root >ref();

/I Create two separators, for left and right objects.
SoSeparator *leftSep = new SoSeparator;
SoSeparator *rightSep = new SoSeparator;

root >addChild(leftSep);

root >addChild(rightSep);

/I Create the transformation nodes.

SoTranslation *leftTranslation = new SoTranslation;
SoTranslation *rightTranslation = new SoTranslation;
SoRotationXYZ *myRotation = new SoRotationXYZ;
SoScale *myScale = new SoScale;

/I Fill in the values.

leftTranslation >translation.setValue(1.0, 0.0, 0.0);
rightTranslation >translation.setValue(1.0, 0.0, 0.0);
myRotation >angle = M_PI/2; // 90 degrees
myRotation >axis = SoRotationXYZ::X;

myScale >scaleFactor.setValue(2., 1., 3.);

/I Add transforms to the scene.

leftSep >addChild(leftTranslation); // left graph
leftSep >addChild(myRotation); /I then rotated
leftSep >addChild(myScale); /I first scaled

rightSep >addChild(rightTranslation); // right graph
rightSep >addChild(myScale); // then scaled
rightSep >addChild(myRotation); Il first rotated

/I Read an object from file. (as in example 4.2.Lights)
Solnput mylnput;
if (!mylnput.openFile("temple.iv"))

return (1);
SoSeparator *fileContents = SoDB::readAll(&mylnput);
if (fileContents == NULL) return (1);

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
5, Shapes, Properties, and Binding 28

/I Add an instance of the object under each separator.
leftSep >addChild(fileContents);
rightSep >addChild(fileContents);

/I Construct a renderArea and display the scene.
SoXtExaminerViewer *myViewer =

new SoXtExaminerViewer(myWindow);
myViewer >setSceneGraph(root);
myViewer >setTitle("Transform Ordering");
myViewer >viewAll();
myViewer >show();

SoXt::show(myWindow);
SoXt::mainLoop();

The Inven
6, Text 1

Chapter 6
Text

Chapter Objectives
After reading this chapter, you'll be able to do the following:
+ Add 2D text annotations to a scene

» Add 3D text to a scene, using a variety of customized profiles and fonts

This chapter describes the use of 2D and 3D text. Inventor’s 2D text provides you with a simple, quick
method for annotating your graphics. For greater embellishment and flexibility, use 3D text, which
offers you a wide range of possibilities for shaping the profiles of 3D fonts. Key concepts introduced
in this chapter includpustification, spacing, font typendsize andprofiles Although the topic of

NURBS curves and surfaces is mentioned, that subject is explained fully in Chapter 8.

The first part of this chapter focuses on 2D text and introduces certain concepts common to both 2D
and 3D text, such as justification, spacing, and font type and size. The second part of the chapter
describes the use of 3D text. The main additional concept in the use of 3D text is defining the

cross sectiongirofile for the text. You can create profiles that are straight, curved, or a combination of
the two.

Two Dimensional Text

The text nodeSoText2 defines text strings that are rendered as 2D screen aligned text. Just as other
shape nodes cause their shape to be drawn when encountered during rendering tré8@feadt2an

node causes text to be drawn, using the current values for font and color. Text attributes used by
SoText2are specified in thBoFontnode. These attributes include font type and point size.

Two dimensional text does not scale in size according to changes in distance from the camera.

SoText2has the following fields:

string (SOMFString)
the text string or strings to display. You can specify multiple strings.

spacing(SoSFFloat)
the spacing between lines of text. The default interval is 1.0. For a multiple string
field, the vertical distance from the top of one line to the top of the next line is
equal tospacingtimes the font size.

justification (SoSFEnum)
alignment of the text strings relative to the text origin. Justification can be LEFT
(the default), RIGHT, or CENTER.

Thetext originis positioned at (0, 0, 0), transformed by the current geometric transformation. Text is
drawn relative to the text origin, according to the specified justification. For example, if you specify
RIGHT justification, the right side of the text aligns with the text origin.

Font Type and Size

Use theéSoFontnode to specify a font type and size for subsequent text nodes (both 2D and 3D) in the
scene graph. This node contains the following fields:

tor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter

name(SoSFName)
font name. Check your release documentation for a list of font types that are
supported on your system.

size(SoSFFloat)
for SoText2 the point size in printer’s points. FBoText3 the size in object
space units (default = 10.0).

For example, to specify 140 point Courier bold italic:

SoFont *font = new SoFont;
font >name.setValue("Courier BoldOblique");
font >size.setValue(140);

Using 2D Text

Example 6 1 renders a globe and uses 2D text to label the continents Africa and ASlaFdrite
node specifies 24 point Times Roman as the current font. Figure 6 1 shows the scene graph for this
example. "Simple Text" shows the image produced by this program.

Q o
9 0.0

myFont spheresSep africaSep aslasep
my Texture2 sphere asialranslate asialext

o

africaTranslate africa Text

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
6, Text 2

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor

6, Text 3

Figure 6 1 2D Text Example

Example 6 1 Using 2D Text

#include <Inventor/nodes/SoFont.h>
#include <Inventor/nodes/SoGroup.h>
#include <Inventor/nodes/SoSeparator.h>
#include <Inventor/nodes/SoSphere.h>
#include <Inventor/nodes/SoText2.h>
#include <Inventor/nodes/SoTexture2.h>
#include <Inventor/nodes/SoTranslation.h>

#include <Inventor/Xt/SoXt.h>
#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>

main(int argc, char **argv)

Widget myWindow = SoXt::init(argv[0]);
if(myWindow == NULL) exit(1);

SoGroup *root = new SoGroup;
root >ref();

/I Choose a font.

SoFont *myFont = new SoFont;

myFont >name.setValue("Times Roman");
myFont >size.setValue(24.0);

root >addChild(myFont);

/I Add the globe, a sphere with a texture map.
/[Put it within a separator.

SoSeparator *sphereSep = new SoSeparator;
SoTexture2 *myTexture2 = new SoTexture2;
root >addChild(sphereSep);

sphereSep >addChild(myTexture?2);
sphereSep >addChild(new SoSphere);
myTexture2 >filename = "globe.rgb";

/I Add Text2 for AFRICA, translated to proper location.
SoSeparator *africaSep = new SoSeparator;
SoTranslation *africaTranslate = new SoTranslation;
SoText2 *africaText = new SoText2;

africaTranslate >translation.setValue(.25,.0,1.25);
africaText >string = "AFRICA";

root >addChild(africaSep);

africaSep >addChild(africaTranslate);

africaSep >addChild(africaText);

, Release 2 Chapter

This figure
(/usr/share/lnsight/library/SGI_bookshelves/SGI_Developer/books/Inv_Mentor/figures/06.2. Text.iv.
RIKK) is an INLINE object and can not be printed.

Media Simple Text

/I Add Text2 for ASIA, translated to proper location.
SoSeparator *asiaSep = new SoSeparator;
SoTranslation *asiaTranslate = new SoTranslation;
SoText2 *asiaText = new SoText2;

asiaTranslate >translation.setValue(.8,.8,0);
asiaText >string = "ASIA";

root >addChild(asiaSep);

asiaSep >addChild(asiaTranslate);

asiaSep >addChild(asiaText);

SoXtExaminerViewer *myViewer =
new SoXtExaminerViewer(myWindow);
myViewer >setSceneGraph(root);
myViewer >setTitle("2D Text");
myViewer >setBackgroundColor(SbColor(0.35, 0.35, 0.35));
myViewer >show();
myViewer >viewAll();

SoXt::show(myWindow);
SoXt::mainLoop();

Three Dimensional Text

In contrast to 2D text, 3D text scales in size according to changes in distance from the camera and
does not always stay parallel to the screen. Three dimensional text has depth. The face of a 3D letter
can join its sides at right angles (the default). Or you can bevel the edges of the letter by specifying
your own text profile, as shown at the right of Figure 6 3, which shows a beveled letter A.

The chief advantages of 2D text are that it is faster than 3D text and, because it remains parallel to the
screen, is always readable. Advantages of 3D text are that it can be scaled and is generally prettier
than 2D text.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
6, Text 4

Default Frofile Customized Profile
{straight bevel) fcustom bevel)

front bk, front back
af letter of letter of letter af letter

Figure 6 2 Defining a Customized Profile for 3D Text
SoText3has the following fields:

string (SoMFString)
the text string or strings to display. You can specify multiple strings.

spacing(SoSFFloat)
the spacing between lines of text. The default interval is 1.0. For a multiple string
field, the vertical distance from the top of one line to the top of the next line is
equal tospacingtimes the font size.

justification (SoSFEnum)
alignment of the text strings relative to the text origin. Justification can be LEFT
(the default), RIGHT, or CENTER. LEFT means that the bottom left front of the
first character in the first line is at (0.0, 0.0, 0.0). Successive lines start under the
first character. RIGHT means that the bottom right of the last character is at (0.0,
0.0, 0.0). Successive lines end under the last character of the first line. CENTER
means that the center of each line is at (0.0, 0.0, 0.0).

parts (SoSFBitMask)
visible parts of the text (FRONT, SIDES, BACK, or ALL). The default is

FRONT.

Parts of 3D Text

Three dimensional text has three parts: front, sides, and back. Text uses the current material. If
material binding is specified as PER_PART, the front uses the first material, the sides use the second
material, and the back uses the third material.

Tip: Be aware that when you turn on SIDES and BACK of 3D text, you draw three times more
polygons than with FRONT only, so performance is slower.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
6, Text 5

Profile

The profile describes the cross section of the letter, as shown in Figure 6 3. The profile is drawn in its
own 2D plane. This plane is perpendicular to the face of the text, as shown in Figure 6 4. The origin of
this plane is at the edge of the letter. In this coordinate system, capital letters are one unit high. The
profile coordinates thus need to be in the range of 0.0 to about 0.3 or 0.4 times the size of the font.

Figure 6 3 2D Plane for Drawing a Text Profile

Linear Profiles

Profiles are constructed from the currprdfile coordinateslf the profile is a collection of connected
straight line segments, use tBeLinearProfile node to specify how the coordinates are connected.
The profile coordinates are specified in@oProfileCoordinate2node, which precedes the
SolLinearProfile node in the scene graph (see Example 6 3).

Curved Profiles

If the profile is curved, use ti8ONurbsProfile node to specify how the coordinates are used. If you
are interested in creating curved profiles, first read Chapter 8 for detailed conceptual information on
NURBS curves. The coordinates themselves are specified SoBvefileCoordinate2node or the
SoProfileCoordinate3node, depending on whether the curve is nonrational or rational. (The terms
nonrationalandrational are also explained in Chapter 8.)

Linking Profiles (Advanced)

If your text profile is a combination of linear and curved lines, you can join the linear profile to the

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
6, Text 6

curved profile. The base profile claSgProfile, includes dinkage field that is inherited by both
SolLinearProfile andSoNurbsProfile. This field indicates whether the profile is START_FIRST
(begin the first profile for the text), START_NEW (begin a new profile; for NURBS trimming only),
or ADD_TO_CURRENT (append this profile to the previous one).

Simple Use of 3D Text

Example 6 2 illustrates a simple use of 3D text. It renders a globe and then uses 3D text to label the
continents Africa and Asia. Tt@pFontnode specifies Times Roman as the current font. Figure 6 5
shows the scene graph for this example. "Simple 3D Text Example" shows the image produced by

this program.
Q roct

SRS

myFont myMaterial myBinding sphereSep africaSep asiaSep
my Texture2 sphere asialranstorm asiaTlext

o0

africaTransform africaText

Figure 6 4 Scene Graph for Simple 3D Text Example

Example 6 2 Using 3D Text

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>
#include <Inventor/nodes/SoFont.h>

#include <Inventor/nodes/SoGroup.h>

#include <Inventor/nodes/SoMaterial.h>

#include <Inventor/nodes/SoMaterialBinding.h>
#include <Inventor/nodes/SoSeparator.h>

#include <Inventor/nodes/SoSphere.h>

#include <Inventor/nodes/SoText3.h>

#include <Inventor/nodes/SoTexture2.h>

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
6, Text 7

#include <Inventor/nodes/SoTransform.h>

main(int, char **argv)

{
Widget myWindow = SoXt::init(argv[0]);
if(myWindow == NULL) exit(1);

SoGroup *root = new SoGroup;
root >ref();

This figure

(/usr/share/Insight/library/SGI_bookshelves/SGI_Developer/books/Inv_Mentor/figures/06.6.Simple3

DText.iv) is an INLINE object and can not be printed.
Media Simple 3D Text Example

/I Choose a font.

SoFont *myFont = new SoFont;

myFont >name.setValue("Times Roman");
myFont >size.setValue(.2);

root >addChild(myFont);

/I We’'ll color the front of the text white, and the sides

/l dark grey. So use a materialBinding of PER_PART and
/I two diffuseColor values in the material node.
SoMaterial *myMaterial = new SoMaterial,
SoMaterialBinding *myBinding = new SoMaterialBinding;
myMaterial >diffuseColor.set1Value(0,SbColor(1,1,1));
myMaterial >diffuseColor.set1Value(1,SbColor(.1,.1,.1));
myBinding >value = SoMaterialBinding::PER_PART,;
root >addChild(myMaterial);

root >addChild(myBinding);

/I Create the globe.

SoSeparator *sphereSep = new SoSeparator;
SoTexture2 *myTexture2 = new SoTexture2;

root >addChild(sphereSep);

sphereSep >addChild(myTexture?2);

sphereSep >addChild(new SoSphere);

myTexture2 >filename = "globe.rgb";

/I Add Text3 for AFRICA, transformed to proper location.
SoSeparator *africaSep = new SoSeparator;
SoTransform *africaTransform = new SoTransform;
SoText3 *africaText = new SoText3;

africaTransform >rotation.setValue(SbVec3f(0,1,0),.4);
africaTransform >translation.setValue(.25,.0,1.25);

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor

6, Text 8

, Release 2 Chapter

africaText >parts = SoText3::ALL;
africaText >string = "AFRICA";

root >addChild(africaSep);

africaSep >addChild(africaTransform);
africaSep >addChild(africaText);

/I Add Text3 for ASIA, transformed to proper location.
SoSeparator *asiaSep = new SoSeparator;
SoTransform *asiaTransform = new SoTransform;
SoText3 *asiaText = new SoText3;

asiaTransform >rotation.setValue(SbVec3f(0,1,0),1.5);
asiaTransform >translation.setValue(.8,.6,.5);
asiaText >parts = SoText3::ALL;

asiaText >string = "ASIA";

root >addChild(asiaSep);

asiaSep >addChild(asiaTransform);

asiaSep >addChild(asiaText);

SoXtExaminerViewer *myViewer =
new SoXtExaminerViewer(myWindow);
myViewer >setSceneGraph(root);
myViewer >setTitle("3D Text");
myViewer >setBackgroundColor(SbColor(0.35, 0.35, 0.35));
myViewer >show();
myViewer >viewAll();

SoXt::show(myWindow);
SoXt::mainLoop();

Advanced Use of 3D Text (Advanced)

Example 6 3 illustrates additional features available with 3D text. It specifies a beveled cross section
for the text using th&soProfile Coordinate2 andSoLinearProfile nodes. The text uses two different
material§ one for the front of the text, and one for the back and sides. The font node specifies the
Times Roman font. Figure 6 7 shows the scene graph for this figure. "Advanced 3D Text Example™
shows the rendered image.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
6, Text 9

The Inventor Mentor:

O root

I i}
| /

0 Iaterial ProfileCoords MaterialBindin
i@] my my { } my g

ot

myCamera myFont myLinearProfile my Text3

Figure 6 5 Scene Graph for Advanced 3D Text Example

Example 6 3 Creating Beveled 3D Text

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>
#include <Inventor/nodes/SoFont.h>

#include <Inventor/nodes/SoGroup.h>

#include <Inventor/nodes/SoLinearProfile.h>

#include <Inventor/nodes/SoMaterial.h>

#include <Inventor/nodes/SoMaterialBinding.h>
#include <Inventor/nodes/SoPerspectiveCamera.h>
#include <Inventor/nodes/SoProfileCoordinate2.h>
#include <Inventor/nodes/SoText3.h>

main(int argc, char **argv)

{

Widget myWindow = SoXt::init(argv[0]);
if(myWindow == NULL) exit(1);

SoGroup *root = new SoGroup;
root >ref();

/I Set up camera.

SoPerspectiveCamera *myCamera = new SoPerspectiveCamera,
myCamera >position.setValue(0, (argc 1)/ 2, 10);

myCamera >nearDistance.setValue(5.0);

myCamera >farDistance.setValue(15.0);

root >addChild(myCamera);

This figure

(/usr/share/lnsight/library/SGI_bookshelves/SGI_Developer/books/Inv_Mentor/figures/06.8.Complex

3DText.iv) is an INLINE object and can not be printed.

6, Text 10

Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter

Media Advanced 3D Text Example

The Inventor Mentor:

6, Text 11

/I Let’'s make the front of the text white,

/I and the sides and back yellow.

SoMaterial *myMaterial = new SoMaterial;
ShColor colors[3];

/I diffuse

colors[0].setValue(l, 1, 1);

colors[1].setValue(1, 1, 0);

colors[2].setValue(l, 1, 0);

myMaterial >diffuseColor.setValues(0, 3, colors);
/I specular

colors[0].setValue(1, 1, 1);

colors[1].setValue(l, 1, 0);

colors[2].setValue(1, 1, 0);

myMaterial >specularColor.setValues(0, 3, colors);
myMaterial >shininess.setValue(.1);

root >addChild(myMaterial);

/I Choose a font.

SoFont *myFont = new SoFont;

myFont >name.setValue("Times Roman");
root >addChild(myFont);

/I Specify a beveled cross section for the text.
SoProfileCoordinate2 *myProfileCoords =

new SoProfileCoordinate?2;
ShVec2f coords[4];
coords[0].setValue(.00, .00);
coords[1].setValue(.25, .25);
coords[2].setValue(1.25, .25);
coords[3].setValue(1.50, .00);
myProfileCoords >point.setValues(0, 4, coords);
root >addChild(myProfileCoords);

SoLinearProfile *myLinearProfile = new SoLinearProfile;
long index[4];

index[0] = 0;
index[1] = 1;
index[2] = 2;
index[3] = 3;

myLinearProfile >index.setValues(0, 4, index);
root >addChild(myLinearProfile);

/I Set the material binding to PER_PART.
SoMaterialBinding *myMaterialBinding = new SoMaterialBinding;
myMaterialBinding >

Programming Object Oriented 3D Graphics with Open Inventor

, Release 2 Chapter

value.setValue(SoMaterialBinding::PER_PART);
root >addChild(myMaterialBinding);

// Add the text.

SoText3 *myText3 = new SoText3;

myText3 >string.setValue("Beveled Text");

myText3 >justification.setValue(SoText3::CENTER);
myText3 >parts.setValue(SoText3::ALL);

root >addChild(myText3);

SoXtExaminerViewer *myViewer =

new SoXtExaminerViewer(myWindow);
myViewer >setSceneGraph(root);
myViewer >setTitle("Complex 3D Text");
myViewer >show();
myViewer >viewAll();

SoXt::show(myWindow);
SoXt::mainLoop();

Chapter 7
Textures

Chapter Objectives

After reading this chapter, you'll be able to do the following:

» Apply textures to objects in the scene graph using the default values for texture mapping
» Apply textures to objects in the scene graph by specifying texture coordinates explicitly

» Use texture coordinate functions suchSad extureCoordinatePlaneand
SoTextureCoordinateEnvironmentto map textures onto objects

» Create a texture map that can be stored in memory and applied to an object
» Wrap a texture around an object so that the image is repeated

» Specify how a texture affects the underlying shaded color of an object

This chapter explains how to use textures, which allow you to add realism and detail to scenes. In
Inventor, you create a 2D texture image and then apply this texture to the surface of a 3D shape object.
The rectangular patch of texture you define is stretched and compressed to "fit" the 3D shape
according to your specifications. Key concepts introduced in this chapter itettle map

wrapping texturegexture modekexture componentandenvironment mapping

Creating Textured Objects

Using textures, you can create a table with a wood grain, an orange with a dimpled, shiny surface, and
a field of grass. To do so, first create wood, orange peel, and grass textures and then apply the textures
to the various shape objects. Figure 7 1 contrasts two sets of objects: the objects on the right use
texture mapping, and the objects on the left do not use textures.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
7, Textures 1

Figure 7 1 Texture Mapping

What Is a Texture Map?

A texture maps a 2D array of pixel information for a particular pattern, or texture. Inventor, like
OpenGL, uses the lettefor the horizontal texture coordinate aridr the vertical texture coordinate.

A texture map is axlL square, with coordinates ranging from 0.0 to 1.0 in botkdhet dimensions,

as shown in Figure 7 2. Texture coordinates are assigned to each vertex of a polygon (this assignment
is done either explicitly by you, or automatically by Inventor). If the pixels in the texture do not match
up exactly with the pixels in the polygon, Inventor uses a filtering process to assign texture pixels to
the object. The texture is read from a file or from memory.

Nodes Used for Texture Mapping
This section describes use of the following node classes:

SoTexture2 specifies a 2D texture map to be used and associated parameters for texture
mapping.
SoTextureCoordinate?2

explicitly defines the set of 2D texture coordinates to be used by subsequent
vertex shapes.

SoTextureCoordinateBinding
specifies how the current texture coordinates are to be bound to subsequent shape
nodes.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
7, Textures 2

SoTextureCoordinatePlane
SoTextureCoordinateEnvironment
allow you to use a function to map from spatial
coordinates to texture coordinates.

SoTextureCoordinateDefault
turns off any previous texture coordinate function so that all following shapes use
their default texture coordinates.

SoTexture2Transform
defines a 2D transformation for the texture map.

Figure 7 2 Texture Coordinates

The SoComplexity node has textureQuality field that relates to texture mapping as well. It allows
you to specify a value between 0.0 and 1.0, with 0.0 for the fastest rendering and 1.0 for the finest
texturing. (In general, there is a trade off between speed and the quality of texturing.) The default
value for this field is 0.5.

Using the Defaults

Although you can affect how a texture is applied to an object in many ways, the simplest way to use
textures is to use the default values. If you use textures, you need &uy exture2node (for the

texture) and a shape node (the target object). Example 7 1, which displays a textured cube, illustrates
this method. See "SoTexture2 Node" for a detailed description 8ifhexture2node and its

defaults.

Example 7 1 Using the Default Texture Values

#include <Inventor/Xt/SoXt.h>
#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>
#include <Inventor/nodes/SoCube.h>

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
7, Textures 3

#include <Inventor/nodes/SoCube.h>
#include <Inventor/nodes/SoSeparator.h>
#include <Inventor/nodes/SoTexture2.h>

main(int , char **argv)

{
Widget myWindow = SoXt::init(argv[0]);
if(myWindow == NULL) exit(1);

SoSeparator *root = new SoSeparator;
root >ref();

/I Choose a texture

SoTexture2 *rock = new SoTexture2;
root >addChild(rock);

rock >filename.setValue("brick.1.rgb");

/l Make a cube
root >addChild(new SoCube);

SoXtExaminerViewer *myViewer =

new SoXtExaminerViewer(myWindow);
myViewer >setSceneGraph(root);
myViewer >setTitle("Default Texture Coords");
myViewer >show();

SoXt::show(myWindow);
SoXt::mainLoop();
}

Tip: If several nodes use the same texture, position the texture node so that it can be used by all the
nodes. When possible, group nodes to share textures first, then to share materials, because it is
expensive to switch textures.

Key Concepts

This section explains some special ways you can change how a texture is applied to a shape object.
These variations include the following:

* How the texture wraps around the object

* How the texture affects the object’'s underlying colors

In addition, this section explains how to specify the pixels for a texture image to be stored in memory.

Wrapping a Texture around an Object

Texture coordinates range from 0.0 to 1.0 in each dimension (see "What Is a Texture Map?"). What
happens, then, if your polygon texture coordinates range from 0.0 to 2.0 in some dimension? In such
cases, you have a choice:

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
7, Textures 4

* The texture can either bepeatedas many times as necessary to cover the face (or stretched to
cover the face)

» Or the last row of pixels can be repeated to cover the rest of the faceclzaiipthg
Figure 7 3 shows examples of both types of wrapping. The cylinder on the left has the texture
repeated twice along its length and around its circumference. The cylinder on the right has the top

scanline clamped, by settingapT to CLAMP. See "SoTexture2 Node" for a description of the
wrapS andwrapT fields.

How a Texture Affects the Underlying Colors (Advanced)

You can specify one of three texturedelsto use (see "SoTexture2 Node"). Each model causes the
texture map to affect the underlying colors of the polygon in different ways. The model types are as

follows:

MODULATE multiplies the shaded color by the texture color (the default). If the texture has an
alpha component, the alpha value modulates the object’s transparency.

DECAL replaces the shaded color with the texture color. If the texture has an alpha
component, the alpha value specifies the texture’s transparency, allowing the
object’s color to show through the texture.

BLEND uses the texture intensity to blend between the shaded color and a specified

constant blend color.

Figure 7 3 Wrapping the Texture around the Object

The MODULATE model can be used with any texture file. The BLEND model is used with one or
two component files. The DECAL model is used with three or four component files. See
"Components of a Texture".

Tip: MODULATE works best on bright materials because the texture intensity, which is less than or

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
7, Textures 5

equal to 1.0, is multiplied by the shaded color.

Figure In 11 through Figure In 14 show examples of each texture model. The image in Figure In 11
shows the scene without a texture. The image in Figure In 12 uses a MODULATE model, so the color
of the building is a combination of the texture and material colors. The image in Figure In 13 uses a
DECAL model, so the color of the building is determined completely by the texture map. The image
in Figure In 14 uses the BLEND model, so the color of the building blends between the underlying
material color and the blend color value (gold).

Tip: To create bright green polka dots on an object, create a black and white texture with white dots.
Then use the BLEND texture model with a green blend color.

See thglTexEnv() function in theOpenGL Reference Manual the actual equations used to
calculate the final textured object colors.

Tip: If you use MODULATE, you may want to surround your texture images with a one pixel
border of white pixels and setapS andwrapT to CLAMP so that the object’s color is used where
the texture runs out.

Storing an Image (Advanced)

Texture maps are read from a file or from memory. For information on what image file formats your
platform supports, see your release documentation.

You can store a texture map asSarsFImageand then specify the image in theagefield of the
SoTexture2node. This section provides details on how to store the texture map pixels in memory.
The texture, whether stored in a file or in memory, can contain from one to four components, as
described in the following section.

Components of a Texture
A texture can be one of the following types:

* One component texturecontains only an intensity value. This type of texture is often referred
to as arintensity mapFor example, an image of a mountain could use a one component texture
and vary the intensity of a constant color polygon to make the image more realistic.

» Two component texturecontains an intensity value and an alpha (transparency) value. For
example, you can create a tree with leaves made of polygons of varying intensity, from dark
green to bright green. Then, you can vary the transparency at the edges of the leaf

area, so that you can see around the edges of the leaves to the objects behind them.

» Three component texturecontains red, green, and blue values. This is a red green blue image,
such as a photo or a commonly used texture such as brick, concrete, or cloth.

» Four component textufé contains red, green, blue, and alpha (transparency) values. This texture
is similar to the RGB three component texture, but also contains transparency information. You
can use a four component texture to create a colorful New England maple tree in October using
the technique described previously for two component textures.

Tip: One and two component textures are generally faster than three and four component textures,
since they require less computation.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
7, Textures 6

Storing an Image in Memory

Use thesetValue()method to assign the value to 8@SFImage This method requires you to supply
the size of the texturgvidth * height in pixels), the number of components in the texture, and the
values of the components for each pixel (as an array of unsigned chars, with values 0 to 255).

For a one component texture, each byte in the array stores the intensity value for one pixel. As shown
in Figure 7 4, byte 0 is the lower left corner of the pixel map, and numbering of bytes is from left to
right within each row.

For example, to store a one component texture, the code would be

SoTexture2 *textureNode = new SoTexture2;
Il A 3 by 2 array of black and white pixels; the array is
/lupside down here (the first pixel is the lower left corner)
unsigned char image [] = {
255, 0,
0, 255,
255, 0
h
//Set the image field:
textureNode >image.setValue(SbVec2s(3,2), 1, image);

1 5 6 7 width = 4
height = 2
{ 1 2 3 unsigned char bytes [472];

k\

Intensity value

—’

first
pixel

Figure 7 4 Format for Storing a One Component Texture in Memory

For a two component texture, byte 0 is the intensity of the first pixel, and byte 1 is the alpha
(transparency) value for the first pixel. Bytes 2 and 3 contain the information for pixel 2, and so on
(see Figure 7 5).

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
7, Textures 7

o1 213141 5]6 7

VA

Intensity value Alpha value

N —

first
el

Figure 75 Format for Storing a Two Component Texture in Memory

A three component texture requires three bytes to store the information for each pixel. For the first
pixel, byte 0 contains the red value, byte 1 contains the green value, and byte 2 contains the blue value
(see Figure 7 6). A four component texture requires four bytes for each pixel (red, green, blue, and
alpha values).

12 113 (14 |15 116 |17 |18 | 191 20 |21 1 22 | 23

[A o
s i
first second
Dl el

Figure 7 6 Format for Storing a Three Component Texture in Memory

SoTexture2 Node

An SoTexture2node specifies the image for the texture map, how the texture wraps around the
object, and the texture model to use.

Fields of an SoTexture2 Node
The SoTexture2node has the following fields:

filename (SoSFName)
specifies the name of the file to use as a texture map.
See your release documentation for information on what file formats your system
supports. You specify either a file name or an image (see next field) for the

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
7, Textures 8

If thefilenamefield is set, the image file is read and itnagefield is set to the

pixels in that file. If thémagefield is set, thdilenamefield is setto " " (an

empty string; the default value). This behavior assures that there is no ambiguity
about which field is used for the texture.

image (SoSFImage)
specifies the color and number of pixels in the texture map.

wrapS (SoSFEnum),wrapT (SoSFEnum)
specifies how the image wraps in g{horizontal) and
t (vertical) directions (see Figure 7 3). Possible values
are as follows:
REPEAT specifies to repeat the map to fill the
shape (the default)
CLAMP specifies to repeat the last row of pixels

model (SoSFEnum)

specifies the texture model to use. Possible values are

as follows:

MODULATE multiplies the shaded color times the
texture color (the default)

DECAL replaces the shaded color with the
texture color

BLEND blends between the shaded color and
the specified blend color (see the

blendColor field)

blendColor (SoSFColor)
specifies the color to blend when using the BLEND texture model.

ThetextureQuality field of theSoComplexity node controls the quality of filtering used to apply the
texture. A value of 0.0 disables texturing completely, and a value of 1.0 specifies to use the highest
quality of texturing. The default value for this field is 0.5.

Transforming a Texture Map

You can transform the texture map by insertingafexture2Transform node into the scene graph

before the shape node. This node has a cumulative effect and is applied to the texture coordinates. As
shown in Figure 7 7, the relationship betweerSb&exture2Transform node and the
SoTextureCoordinate2node is analogous to the relationship betweeSdieansform nodes and
theSoCoordinatenodes.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
7, Textures 9

To Get:

Which are
Fends. .. Transformed by:
Werices in
. world space, used
Coordinates '
SoTransforms o draw polygons

Object
{for example,
cube)

Texture Coordinates

Texture coordinates
inimage spase, used

to draw polygons

by keaking in texture map

SoTexture?Transforms

Figure 7 7 How the SoTexture2Transform Node Relates to the Texture Coordinates
The fields of thesoTexture2Transform node are as follows:

translation (SoSFVec2f)
specifies a translation of the object’s texture coordinates.

rotation (SoSFFloat)
specifies a rotation of the object’s texture coordinates. The rotation angle is in
radians.

scaleFactor(SoSFVec2f)
specifies how to scale the texture on the object. The obgantdt coordinates
are multiplied by the scale factor. A scale factor of (2.0, 2.0) thus makes the
texture appear smaller on the object (see left side of Figure 7 8). A scale factor of
(0.5, 0.5) makes the texture appear larger (see right side of Figure 7 8).

center (SoSFVec2f)
specifies the center of the rotation and scale transformations. The default is (0.0,
0.0), the lower left corner of the texture.

In Figure 7 8, the sphere on the left has a texdcaéeFactorof (2.0, 2.0), so the texture is repeated
twice insandt. The sphere on the right has a texagaleFactorof (0.5, 0.5), so only half the texture
is used in both theandt directions.

scaleFactor= (2.0, 2.0} scaleFaclor = (0.5, 0.5)

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
7, Textures 10

Figure 7 8 Effects of Different Scale Factors on a Texture Map

Mapping the Texture onto the Object
You can choose one of three techniques for mapping the 2D texture space onto the 3D object space:

1. Use the default texture coordinates. The texture is applied in different ways for different shapes,
as described later in this section.

2. For shapes derived froaBoVertexShapeyou can specify the texture coordinates explicitly.
With this method, you create &oTextureCoordinate2 node and specify a texture coordinate
for each vertex in the shape.

3. Use one of the texture coordinate functions to map the texture to the shape:
SoTextureCoordinatePlane
SoTextureCoordinateEnvironment

Techniques 1 and 3 are automatic, and hence easy to use. Technique 2 requires explicit coordinates
generated by you and is thus harder to use but gives more explicit control. Each of these three
techniques is described in detail in the following sections.

Using the Default Texture Mapping

Inventor uses the same technique for generating default texture coordinates for any shape that is
derived fromSoVertexShapeFirst, it computes the bounding box of the object. Then, it uses the
longest edge of the box as the horizo(dahxis of the texture. It uses the next longest edge as the
vertical) axis of the texture. The value of theoordinate ranges from 0.0 to 1.0, from one end of the
bounding box to the other. The valud Enges from 0 to, wheren equals the ratio of the second
longest side of the bounding box to the longest side (the effect is that the texture is applied to the
longest side of the box, without distortion).

For shapes that are not derived frBoVertexShapethe default texture coordinates are generated
differently for each shape. These shapes inchadeone SoCube SoCylinder, SoNurbsSurface
SoSphereandSoText3 Default texture mapping for each of these shapes is described in the
following paragraphs.

SoSphere

For example, if your scene graph containSamexture2node followed by aBoSpherenode, the

texture is applied to the sphere using default texture coordinates. The texture covers the entire surface
of the sphere, wrapping counterclockwise from the back of the sphere (see Figure 7 9). The texture
wraps around and connects to itself. A visible seam can result if the texture is nonrepeating.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
7, Textures 11

Figure 7 9 Default Texture Mapping for SoSphere

Tip: Increasing the complexity of a simple shape improves the appearance of a texture on it.

SoCube

When a texture is applied to 8nCubeusing the default texture coordinates, the entire texture is
applied to each face. On the front, back, right, and left sides of the cube, the texture is applied
right side up. On the top, the texture appears right side up if you tilt the cube toward you. On the
bottom, the texture appears right side up if you tilt the cube away from you (see Figure 7 10).

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
7, Textures 12

Figure 7 10 Default Texture Mapping for SoCube

SoCylinder

When a texture is applied to &oCylinder using the default texture coordinates, the texture wraps
around the sides in a counterclockwise direction, beginning at &xés. A circle cut from the center

of the texture square is applied to the top and bottom of the cylinder. When you look at the cylinder
from the+z axis, the texture on the top appears right side up when the cylinder tips towards you. The
texture on the bottom appears right side up when the cylinder tips away from you (see Figure 7 11).

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
7, Textures 13

Figure 7 11 Default Texture Mapping for SoCylinder

SoCone

When a texture is applied to &Coneusing the default texture coordinates, the texture wraps
counterclockwise around the sides of the cone, starting at the back of the cone. The texture wraps
around and connects to itself. A visible seam can result if the texture is nonrepeating. A circle cut from
the center of the texture square is applied to the bottom of the cone just as it is applied to the bottom of
a cylinder (see Figure 7 12).

Tip: Increasing the complexity of a textured cone is especially important because of the way the
texture is mapped near the tip of the cone.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
7, Textures 14

Figure 7 12 Default Texture Mapping for SoCone

SoNurbsSurface

When a texture is applied to a NURBS surface using the default texture coordinates, the edges of the
texture square are stretched to fit the NURBS patch (see Figure 7 13). A surface can be made up of
many patches, like the teapot. If the NURBS surface is trimmed, so is the texture.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
7, Textures 15

Figure 7 13 Default Texture Mapping for SoNurbsSurface

SoText3

When a texture is applied to the front ofZoirext3surface using the default texture coordinates,
texture coordinate (0,0) is at the text’s origin. The distance from 0.0 to daddhtexture

coordinates is equal to the font size. For the sides 8baext3surface, using default texture

mapping, thecoordinate extends forward along the text profile, starting with texture coordinate 0.0 at
the back of the letter and increasing to the fronforA sizedistance along the profile is a texture
coordinate distance of 1.0. Theoordinates extend around the outline of the character clockwise in a
similar fashion. (See Figure 7 13.)

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
7, Textures 16

Figure 7 14 Default Texture Mapping for SoText3

Specifying Texture Coordinates Explicitly (Advanced)

Sometimes, you may want to explicitly specify the texture coordinates for each vertex of an object. In
this case, create &oTextureCoordinate2node and specify the set of 2D texture coordinates to be
applied to the vertices of the shape.

When you use this technique, you must specify a texture coordinate for each vertex in the shape. The
coordinates are specified in pairs: o@ordinate followed by thicoordinate.

Example 7 2 shows specifying texture coordinates explicitly. It uses an
SoTextureCoordinateBindingnode to index into the texture coordinates list.

Example 7 2 Specifying Texture Coordinates Explicitly

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>
#include <Inventor/nodes/SoCoordinate3.h>

#include <Inventor/nodes/SoFaceSet.h>

#include <Inventor/nodes/SoNormal.h>

#include <Inventor/nodes/SoNormalBinding.h>

#include <Inventor/nodes/SoSeparator.h>

#include <Inventor/nodes/SoTexture2.h>

#include <Inventor/nodes/SoTextureCoordinate2.h>
#include <Inventor/nodes/SoTextureCoordinateBinding.h>

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
7, Textures 17

main(int , char **argv)

{

Widget myWindow = SoXt::init(argv[0]);
if(myWindow == NULL) exit(1);

SoSeparator *root = new SoSeparator;

root >ref();

/I Choose a texture

SoTexture2 *brick = new SoTexture2;
root >addChild(brick);

brick >filename.setValue("brick.1.rgb");

/I Define the square’s spatial coordinates
SoCoordinate3 *coord = new SoCoordinate3;
root >addChild(coord);

coord >point.set1Value(0, SbVec3f(3, 3, 0));
coord >point.set1Value(1, SbVec3f(3, 3, 0));
coord >point.setlValue(2, Sbvec3f(3, 3, 0));
coord >point.set1Value(3, SbVec3f(3, 3, 0));

/I Define the square’s normal

SoNormal *normal = new SoNormal;

root >addChild(normal);

normal >vector.setlValue(0, SbVec3f(0, 0, 1));

/I Define the square’s texture coordinates
SoTextureCoordinate2 *texCoord = new SoTextureCoordinate?2;
root >addChild(texCoord);

texCoord >point.set1Value(0, SbVec2f(0, 0));

texCoord >point.set1Value(1, SbVec2f(1, 0));

texCoord >point.set1Value(2, SbVec2f(1, 1));

texCoord >point.set1Value(3, SbVec2f(0, 1));

/I Define normal and texture coordinate bindings
SoNormalBinding *nBind = new SoNormalBinding;
SoTextureCoordinateBinding *tBind =
new SoTextureCoordinateBinding;
root >addChild(nBind);
root >addChild(tBind);
nBind >value.setValue(SoNormalBinding::OVERALL);
tBind >value.setValue
(SoTextureCoordinateBinding::PER_VERTEX);

/l Define a FaceSet
SoFaceSet *myFaceSet = new SoFaceSet;

The Inventor Mentor:
7, Textures 18

Programming Object Oriented 3D Graphics with Open Inventor

, Release 2 Chapter

root >addChild(myFaceSet);
myFaceSet >numVertices.set1Value(0, 4);

SoXtExaminerViewer *myViewer =

new SoXtExaminerViewer(myWindow);
myViewer >setSceneGraph(root);
myViewer >setTitle("Texture Coordinates");
myViewer >show();

SoXt::show(myWindow);
SoXt::mainLoop();
}

Using a Texture Coordinate Function

A third way to map texture coordinates onto an object is through the usextidir@ coordinate

function A texture coordinate function defines the texture coordinates for an object based on the
position of each vertex in the object. Each texture coordinate function uses a different algorithm for
calculating the texture coordinates, as described in detail in the following subsections. These
functions allow you to specify texture mapping in a general way, without requiring you to define
explicit texture coordinates. The texture coordinate function ignores the current texture coordinates
specified by arsoTextureCoordinate2node.

Inventor includes two texture coordinate functions:

SoTextureCoordinatePlane
projects a texture map through a plane.

SoTextureCoordinateEnvironment
specifies that objects should look as if they reflect their environment (also known
asreflection mappingrenvironment mapping

To use the default texture coordinates (in effect, to "turn off" the effect of any previous
texture coordinate node in the scene graph without using a separator), use the
SoTextureCoordinateDefaultnode.

SoTextureCoordinatePlane

SoTextureCoordinatePlane probably the most commonly used texture coordinate function, projects
a texture plane onto a shape object, as shown in Figure In 15. You defiardaa direction, which

are used to define a plane for the texture. The texture coordinatehen defined by the following
equation, whereoordis a coordinate in the object:

1
=() * goord
directionS

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
7, Textures 19

The fields forSoTextureCoordinatePlaneare as follows:

directionS (SoSFVec3f)
projection direction afcoordinate
(default = 1.0, 0.0, 0.0)

directionT (SoSFVec3f)
projection direction of coordinate
(default = 0.0, 1.0, 0.0)

The length of the direction vector equals the repeat interval of the texture (see Example 7 3).

Example 7 3 shows the useSdTextureCoordinatePlaneg(see "SoTextureCoordinatePlane with
Different Repeat Frequencies"). It draws three texture mapped spheres, each with a different repeat
frequency as defined by the fields of 8&TextureCoordinatePlanenode.

Example 7 3 Using SoTextureCoordinatePlane

#include <Inventor/nodes/SoMaterial.h>

#include <Inventor/nodes/SoSeparator.h>

#include <Inventor/nodes/SoSphere.h>

#include <Inventor/nodes/SoTexture2.h>

#include <Inventor/nodes/SoTexture2Transform.h>
#include <Inventor/nodes/SoTextureCoordinatePlane.h>
#include <Inventor/nodes/SoTranslation.h>

#include <Inventor/Xt/SoXt.h>
#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>

main(int , char **argv)

{
Widget myWindow = SoXt::init(argv[0]);
if(myWindow == NULL) exit(1);

SoSeparator *root = new SoSeparator;
root >ref();

/I Choose a texture.

SoTexture2 *faceTexture = new SoTexture?2;
root >addChild(faceTexture);

faceTexture >filename.setValue("sillyFace.rgb");
/I Make the diffuse color pure white

SoMaterial *myMaterial = new SoMaterial;
myMaterial >diffuseColor.setValue(1,1,1);

root >addChild(myMaterial);

This figure
(/usr/share/lnsight/library/SGI_bookshelves/SGI_Developer/books/Inv_Mentor/figures/07.15.Texture
Function.iv) is an INLINE object and can not be printed.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
7, Textures 20

Media SoTextureCoordinatePlane with Different Repeat Frequencies

/I This texture2Transform centers the texture about (0,0,0)
SoTexture2Transform *myTexXf = new SoTexture2Transform;
myTexXf >translation.setValue(.5,.5);

root >addChild(myTexXf);

/I Define a texture coordinate plane node. This one will

/I repeat with a frequency of two times per unit length.

/I Add a sphere for it to affect.

SoTextureCoordinatePlane *texPlanel = new
SoTextureCoordinatePlane;

texPlanel >directionS.setValue(SbVec3f(2,0,0));

texPlanel >directionT.setValue(SbVec3f(0,2,0));

root >addChild(texPlanel);

root >addChild(new SoSphere);

/I A translation node for spacing the three spheres.
SoTranslation *myTranslation = new SoTranslation;
myTranslation >translation.setValue(2.5,0,0);

/I Create a second sphere with a repeat frequency of 1.

SoTextureCoordinatePlane *texPlane2 = new
SoTextureCoordinatePlane;

texPlane2 >directionS.setValue(SbVec3f(1,0,0));

texPlane2 >directionT.setValue(SbVec3f(0,1,0));

root >addChild(myTranslation);

root >addChild(texPlane2);

root >addChild(new SoSphere);

/I The third sphere has a repeat frequency of .5

SoTextureCoordinatePlane *texPlane3 = new
SoTextureCoordinatePlane;

texPlane3 >directionS.setValue(ShVec3f(.5,0,0));

texPlane3 >directionT.setValue(SbVec3f(0,.5,0));

root >addChild(myTranslation);

root >addChild(texPlane3);

root >addChild(new SoSphere);

SoXtExaminerViewer *myViewer = new SoXtExaminerViewer(myWindow);
myViewer >setSceneGraph(root);

myViewer >setTitle("Texture Coordinate Plane");

myViewer >show();

SoXt::show(myWindow);
SoXt::mainLoop();

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
7, Textures 21

SoTextureCoordinateEnvironment

The SoTextureCoordinateEnvironmentnode specifies that subsequent objects should reflect their
environment, just as a shiny round Christmas ornament reflects its surroundings. For best results, the
texture map specified should be a spherical reflection map. Sepéh&L Programming Guide

Chapter 9, for tips on how to create a spherical reflection map.

WhenSoTextureCoordinateEnvironmentis used, a calculation is made at each vertex of the
polygon to determine where a vector from the viewpoint to the vertex would be reflected. This
reflection point defines the texture coordinate for that point on the polygon. See Figure In 17 and
Figure In 18.

Because of the way environment mapping is implemented in OpenGL, environment maps are accurate
only if the camera does not move relative to the environment being reflected.

Chapter 8

Curves and Surfaces

Chapter Objectives
After reading this chapter, you'll be able to do the following:

» Create a variety of curves and surfaces

» Trim areas of NURBS surfaces

» Use NURBS profiles to specify the beveled edges of 3D text

(Advanced)

Curves and curved surfaces provide a convenient mathematical means of describing a geometric
model. Instead of using drawings, metal strips, or clay models, designers can use these mathematical
expressions to represent the surfaces used on airplane wings, automobile bodies, machine parts, or
other smooth curves and surfaces. Inventor uses a particular type of parametric polynomial, a NURBS

(Non Uniform Rational B Spline), to represent curves and surfaces. This entire chapter can be
considered advanced material.

Overview

To use NURBS curves and surfaces in an Inventor program, you need to develop an intuitive feel for

a number of basic concepts. This section defines these key concepts and shows how they pertain to the
various Inventor NURBS related classes. For a more rigorous mathematical description of a NURBS,
see "Suggestions for Further Reading" at the end of this chapter.

Classes Used with NURBS Shapes
This chapter describes use of the following classes:

SoNurbsCurve
represents a NURBS curve. (This is where the knot sequence is specified.)

SoNurbsSurface
represents a NURBS surface. (This is where the knot sequence is specified.)

SoNurbsProfile
trims regions from a NURBS surface using a NURBS curve.

SoLinearProfile
trims regions from a NURBS surface using connected line segments.

SoProfileCoordinate2
specifies 2D coordinates for trim curves.

SoProfileCoordinate3
specifies rational 2D coordinates for trim curves.

SoCoordinate3
specifies the control points of a NURBS surface or curve.

SoCoordinate4
specifies rational control points of a NURBS surface or curve.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
8, Curves and Surfaces 1

Parametric Curves

For simplicity, this discussion first explains the important NURBS concepts in tecony@$ which
are lines in 3D space, such as a helix. Once you understand how to define a NURBS curve, defining a
NURBS surface is a simple extension of your knowledge (see "NURBS Surfaces").

A NURBS curve or surface marametric] that is, the equations that describe it depend on variables
(or parameterythat are not explicitly part of the geometry. A NURBS curve is described in terms of
one parameteu, The following three functions map this single parametendiytaspace:

x = f(u)
y=g(u)
z = h(u)

By sweeping through different valueswfthat is, through parameter space), it is possible to evaluate
the equations and determine thg andzvalues for points on the curve in object space. Figure 8 1
represents this mapping of parameter space to object space.

u=1.0

Parameter Space Object Space

Figure 8 1 Mapping a Parametric Curve to Object Space

Key Concepts

Your job as programmer is to define the components that make up the parametric functions, referred
to asf(), g(), andh() in the previous section. Instead of explicitly specifying the equations, you specify
the following three things:

e Control point&l usingSoCoordinate3or SoCoordinatednodes

* Knot sequendeé usingSoNurbsCurveor SolndexedNurbsCurvenodes

e Ordefl implicitly defined by number of control points and number of knots

A brief description of each is provided in this section, along with discussions of how they are related
and how continuity is defined. A more elaborate description is provided in "Basis Function".

Control pointsare points in object space that affect the shape of the curve in some way. The curve

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
8, Curves and Surfaces 2

may pass near the control points, as shown at the left in Figure 8 2, or pass through some of them, as
shown at the right in the figure. The control points can be a set of data points through which you want
to fit a curve, or a grid of points used to describe a curved surface such as the hood of a car. In
Inventor, control points are specified in @oCoordinate3or SoCoordinate4node.

Control Points
. . *—’_______-—-"-—"
-
"'_'-"-..,____-_‘-__.-. /’____‘__j
|
| | i -
An Approximating Curve An Interpolating Curve

Figure 8 2 Using Control Points to Shape the Curve

Theknot sequencédefines how the control points affect the curve. The knot sequence is simply a list
of nondecreasing numbers. These numbers determine whether the curve passes through and
interpolates between some of the control points (an interpolating curve) or passes near the control
points (an approximating curve). In Inventor, the knot sequence is specifie8aNarbsCurveor
SoNurbsSurface(or SolndexedNurbsCurve SolndexedNurbsSurfacg node.

Theorderof a curve determines the form of the parametric equations. The order is equal to one plus
the maximum exponendégred of the variables in the parametric equations. For example, the
parametric equations of a cubic curdedree= 3,order = 4) have the following form:

X(u) = Axu3 + Bxu2 + Cxu + Dxy(u) = Ayu3 + Byu2 + Cyu + Dyz(u) =
Azu3 + Bzu2 + Czu + Dz

Similarly, the parametric equations of a quadratic cutegree= 2,
order= 3) have the following form:

X(u) = Axu2 + Bxu + Cxy(u) = Ayu2 + Byu + Cyz(u) = Azu2 + Bzu + Cz

Alternatively, you may wish to think of the order as the number of coefficients in the parametric
equation. The order of a curve affects how smooth the curve can be (see "Continuity of a Curve").

In Inventor, the order of a curve is not explicily specified. Order is equal to

number_of_knots number_of_control_points

Control Points and Order

The order of the curve determines the minimum number of control points necessary to define the
curve. You must have at leastler control points to define a curve. (So for a curve of order 4, you
must have at least four control points.) To make curves with more than order control points, you can
join two or more curve segments intpiacewise curvésee Figure 8 3).

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
8, Curves and Surfaces 3

ﬂ A Cublc Curve

A Piecawige Cubic Curve

Figure 8 3 Piecewise Cubic Curve

The order of the curve also affects how the curve behaves when a control

point is moved. In Inventor, a NURBS curve can have an order up to 8. However, higher orders
introduce oscillation into the curve and can behave unpredictably when a control point Guivies.
curves(order of 4) are the most commonly used curves, since they provide enough control for most
geometric modeling applications without the drawbacks of higher order curves.

Continuity of a Curve

A breakpointis where two curve segments meet within a piecewise curveontiauityof a curve at
a breakpoint describes how those curves meet at the breakpoint. Figure 8 4 shows four possible types
of continuity:

No continuity The curves do not meet at all.

Cocontinuity The endpoints of the two curves meet (the curves have positional continuity
only). There may be a sharp point where they meet.

cl continuity The curves have identical tangents at the breakpoint. (The tangers ipza
the breakpoint.) The curves join smoothlyl.@rves also have positional
continuity.

c? continuity The curves have identical curvature at the breakp@ntvétureis defined as the
rate of change of the tangents.) Curvature continuity implies both tangential and
positional continuity.

The order of a curve determines the maximum continuity possible. Thus, you may need a higher order
curve if you need more continuity. The maximum continuityrger 2. For example, for cubic
curves, the maximum continuity possible %(@urvature continuity).

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
8, Curves and Surfaces 4

ﬂ No Continuity

- " - GO0 Continuity

i /_u {positional)
/_,,—-’—\1) - C1 Continuity

= \--.__..N_.-—""ff {tangential)
- - i} C2 Continuity
T~ (survature)

Figure 8 4 Continuity of a Curve

Basis Function

Each control point is like a magnet tugging on the curve (see Figure 8 5). The strength and extent of
these magnets is described mathematically by a particular basis function. For a NURBS, this function
is theB splinebasis function. (See "Suggestions for Further Reading" for references presenting a more

thorough derivation of the B spline basis function.)

S I

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
8, Curves and Surfaces 5

Figure 8 5 Control Points Influence the Curve

The B spline basis function (Figure 8 6) describes the curve in parameipate. For each value of
u:

contribution_of _each_control_point = location * its_basis _function

The resulting curve is equal to themof the contributions from each control point. Note that often a
control point (a "magnet") affects the entire curve, although its influence becomes weaker as you
move away from it. The exact extent of the influence is determined by the knot sequence.

Influenca

Figure 8 6 B Spline Basis Function

Knot Sequence

The distribution of basis functions in parameter space is controlled kpahsequencglso referred

to as thénot vectarorthe knots The knot sequence is a list of nondecreasing values. Each knot
defines the beginning and end of a basis function. There must be émedethy+ number of control
points)values in the knot sequence. The curve is defined only wanéeebasis functions overlap (as
shown in Figure 8 7). If the knot values are singular (no repeating values) and regularly spaced, the
curve is ainiform B splinglas shown in Figure 8 7).

Figure 8 7 shows a uniform knot sequence. Four control points are defined (in object space). The top
of the figure illustrates the four basis functions for each of the control points. The basis functions
overlap wherei = 3.0 to

u = 4.0, as indicated by the shaded portion. This figure also illustrates another important NURBS
relationship: at any point where the curve is defined, the sum of all basis functions is equal to 1.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
8, Curves and Surfaces 6

Basls Functions

o 1 2 3 4 5 & 7
A Uniform Knot Saquenca

u=3.0 u=4.0 Exampie of Curve

Figure 8 7 Uniform Knot Sequence

Knot Multiplicity

Distinct knot values defineegments A basis function always spamsier segments. In Figure 8 7,
for example, the basis function beginning at 0 and ending at 4 spans four segments (knot O to knot 1;
knot 1 to knot 2; knot 2 to knot 3; and knot 3 to knot 4).

Duplicating values in the knot sequence increases that vatudtiplicity and causes more than one

basis function to start at that point. This also causes a corresponding decrease in the continuity of the
curve. Figure 8 8 uses the same two sets of control points, with different knot sequences for the top
and bottom curves. Notice how the bottom curve has CO continuity, and the top curve has C2
continuity. This relationship between multiplicity and the continuity of the curve can be expressed
mathematically as follows:

CORD (M +1)
whereORDequals the order of the curve avids the multiplicity.

The maximum multiplicity (maximum times you can repeat a knat)dser. Table 8 1 shows knot
multiplicity and the resulting continuity.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
8, Curves and Surfaces 7

/ Basls Functlons

a 1 2 3 4 5 & 7 8 9 10
Knot Saquence 0,1,2,3,4,5,6,7,8,9,10

[] [] - []
/\/\ Exampila of & Curve
] []
/’l Basjs Funclons

Example of a Curve

Figure 8 8 Knot Multiplicity

Knot Multiplicity Continuity Continuity
Conditions

1 positional c?
tangential
curvature

2 positional ct
tangential

3 positional ®
none none

Table 8 1 Continuity and Knot Multiplicity for Cubic Curves

Common Knot Sequences

Several common knot sequences are extremely useful for a wide variety of applications:

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
8, Curves and Surfaces 8

Uniform cubic B spline
knots are uniformly spaced; single multiplicity
(for example, 0, 1, 2, 3,4, 5,6, 7)

Cubic Bezier curvenultiplicity = 4 at beginning and end(for example, 0,0, 0,0, 1,1, 1, 1)

Uniform cubic B spline that passes through endpoints
multiplicity= 4 at beginning and end; uniformly spaced single knots between
(for example, 0,0,0,0,1, 2, 3,4,5,5,5,5)

The behavior of the Bezier curve and the uniform cubic B spline makes them ideal for geometric
modeling and CAD applications. The curve passes through the first and last control points (seeFigure
8 9). A line drawn through the first and second control points determines the tangent at the first
endpoint. A line drawn through the last two control points determines the tangent at the second
endpoint.

Basis Functions
1] 1
s "
Example of 2 Curve
(4 contref points)

Figure 8 9 Cubic Bezier Curve

Summary of NURBS Relationships

The previous pages have outlined important relationships among NURBS parameters. They can be
summarized as follows:

» order=degreet+ 1, where
degrees the maximum exponent in the parametric equations

* To define a curve, you need at leaster control points
* Maximum continuity -order 2

* Number of knots ®rder + number of control points

» Knot values must be nondecreasing

e Maximum knot multiplicity =order

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
8, Curves and Surfaces 9

e Continuity =order (multiplicity + 1)

Thus, for cubic curves, the order equals 4. You need at least four control points to define a cubic
curve. The maximum continuity for cubics is C2 continuity. You need a minimum of eight knots in
the knot sequence. The maximum knot multiplicity of cubics is 4.

Rational Curves

Each control point has an associateiightthat influences the shape of its basis function. As shown in
Figure 8 10, this is analogous to having magnets of differing sizes tugging on the curve. For
nonrationalcurves, all control points have a weight of 1.0.rfatiobnal curves, the control points

have differing weights. If a control point has a weight greater than 1.0, its influence on the curve is
greater than that of control points with weights

of 1.0.

The parametric equations for rational curves have both a numerator and a denominator, which results
in aratio. (The numerator is the original parametric equation. The denominator is another parametric
equation that takes the weight into account.) We recommend that the weight be a value greater than 0.
Use arboCoordinatednode to specify, y, zandw (weight) values.

Rational curves and surfaces are required to accurately represent conic sections, spheres, and
cylinders. For more information, see "Suggestions for Further Reading™.

Figure 8 10 Rational Curves

N UR B S Spells NURBS

If you've made it this far into the discussion of the NURBS, you now understand all the buzzwords
that form this acronym:

Non Uniform Knot spacing need not baiform

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
8, Curves and Surfaces 10

Rational The parametric equations describing the curve can have a denominator (that is,
they can beatios).

B Spline The influence of the control points is based oBthglinebasis function.

Examples of NURBS Curves

This section provides two examples of NURBS curves: a B spline curve and a uniform B spline
curve that passes through the end control points.

B Spline Curve

Example 8 1 creates and displays a B spline curve. Seven control points are defined. The knot vector
contains ten knots. Since

number_of_knots = order + number_of_control_points

this curve has an order of 3. It has a multiplicity of 2 (one knot is used twice). This curve has a
continuity of CO.

Figure 8 11 shows the scene graph for the nodes in this example. Figure 8 12 shows the resulting
curve.

root
heaﬂ {; \\\ ," \l'.‘
tloor shadow
Imodel clr curveSep
S O 8
\ /
M—..—'—"'/

drawStyle complexity controlPts curve

Figure 8 11 Scene Graph for B Spline Curve Example

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
8, Curves and Surfaces 11

Example 8 1 Creating a B Spline Curve

I/l The control points for this curve
float pts[7][3] ={

{4.0, 6.0, 6.0},

{4.0, 1.0, 0.0},

{1.5, 5.0, 6.0},

{0.0, 2.0, 2.0},

{1.5, 5.0, 6.0},

{4.0, 1.0, 0.0},

{4.0, 6.0, 6.0}};

/I The knot vector
float knots[10] ={1, 2, 3,4, 5,5, 6, 7, 8, 9};

/I Create the nodes needed for the B Spline curve.
SoSeparator *
makeCurve()
{
SoSeparator *curveSep = new SoSeparator();
curveSep >ref();

/I Set the draw style of the curve.
SoDrawStyle *drawStyle = new SoDrawStyle;
drawStyle >lineWidth = 4;

curveSep >addChild(drawStyle);

/I Define the NURBS curve including the control points
/I and a complexity.

SoComplexity *complexity = new SoComplexity;
SoCoordinate3 *controlPts = new SoCoordinate3;
SoNurbsCurve *curve = new SoNurbsCurve;
complexity >value = 0.8;

controlPts >point.setValues(0, 7, pts);

curve >numcControlPoints = 7;

curve >knotVector.setValues(0, 10, knots);
curveSep >addChild(complexity);

curveSep >addChild(controlPts);

curveSep >addChild(curve);

curveSep >unrefNoDelete();
return curveSep;

}
Uniform B Spline Curve Passing through Endpoints

Example 8 2 creates a uniform B spline curve that passes through the end control points. The knot
sequence has a multiplicity of 4 at the beginning and end, which causes the curve to pass through the

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
8, Curves and Surfaces 12

first and last control points. In between, the curve is uniform.

The scene graph for the nodes in this example has the same structure as the scene graph shown in
Figure 8 11. "A Uniform B Spline Curve that Passes through the Endpoints" shows the resulting
curve.

Example 8 2 Creating a Uniform B Spline Curve

I/l The control points for this curve

float pts[13][3] ={
{6.0, 0.0, 6.0},
{5.5, 0.5, 5.5},
{5.0, 1.0, 5.0},
{4.5, 1.5, 4.5},
{4.0, 2.0, 4.0},
{3.5, 2.5, 3.5},
{3.0, 3.0, 3.0},
{25, 3.5, 2.5},
{2.0, 4.0, 2.0},
{15, 4.5, 1.5},
{1.0, 5.0, 1.0},

This figure
(/usr/share/lnsight/library/SGI_bookshelves/SGI_Developer/books/Inv_Mentor/figures/08.13.UniCur
ve.iv) is an INLINE object and can not be printed.

Media A Uniform B Spline Curve that Passes through the Endpoints

{0.5, 5.5, 0.5},
{0.0, 6.0, 0.0}};

/I The knot vector
float knots[17] = {
0,0,0,0,1,2,3,4,5,6,7,8,9, 10, 10, 10, 10}

Il Create the nodes needed for the B Spline curve.
SoSeparator *
makeCurve()
{
SoSeparator *curveSep = new SoSeparator();
curveSep >ref();

/I Set the draw style of the curve.
SoDrawStyle *drawStyle = new SoDrawStyle;
drawStyle >lineWidth = 4;

curveSep >addChild(drawStyle);

/I Define the NURBS curve including the control points
/[and a complexity.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
8, Curves and Surfaces 13

SoComplexity *complexity = new SoComplexity;
SoCoordinate3 *controlPts = new SoCoordinate3;
SoNurbsCurve *curve = new SoNurbsCurve;
complexity >value = 0.8;

controlPts >point.setValues(0, 13, pts);

curve >numcControlPoints = 13;

curve >knotVector.setValues(0, 17, knots);
curveSep >addChild(complexity);

curveSep >addChild(controlPts);

curveSep >addChild(curve);

curveSep >unrefNoDelete();
return curveSep;

}

NURBS Surfaces

A surface differs from a curve only in that it has two parametric directioasdy) instead of one (
Figure 8 14), and that the order and knot vector must be specified for both parameters.

A L'
1.0 7
C.
.H'\'\.
"
_‘.-____.-"
T
0.0 1.0
Parameter Space Ohject Space

Figure 8 12 Curved Surfaces

The two parametric dimensionsandv, are mapped to 3D object space. As with curves, control
points are specified in object space. Tlandv parameters can have a different order, and a different
knot sequence, although they are often the same. The order for each dimension is specified as

order=number_of _knots number_of control_points

Tip: Put NURBS shapes under their own separator to facilitate caching.

Bezier Surface

Example 8 3 creates a plain Bezier surface. The knot vectors define a cubic Bezier surface
(multiplicity 4 at beginning and end). The surface is order 4 with 16 control points arranged in a
four by four grid. Theu andv knot vectors each have a length of 8. Figure 8 15 shows the scene
graph for the nodes in this example. Notice that the points used as controlqouititd #t3 must
precede the NURBS nodsuffacé in the scene graph. "Bezier Surface" shows the rendered image.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
8, Curves and Surfaces 14

root

carpet N S
£ Ll
rot floor shadow
surtSep
tex
complexity controlPts surface

Figure 8 13 Scene Graph for a Bezier Surface

Example 8 3 Bezier Surface

I/l The control points for this surface

float pts[16][3] ={
{4.5, 2.0, 8.0},
{2.0, 1.0, 8.0},
{2.0, 3.0, 6.0},
{5.0, 1.0, 8.0},
{3.0, 3.0, 4.0},
{0.0, 1.0, 4.0},
{1.0, 1.0, 4.0},
{3.0, 2.0, 4.0},
{5.0, 2.0, 2.0},

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
8, Curves and Surfaces 15

{2.0, 4.0, 2.0},
{2.0, 1.0, 2.0},
{5.0, 0.0, 2.0},
{4.5, 2.0, 6.0},
{2.0, 4.0, 5.0},
{2.0, 3.0, 5.0},
{4.5, 2.0, 6.0}};

/I The knot vector
float knots[8] = {
0,0,0,0,1,1,1, 1}

This figure
(/usr/share/Insight/library/SGI_bookshelves/SGI_Developer/books/Inv_Mentor/figures/08.16.BezSur
f.iv) is an INLINE object and can not be printed.

Media Bezier Surface

Il Create the nodes needed for the Bezier surface.
SoSeparator *
makeSurface()
{
SoSeparator *surfSep = new SoSeparator();
surfSep >ref();

/I Define the Bezier surface including the control
/I points and a complexity.

SoComplexity *complexity = new SoComplexity;
SoCoordinate3 *controlPts = new SoCoordinate3;
SoNurbsSurface *surface = new SoNurbsSurface;
complexity >value = 0.7;

controlPts >point.setValues(0, 16, pts);

surface >numUControlPoints = 4;

surface >numVControlPoints = 4;

surface >uKnotVector.setValues(0, 8, knots);
surface >vKnotVector.setValues(0, 8, knots);
surfSep >addChild(complexity);

surfSep >addChild(controlPts);

surfSep >addChild(surface);

surfSep >unrefNoDelete();
return surfSep;

}

Tip: If a NURBS surface is changing, insertingSosComplexity node with SCREEN_SPACE
specified as thgype may improve performance, especially if the NURBS surfaces are far away.

Trimming NURBS Surfaces

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
8, Curves and Surfaces 16

Profile curvesare used to trim (cut areas away from) a NURBS surface. Profile curves themselves are
not rendered; they are simply used to trim any subsequent NURBS surfaces in the scene graph. Like
transformations, profile curves are pushed and popped by separator groups, yet they accumulate with
each other.

Profile curves are often used to perform a stencil operation, such as cutting a shape out of a cloth
surface with a pair of scissors. They are also used to remove sharp corners from a NURBS surface.
See also Example 6 3, which uses a profile curve with 3D text.

Trimming NURBS surfaces is considered an advanced topic. If this is your first exposure to a
NURBS, experiment first with curves and surfaces, then move on to trimmed surfaces.

A profile curve can consist of a linear profile cur@l(inearProfile), a NURBS curve (
SoNurbsProfileCurve), or a combination of the two. For coordinates, it uses either
SoProfileCoordinate2(for nonrational profile curves) &oProfileCoordinate3(for rational profile
curves). The main requirement is that the composite profile curve make a complete loop, with its first
point repeated as its last point. In addition, it cannot be self intersecting.

Tip: If you want your profile curve to be straight but follow the surface, use an
SoNurbsProfileCurvewith an order 2 curve. (See Example 8 4.) Linear profiles create straight trim
edges in object space that do not follow the surface. You will seldom & srearProfile to trim

a NURBS surface.

The direction in which the points of a profile curve are defined is significant. If the profile curve is
defined in a clockwise direction, the area inside the curve is discarded and the area outside the curve is
retained. If the profile curve is defined in a counterclockwise direction, the area inside is retained and
the area outside is discarded. Profile curves can be nested inside each other but cannot intersect each
other. The outermost profile curve must be defined in a counterclockwise direction (see Example 8 4).

Profile curves are defined in parameter space, which is mapped to
object space.

Example 8 4 adds profile curves to the surface created in Example 8 3. Figure 8 17 shows the scene
graph for the nodes in this example. Notice that the points used as controlquuititd Ft3 must

precede the NURBS nodsuffacg in the scene graph. Similarly, the points that define the profile
curve (rimPt9 must precede the profile curve node$riml, nTrim2 andnTrim3. And, naturally,

the profile curve nodes must precede the NURBS surface to be trimmed.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
8, Curves and Surfaces 17

root

rot floor sh ado;v
surfSep
tex
{) { Y { \ { 1) / \
4 / i / | / |) b, /
complexity controlPts tnmPts nTrimi nTrim2 nTrim3 surface

Figure 8 14 Scene Graph for Trimmed Bezier Surface

Figure 8 18 shows the trim curves used in Example 8 4, mapped in parantétepdce. This

example uses three NURBS profile curves. Each curve has its own knot vector. The first curve,
nTrim1, has four segments and five control points (it starts and ends at the same point). It is an order 2
curve that passes through the endpoints. The second profile klirira?, is also linear. It passes

through the endpoints and has three segments. The third profile mlirie3 is a cubic curve (order

= 4). It has a multiplicity 4 at beginning and end (which makes it a Bezier curve that passes through
the endpoints).

Notice that these trim curves are nested inside each other and that the outermost curve is
counterclockwise. They do not intersect each other. "A Trimmed Bezier Surface" shows the trimmed
Bezier surface produced by Example 8 4.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
8, Curves and Surfaces 18

oot HT rirr
A
ATrirme -
AT Firmn3
L 1

Figure 8 15 Trim Curves Used in Example 8 4

Example 8 4 Trimming a Bezier Surface

/l The array of trim coordinates
float tpts[12][2] ={

{0.0, 0.0},

{1.0, 0.0},

{1.0, 1.0},

{0.0, 1.0},

{0.2, 0.2},

{0.2, 0.7},

{0.9, 0.7},

{0.9, 0.2},

{0.7, 0.0},

{0.4, 0.8}};

/I The 16 coordinates defining the Bezier surface.
float pts[16][3] ={

{4.5, 2.0, 8.0},

{2.0, 1.0, 8.0},

{2.0, 3.0, 6.0},

This figure
(/usr/share/Insight/library/SGI_bookshelves/SGI_Developer/books/Inv_Mentor/figures/08.19.TrimSu

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
8, Curves and Surfaces 19

rf.iv) is an INLINE object and can not be printed.
Media A Trimmed Bezier Surface

Figure 8 16 A Trimmed Bezier Surface

{5.0, 1.0, 8.0},
{3.0, 3.0, 4.0},
{0.0, 1.0, 4.0},
{1.0, 1.0, 4.0},
{3.0, 2.0, 4.0},
{5.0, 2.0, 2.0},
{2.0, 4.0, 2.0},
{2.0, 1.0, 2.0},
{5.0, 0.0, 2.0},
{4.5, 2.0, 6.0},
{2.0, 4.0, 5.0},
{2.0, 3.0, 5.0},
{4.5, 2.0, 6.0));

/I The 3 knot vectors for the 3 trim curves.
float tknots1[7] = {0, 0, 1, 2, 3, 4, 4};

float tknots2[6] = {0, 0, 1, 2, 3, 3};

float tknots3[8] = {0, 0,0, 0, 1, 1, 1, 1};

/I The Bezier knot vector for the surface.

Il This knot vector is used in both the U and
/I'V directions.

float knots[8] ={0,0,0,0, 1,1, 1, 1};

/I Create the nodes needed for the Bezier patch
/[and its trim curves.
SoSeparator *
makeSurface()
{
SoSeparator *surfSep = new SoSeparator();
surfSep >ref();

/I Define the Bezier surface including the control
/I points, trim curve, and a complexity.

SoComplexity *complexity = new SoComplexity;
SoCoordinate3 *controlPts = new SoCoordinate3;
SoNurbsSurface *surface = new SoNurbsSurface;

complexity >value = 0.7;

controlPts >point.setValues(0, 16, pts);
surface >numUControlPoints.setValue(4);
surface >numVControlPoints.setValue(4);
surface >uKnotVector.setValues(0, 8, knots);

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
8, Curves and Surfaces 20

surface >vKnotVector.setValues(0, 8, knots);
surfSep >addChild(complexity);
surfSep >addChild(controlPts);

SoProfileCoordinate2 *trimPts = new SoProfileCoordinate2;

SoNurbsProfile *nTrim1 = new SoNurbsProfile;
SoNurbsProfile *nTrim2 = new SoNurbsProfile;
SoNurbsProfile *nTrim3 = new SoNurbsProfile;

long triminds[5];

trimPts >point.setValues(0, 12, tpts);
triminds[0] = 0;

triminds[1] = 1;

triminds[2] = 2;

triminds[3] = 3;

triminds[4] = 0;

nTrim1 >index.setValues(0, 5, triminds);
nTrim1 >knotVector.setValues(0, 7, tknotsl);
triminds[0] = 4;

triminds[1] = 5;

triminds[2] = 6;

triminds[3] = 7;

nTrim2 >linkage.setValue(SoProfile::START_NEW);
nTrim2 >index.setValues(0, 4, triminds);
nTrim2 >knotVector.setValues(0, 6, tknots2);
triminds[0] = 7;

triminds[1] = 8;

triminds[2] = 9;

triminds[3] = 4;

nTrim3 >linkage.setValue(SoProfile::ADD_TO_CURRENT);
nTrim3 >index.setValues(0, 4, triminds);
nTrim3 >knotVector.setValues(0, 8, tknots3);

surfSep >addChild(trimPts);
surfSep >addChild(nTrim1);
surfSep >addChild(nTrim2);
surfSep >addChild(nTrim3);
surfSep >addChild(surface);

surfSep >unrefNoDelete();
return surfSep;

}

Suggestions for Further Reading
The following texts provide more detailed information on NURBS curves and surfaces:

Bartels, R., J. Beatty, and B. Barsky Introduction to Splines for Use in Computer Graphics and

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
8, Curves and Surfaces 21

Geometric ModelingLos Altos, Ca.: Morgan Kaufmann, 1987.

Farin, G.Curves and Surfaces for Computer Aided Geometric Dea&grsan Diego, Ca.: Academic
Press, Inc., 1990.

Chapter 9
Applying Actions

Chapter Objectives
After reading this chapter, you'll be able to do the following:

» Draw, orrender all or part of a scene graph

» Print a scene graph

» Create a texture map from a rendering of a scene graph

» Compute a 3D bounding box for objects in a scene graph

» Compute a cumulative transformation matrix (and its inverse) for objects in a scene graph
» Write a scene graph to a file

» Search for nodes, types of nodes, or nodes with specific names in a scene graph
» Pick objects in a scene graph and obtain information about them

» Perform your own action by writing callback functions that can be invoked during scene graph
traversal

» Write callback functions that use the primitives (points, lines, triangles) generated by Inventor
shapes

This chapter describes how actions are applied to an Inventor scene graph. Earlier chapters introduced
you to the most commonly used action, GL rendering, which traverses the scene graph and draws it
using the OpenGL Library. This chapter outlines a general model for performing any action and
highlights important concepts related to other Inventor actions, including picking, calculating a
bounding box, calculating a transformation matrix, writing to a file, and searching the scene graph for
certain nodes.

Inventor Actions

The preceding chapters focused on building a scene graph using group, property, and shape nodes.
Once you have created this scene graph, you canagansto it. Table 9 1 summarizes some of the
ways you can use the scene graph and the specific Inventor action to use.

You Can Perform This Task Using This Action

Draw, orrender the scene graph SoGLRenderAction
Compute a 3D bounding box for objects in the sceneSoGetBoundingBoxAction
graph

Compute a cumulative transformation matrix (and itsSoGetMatrixAction
inverse)

Write the scene graph to a file SoWriteAction

Search for paths to specific nodes, types of nodes, o6oSearchAction
nodes with specific names in the scene graph

Allow objects in the scene graph to handle an event SoHandleEventAction
(see Chapter 10)

Pick objects in the scene graph along a ray SoRayPickAction
Traverse the scene graph and accumulate traversal SoCallbackAction

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
9, Applying Actions 1

state, then perform your own action using callback
functions

Table 91 Using Inventor Actions

Figure 9 1 shows the portion of the class tree for actions.

——— ZoCallbackaction
—— SoBex HighlightRenderaction

- SniGLRendentootion —

)) ZolineHighlightRenderaction
— SoigatBounding Bosoaction

——— SoiGathilatrposction
Sofctjon——————SoHandkEventaction

SoPickaction ———————— SoRavPickaction
— Somearchaction

ot tien

Figure 9 1 Action Classes

General Model
Performing any action on the scene graph follows the general model described in this section.

1. Initialize the action by constructing an instance of the action class. You can construct the action
on the stack as follows:

ShViewportRegion region(300, 200);
SoGLRenderAction renderAction(region);

You can also use theew operator to allocate an instance of the action:
renderAction = new SoGLRenderAction(region);
If you create the action witiew, don't forget to delete the action when you finish using it.

2. Set up special parameters for the action. For example, the constru&oGidrRenderAction
allows you to specify the viewport region as well as whether to inherit the current OpenGL
settings. If you specify
SoGLRenderAction renderAction(region, TRUE);
you can use the current OpenGL values for line width, material, and so on. If you specify FALSE
(or omit this parameter), Inventor sets up its own defaults.

3. Apply the action to a node, a path, or a path list. For example:
renderAction >apply(root);

4. Obtain the results of the action, if applicable. Some actions have additional methods that can be
used with them. For example, tBeGetBoundingBoxActionhas one method,
getBoundingBox() that returns the bounding box computed by the action and another method,
getCenter() that returns the computed center.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
9, Applying Actions 2

Applying an Action

When an action is applied to a scene graph, each node encountered in the graph implements its own
action behavior. In some cases, a particular type of node does nothing for a particular action.
SoMaterial does nothing when é&oGetBoundingBoxActionis applied, for example. In other cases,

the action behavior is relatively simple. For example, for most actions, all classes derived from
SoGroupdo little except traverse their children in a specified order.

When an action is applied, the Inventor database managasesal statésimilar to the rendering

state of OpenGL). The traversal state is an internal class used by Inventor to store transient state
elements (parameters) during execution of the action. Typically, this management involves traversing
the scene graph from top to bottom and from left to right. The elements in the traversal state are
modified by the nodes encountered during this traversal. For certain actions, such as writing to a file (
SoWriteAction) and accumulating a transformation mat®oGetMatrixAction), little or no

traversal state is maintained. In these cases, the database does not need to keep track of all parameters
inherited by nodes lower in the graph from the nodes above them.

The following sections focus on individual actions and how they are implemented by different nodes.
You don't need to worry about exactipwthe database manages the traversal state. You need only a
general idea of which nodes implement a given action and how they implement it.

An action can be applied to a node, a path, or a path list. When an action is applied to a node, the
graph rooted by that node is traversed. When the action is applied to a path, all nodes in the path chain
itself are traversed, as well as all nodes, if any, under the last node in the path. In addition, all nodes
that affect the nodes in the path chain are also traversed (typically, these nodes are to the left and
above the nodes in the path). Applying an action to a path list is similar to applying the action to each
path, except that subgraphs common to two or more paths are traversed only once.

Rendering

Chapters 3 through 8 illustrated how different nodes impleme®a&& RenderAction. This action
draws the objects represented by a scene graph. Here is how various nodes implement the
SoGLRenderAction:

« If the node is groupnode, it visits each of its children in a specified order. If it is an
SoSeparatornode, it saves the traversal state before traversing its children and restores it after
traversing its children.

» If the node is @ropertynode, it often replaces a value in the corresponding element of the
traversal state (other property nodes, suc®aasansform, may have different behaviors). For
example:

SoMaterial replaces the values for the current material.
SoLightModel replaces the values for the current lighting model.
SoDrawStylereplaces the values for the current drawing style.
SoCoordinate3replaces the values for the current coordinates.

+ If the node is derived frolBoTransformation, it modifies the current transformation matrix.
Each new set of values is preconcatenated onto the existing transformation matrix.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
9, Applying Actions 3

« If the node is ahapenode, it causes its shape to be drawn, using the current elements in the
traversal state. Figure 9 2 shows an indexed face set instanced in two different groups. When
rendered as part gfoup] it uses the current elements of the traversal state, causing a red
wireframe face set to be drawn. Because subsequent nagtesizmodify the current material,
drawing style, and transformation matrix, the next instance of the indexed face set, later in the
graph, appears green and filled. It is also twice as big as the red face set and translated to a new

location.
root
é group1 group2
red wire green filled xtorm indexFaceSet
{scalex2,
franslate
2,2,2)

Figure 9 2 Shared Instances of a Shape Node

Setting the Transparency Quality

Use thesetTransparencyType(method of the render action to specify the quality of rendering for
transparent objects. Inventor uses three general types of transparency reBderargdoor
transparencyses a fill pattern to simulate transparedaditive blendingdds the transparent object

to the colors already in the frame buff@lpha blendinguses a multiplicative algorithm for

combining source and destination colors and alpha factor. Within these general categories, there are
three types of additive blending and three types of alpha blending, depending on the degree of realism
and amount of speed required for a particular rendering job.

See th@®penGL Programming Guider a discussion of alpha blending.

Transparency Levels

In Inventor, the transparency quality level can be specified as follows:
SCREEN_DOOR use OpenGL stipple patterns for screen door transparency.
ADD use additive OpenGL alpha blending.

DELAYED_ADD use additive blending; render opaque objects first and transparent objects last.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
9, Applying Actions 4

SORTED_OBJECT_ADD
use additive blending. Draw opaque objects first, then transparent objects. Sort the
transparent objects by their distance from the camera and draw them from back to
front (same as DELAYED_ADD because adding is commutative).

BLEND use OpenGL alpha blending. (See Figure In 19.)

DELAYED_BLEND
use OpenGL alpha blending; render opaque objects first and transparent objects
last. (See Figure In 20.)

SORTED_OBJECT_BLEND
use OpenGL alpha blending. Draw opaque objects first, then transparent objects.
Sort the transparent objects by their distance from the camera and draw them from
back to front. (See Figure In 21.)

Trade offs

Transparency rendering with the ADD (or BLEND) level of transparency, however, works only if the
transparent object is being blended into somethiregadyin the frame buffer. This type of
transparency rendering computes the transparency in the order in which the objects are rendered.

To ensure that transparent objects are rendered last, use the DELAYED_ADD (or
DELAYED_BLEND) level. For example, if you draw a transparent cube first and then draw an
opague cylinder behind the cone, you won't see the transparency with the ADD level of transparency.
In this case, you must use DELAYED_ADD (or DELAYED_BLEND). The delayed levels require
more time than ADD or BLEND, but the realism is greater. (Compare Figure In 19 and Figure In 20.)

For the highest degree of realism in rendering transparent objects, specify SORTED_OBJECT_ADD
(or SORTED_OBJECT_BLEND). This level requires the most time but produces the best results. It
renders the transparent objects after the opaque objects and also sorts the objects by distance from the
camera, drawing them from back to front. (See Figure In 21.)

Tip: Objects such as face sets do not sort within themselves, so the faces in a face set may not be
drawn in the correct order for transparency. If the object is solid, usigp8teapeHintsnode with
the proper hints may improve the picture.

Note to OpenGL programmen$:you are using delayed or sorted transparency levels, Inventor does
not update thebuffer for transparent objects so that they can be drawn in any order.

If you are using aBoXtRenderArea you can use theetTransparency
Type() method to set the quality level for rendering transparent objects.

Antialiasing

The SoGLRenderAction class also provides methods émtialiasing techniques used to eliminate or
reduce jagged lines and make objects drawn on the screen appear smooth. You can choose from two
antialiasing methods:

» Smoothingwhich is relatively "cheap" in terms of processing time. Smoothing applies to lines
and points only.

» Using the accumulation buffewhich requires more processing time than smoothing but applies

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
9, Applying Actions 5

to the whole image and results in superior antialiasing. This technique requires an OpenGL
window that supports an accumulation buffer.

Method 1: Smoothing

Use theSoGLRenderAction::setSmoothing()method to turn on smoothing. Tis&moothing()

method returns the current state of the Smoothing flag. This form of antialiasing is for lines and points
only. Because it requires alpha or additive blending, Inventor changes the transparency type if
necessary when you turn on smoothing.

Method 2: Using the Accumulation Buffer

Normally, Inventor performs one rendering pass each time a render action is applied. You can use the
SoGLRenderAction::setNumPasses(nethod to increase the number of rendering passes for
accumulation buffer antialiasing. Inventor then renders the scene multiple times, moving the camera a
little bit each time, and averages the results. The more times Inventor renders a scene, the better the
antialiasing. The trade off is that increasing the number of passes also increases the amount of time
required to render the scene. The number of passes can be from 1 to 255, inclusive. Specifying 1
disables multipass antialiasing.

In addition, if you specify TRUE for th@oGLRenderAction::setPass

Update() method, the current contents of the accumulation buffer are copied into the currently active
drawing buffer after each rendering pass. This technique slows things down but allows you to watch
what happens between the incremental rendering passes. The defriPé&ssUpdate(ls FALSE.

Tip: Use theSoXtRenderArea::setAntialiasing()method to turn on smoothing and to specify the
number of passes for accumulation buffer antialiasing. You can specify either smoothing or
accumulation buffer antialiasing, or both.

Printing and Off screen Rendering

To print all or part of an Inventor scene graph, useSth®ffscreen Rendererclass, which in turn

uses atvoGLRenderAction to render an image into an off screen memory buffer. This rendering

buffer can be used both to generate an image to send to a PostScript printer (see Example 9 1) and to
generate an image to be used as a texture map (see Example 9 2).

The image rendered into the buffer can be one of four component types:
LUMINANCE one component (grayscale)

LUMINANCE_TRANSPARENCY
two components (grayscale with alpha value)

RGB three components (full color)

RGB_TRANSPARENCY
four components (full color with alpha value)

Use theésoOffscreenRenderer::setComponentsfhethod to specify the components in the image
generated before you render the image. To print black and white, use LUMINANCE. To print color,
use RGB. To generate images with transparency information, use LUMINANCE_TRANSPARENCY
or RGB_TRANSPARENCY.

Tip: If you want the output to go directly to a printer, useSb&tPrintDialog, an Xt component.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
9, Applying Actions 6

See th®pen Inventor C++ Reference Manudal more information.

How to Generate a File for Printing

To write a scene graph to a file in Encapsulated PostScript (EPS) format, you first render the scene
with the off screen renderer. Then you usevihige ToPostScript() method to generate the PostScript
output and write it to the given file.

For example, suppose you want to print a screen area that is 300 pixels by 400 pixels. Use the
setWindowSize()method orSbViewportRegionto specify the size of the viewport to be printed:

SbViewportRegion vp;
vp.setWindowSize(SbVec2s(300, 400));

rootNode = getMyScene();

SoOffscreenRenderer renderer(vp);
renderer >render(rootNode);
renderer >writeToPostScript(stdout);

This code fragment assumes the default pixels per inch (approximately 72). To change the number of
pixels per inch, use theetPixelsPerinch()method orSbViewportRegion Typically, you use the
resolution of the printer. For a 300 dots per inch (DPI) printer, you would specify the following:

vp.setPixelsPerIinch(300);
This resolution affects line width, the size of 2D text, and point size, which are all specified in pixels.

You may want the printed image to be the same size as the image rendered on the screen. To
determine the size of the image on the screen, first ugettiewportSizePixels(method on
ShViewportRegionto obtain the number of pixels frandy) of the viewport region. Then use the
getScreenPixelsPerinch(inethod orSoOffscreenRendereto find out the screen resolution in
pixels.

screenVp = renderArea >getViewportRegion();

SbVec2s screenSize = screenVp.getViewportSizePixels();

float screenPixelsPerinch =
SoOffscreenRenderer::getScreenPixelsPerinch();

Now you can calculate the size of the screen image in pixels by dividindy by
screenPixelsPerinchf you have a 300 by 400 pixel viewport on a screen with a resolution of 100
pixels per inch, your image is 3 by 4 inches.

To print this image at the same size, you specify the following:

vp. setWindowSize (SbVec2s(x_in_inches * printer DPI
y_in_inches * printer_DPI));

vp. setPixelsPerinch (printer_DPI);

Your OpenGL implementation may restrict the maximum viewport size. Use
getMaximumResolution()to obtain the maximum resolution possible for a viewport in your window
system.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
9, Applying Actions 7

Example 9 1 shows a simple function that renders a given scene graph and then saves it in a file that
can be sent to a printer.

Example 9 1 Printing

SbBool
printToPostScript (SoNode *root, FILE *file,
SoXtExaminerViewer *viewer, int printerDPI)
{
/I Calculate size of the image in inches which is equal to
/I the size of the viewport in pixels divided by the number
/I of pixels per inch of the screen device. This size in
/I inches will be the size of the Postscript image that will
/I be generated.
const SbViewportRegion &vp = viewer >getViewportRegion();
const SbVec2s &imagePixSize = vp.getViewportSizePixels();
SbVec2f imagelnches;
float pixPerInch;

pixPerinch = SoOffscreenRenderer::getScreenPixelsPerinch();
imagelnches.setValue((float)imagePixSize[0] / pixPerinch,
(float)imagePixSize[1] / pixPerinch);

/I The resolution to render the scene for the printer

/l'is equal to the size of the image in inches times

/I the printer DPI,

SbhVec2s postScriptRes;

postScriptRes.setValue((short)(imagelnches[0])*printerDPI,
(short)(imagelnches[1])*printerDPI);

/I Create a viewport to render the scene into.
ShViewportRegion myViewport;
myViewport.setWindowSize(postScriptRes);
myViewport.setPixelsPerInch((float)printerDPI);

/l Render the scene
SoOffscreenRenderer *myRenderer =
new SoOffscreenRenderer(myViewport);
if (!ImyRenderer >render(root)) {
delete myRenderer;
return FALSE;

/I Generate PostScript and write it to the given file

myRenderer >writeToPostScript(file);

delete myRenderer;
return TRUE;

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
9, Applying Actions 8

Generating a Texture Map

You can also use the off screen renderer to render an image to be used as a texture map. In this case,
use thesoOffscreenRenderer::render(method to render the image. Then usegét@uffer()
method to obtain the buffer.

Example 9 2 shows the typical sequence for using the rendering buffer to generate a texture map.

Example 92 Generating a Texture Map

#include <Inventor/SoDB.h>

#include <Inventor/Solnput.h>

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>
#include <Inventor/SbViewportRegion.h>

#include <Inventor/misc/SoOffscreenRenderer.h>
#include <Inventor/nodes/SoCube.h>

#include <Inventor/nodes/SoDirectionalLight.h>
#include <Inventor/nodes/SoPerspectiveCamera.h>
#include <Inventor/nodes/SoRotationXYZ.h>
#include <Inventor/nodes/SoSeparator.h>

#include <Inventor/nodes/SoTexture2.h>

SbBool
generateTextureMap (SoNode *root, SoTexture2 *texture,
short textureWidth, short textureHeight)

{
ShViewportRegion myViewport(textureWidth, textureHeight);

/I Render the scene
SoOffscreenRenderer *myRenderer =
new SoOffscreenRenderer(myViewport);
myRenderer >setBackgroundColor(SbColor(0.3, 0.3, 0.3));
if (!myRenderer >render(root)) {
delete myRenderer;
return FALSE;
}
/I Generate the texture
texture >image.setValue(SbVec2s(textureWidth, textureHeight),
SoOffscreenRenderer::RGB, myRenderer >getBuffer());

delete myRenderer;

return TRUE;

main(int, char **argv)

{

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
9, Applying Actions 9

/I Initialize Inventor and Xt
Widget appWindow = SoXt::init(argv[0]);
if (appWindow == NULL)

exit(1);

/l Make a scene from reading in a file
SoSeparator *texRoot = new SoSeparator;
Solnput in;

SoNode *result;

texRoot >ref();
in.openFile("jumpyMan.iv");
SoDB::read(&in, result);

SoPerspectiveCamera *myCamera = new SoPerspectiveCamera;
SoRotationXYZ *rot = new SoRotationXYZ;

rot >axis = SoRotationXYZ::X;

rot >angle = M_PI_2;

myCamera >position.setValue(SbVec3f(0.2, 0.2, 2.0));
myCamera >scaleHeight(0.4);

texRoot >addChild(myCamera);

texRoot >addChild(new SoDirectionalLight);

texRoot >addChild(rot);

texRoot >addChild(result);

/I Generate the texture map
SoTexture2 *texture = new SoTexture2;
texture >ref();
if (generateTextureMap(texRoot, texture, 64, 64))
printf ("Successfully generated texture map\n®);
else
printf ("Could not generate texture map\n");
texRoot >unref();

/l Make a scene with a cube and apply the texture to it
SoSeparator *root = new SoSeparator;

root >ref();

root >addChild(texture);

root >addChild(new SoCube);

/I Initialize an Examiner Viewer
SoXtExaminerViewer *viewer =

new SoXtExaminerViewer(appWindow);
viewer >setSceneGraph(root);
viewer >setTitle("Offscreen Rendered Texture");
viewer >show();

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
9, Applying Actions 10

SoXt::show(appWindow);
SoXt::mainLoop();
}

Caching

Caching saves the result of an operation so that it doesn’t need to be repeated. Inventor provides two
kinds of cachingrender cachingndbounding box cachingSee "Calculating a Bounding Box" for a
description of th&oGetBoundingBoxAction) For both the render action and the bounding box

action, you can specify that the results of the traversal be savedéh@The render cache, for

example, contains an OpenGL display list that results from traversing the scene graph to be rendered.
If the scene graph does not change, Inventor can use the contents of this cache for subsequent
renderings, without traversing the scene graph at all.

An SoSeparatomode has two fields that are used for caching. Possible values for these fields are
AUTO, ON, or OFF. AUTO is the default value.

renderCaching(SoSFEnum)
specifies whether render caching is used. AUTO turns on caching when the scene
graph below the separator is not changing. ON specifies to always try to build a
cache, regardless of whether it is efficient. OFF specifies not to build or use a
cache.

boundingBoxCaching (SoSFEnum)
specifies whether bounding box caching is used.

The SoSeparatorclass has setNumRenderCaches(inethod that allows you to specify how many
render caches each separator node will have. The greater the number of render caches that are built,
the more memory used. You might use two caches, for example, if a viewer switches between
wireframe and filled draw styles, and the draw style is set outside the cache. This method affects only
the separator nodes that are created after it is called. Setting the number of render caches to 0 before
any separators are created turns off render caching. The default number of render caches is 2.

Tip: If render caching is AUTO, it will take several renderings for caching to take effect. The
caching mechanism requires several renderings for comparison to determine that nothing is changing
and the scene can be cached.

How Caching Works
The caching process begins with the separator group, as follows:
1. The separator group checks whether a valid cache exists.

2. If avalid cache exists, the separator group ignores the scene graph below it and uses the contents
of the cache.

3. If avalid cache does not exist, the separator group checks the appropriate field to see if it should
create a cache.

4. If caching is ON, it opens a cache, traverses the nodes under the separator group, records the
results in the cache, and then calls the cache. If caching is AUTO, Inventor uses a special set of
conditions to determine whether it is efficient to create a cache.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
9, Applying Actions 11

The nodes under the separator group may inherit values from nodes that appear before the separator
group in the graph. For example, materials, coordinates, texture coordinates, complexity nodes,
normals, and bindings tend to be used by each shape. If these values change, the cache needs to
change. (Note that if a texture outside the cache changes, the cache is still valid because the shape
does not send the texture calls to OpenGL. The texture is sent directly to OpenGL when the
SoTexture2node is traversed.)

Be aware that these changes also invalidate the cache:

» ForSoText2 changing the font or camera (because the text is screen aligned)

» ForSoText3 changing the profile coordinates or type of profile

Inventor is conservative in determining whether the current cache is valid (that is, caches may be
invalidated and rebuilt even if inherited values have not changed).

Figure 9 3 shows a scene graph with a transform node whose values are changing frequently and a
cube. In this case, turn on caching at the separator above the cube so that the changing transform
values do not invalidate the cache.

caching=on

transform cube
{changing)

transform
{changing)

@ caching=on

cube

GOOD BAD

Figure 9 3 Caching a Shape

Figure 9 4 shows a scene graph with a complexity node whose values are changing frequently and a
cube. Here, you would include both the property node and the shape in the same cache, since the
shape always uses the property node when it is rendered.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
9, Applying Actions 12

caching=on

@ caching=on

complexity cube complexity
(changing) {changing) Z
cube
GOOD NOT AS GOOD

Figure 9 4 Caching a Shape along with a Changing Property Node

Trade offs

Render caches can consume a great deal of memory, but they are very useful for speeding up
rendering. Using the AUTO (default) value for render caching allows Inventor to determine whether
creating a render cache will save time.

Bounding box caching is relatively inexpensive. Inventor uses bounding

box caching to speed up picking. If bounding box caching is on and the user picks part of the graph
that contains a separator group, the separator group can first check to see if the bounding box is
picked. If not, it knows nothing under it is picked and does not need to traverse the subgraph.

Culling Part of the Scene

If you are dealing with a large scene and you know that the camera will frequently view only part of
that scene, you may want to turn on render culling so that Inventor doesn’t take time rendering parts of
the scene that lie completely outside the camera’s vieveoSeparatornode has two flags used for

culling: renderCulling andpickCulling . By default, render culling is AUTO. By default, pick

culling is ON.

This description deals with render culling. (Pick culling works in a similar manner and is relatively
inexpensive; you will probably simply leave it ON.) Here’s a brief summary of how render culling
works:

1. The camera puts the world space view volume into the traversal state when it is traversed.

2. During traversal, the separator node testeitderCulling field. If it is ON, it culls the render
area, as follows:

« It computes the bounding box for the separator, in object space. (This information may be
cached already.)

« It transforms the bounding box information into world space and compares it to the view
volume in the state.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
9, Applying Actions 13

« If the bounding box is completely outside the current view volume, the separator does not
traverse its children.

Since Step 2 (computing the bounding box and testing it) is fairly expensive in terms of time, render
culling is off by default. You'll need to evaluate your scene graph to determine whether render culling
will be efficient. For example, you could have a large scene graph with external walls, and detailed
electrical and plumbing connections beneath them. Although the scene graph is complex, culling
won't help because all elements would be in the camera’s view at the same time. However, for scenes
where objects are widely separated in space, such as a scene graph for a solar system, culling can be
very useful.

Tip: To facilitate culling, organize the database spatially so that objects that are close to each other in
3D space are under the same separator and objects far away from each other are under different
separators. In the case of the scene graph with external walls, you could group the plumbing and
electrical connections faachwall under a separator.

Guidelines for turning on render culling are as follows:

* In general, don't put a culling separator underneath a caching separator (thab&e@erator
with itsrenderCachingfield set explicitly to ON). Use a culling separator urti@geparator
nodes with render caching set to OFF or AUTO.

The reason for this guideline is that culling depends on the camera. If a separator makes a culling
decision, any cache that it is part of will depend on the camera. Caches dependent on the camera
will often be broken, because in most applications, the camera changes frequently.

It's also efficient to turn on culling and caching at$heneseparator node (or turn on culling and
leave caching at AUTO).

* Turn on culling only for objects that are separated in space.

» Turn on culling only for objects with a fairly large number of polygons, or deciding whether to
cull might take longer than just drawing the object.

Calculating a Bounding Box

The bounding box action computes a 3D bounding box that encloses the shapes in a subgraph under
a node or defined by a path. This action also computes the center point of these shapes (see Example
9 3).SoGet BoundingBoxActionis typically called on a path, which enables you to obtain a

bounding box for a specific object in world coordinates. This action retur@bBmx3f which

specifies a 3D box aligned with tkey, andzaxes in world coordinate space.

Create an Instance of the Action
An example of creating an instanceSaiGetBoundingBoxActionis

SbViewportRegion vpReg;
vpReg.setWindowSize (300, 200);
SoGetBoundingBoxAction bboxAction (vpReg);

This constructor has one parameter, the viewport region. This information is needed for computing
the bounding box of screen aligned or screen sized objects, sGdT ast2

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
9, Applying Actions 14

Apply the Action

SoGetBoundingBoxActioncan be applied to the root node of a subgraph, to a path, or to a path list.

Obtain Results
Three methods access the resultSaGetBoundingBoxAction

getBoundingBox()
returns arsbBox3fbounding box that encloses
the shape or shapes

getCenter() returns the computed center point for the shapes

getXfBoundingBox()
returns arsbXfBox3fbounding box

The center point returned lygtCenter()is defined differently for different objects. For example, the
center of arsoFaceSeis defined as the average of its vertices’ coordinates. The center of a group is
defined as the average of the centers of the objects in the group.

An SbXfBox3f stores the original bounding box for a shape and the matrix that transforms it to the
correct world space. The advantage to usingta(fBox3finstead of ailsbBox3fis that the

bounding box isn’t enlarged unnecessarily. You may want to use this class if you need to perform
additional transformations on the bounding box.

Example 9 3 shows using &wGetBoundingBoxActionbboxAction) to return the center of the
graph rooted by a node so that rotations can be made around it.

Example 9 3 Setting the Center Field of a Transform Node

ShViewportRegion myViewport;
SoTransform *myTransform;

SoGetBoundingBoxAction bboxAction(myViewport);
bboxAction.apply(root);
myTransform >center = bboxAction.getCenter();

Accumulating a Transformation Matrix

The SoGetMatrixAction returns the current transformation matrix for any node derived from
SoTransformationor for a path. When you apply this action to & ransformation node, it

returns the transformation matrix for that node. When you apply it to aSi@EetMatrixAction
accumulates a transformation matrix for all the transformations in the subgraph defined by that path.
This action enables you to convert from one coordinate space to another, typically from local space to
world space (when you apply it to a path whose head node is the root of the scene graph).

An important distinction betweeSoGetMatrixAction and other actions is thabGetMatrixAction

does not traverse downward in the scene graph from the node or path to which it is applied. When
applied to a node, it returns the current transformation matrix for that node only (and therefore makes
sense only for transformation nodes, since all others return identity). When applied to a path, it
collects transformation information for all nodes in the path but stops when it reaches the last node in
the path chain.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
9, Applying Actions 15

Create an Instance of the Action
The constructor foBoGetMatrixAction has no parameters:

SoGetMatrixAction mtxAction;

Apply the Action

SoGetMatrixAction can be applied to a node or to a path.

Obtain Results

Two methods return the resultsSWGetMatrixAction:

getMatrix() returns arSbMatrix that is the cumulative transformation matrix for the node or
path
getinverse() returns a SbMatrix that is the inverse of the cumulative transformation matrix

for the node or path

Thegetinverse()method enables you to take a point in world space and map it into an object’s local
coordinate space. See Bpen Inventor C++ Reference Manuat a description of the many
convenient methods available feibMatrix . For example, you can usmiltVecMatrix() to transform

a point by a matrix. UsaultDirMatrix() to transform a direction vector by a matrix. (Inventor
assumes row vectors.)

Tip: You can convert a point in one object’s coordinate space into another object’s space by applying
a get matrix action to the first object, transforming the point into world space using the matrix,
applying a get matrix action to the other object, and then transforming the world space point by the
inverse matrix of the second object.

As an example, assume tisatGetMatrixAction is applied to the path shown in Figure 9 5. The
xformlnode contains a translation of (0.0, 0.0, 1.0), andftire2node contains a scale of (0.5, 0.5,
0.5).

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
9, Applying Actions 16

xformi:
translate
(0,0, 1)

xform?2:
scale
(.5,.5,.5)

- Path

Figure 95 Applying SoGetMatrixAction to a Path

Each new transformation is premultiplied onto the current transformation matrix. In this case, the
matrix multiplication looks like this:

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
9, Applying Actions 17

scale translate
— (xformz) - — (xform1) -
05 0 0 0 1 0 0 0
0 03 0 0 0o 1 0 0
¢ o0 05 0 0 0 1 0
¢ 0 0 1 o 0 1 1

In this examplegetMatrix() returns the following matrix:

(05 0 0 0
0 05 0 0

0 0 05 0
o 0 1 1

For texture coordinates, use tietTextureMatrix() andgetTexturelnverse()methods. See Chapter
7 and theOpen Inventor C++ Reference Mandat more information.

Writing to a File

Inventor scene graphs can be written to a file in either ASCII or binary foBo&YriteAction is
used for writing scene graphs to files. An instance of this class contains an instnOeitpiut,
which by default writes tstdout in ASCII format. TheyetOutput() method returns a pointer to the
SoOutput Other methods f@oOutputinclude the following:

openkFile() opens and writes to a file rather tharstaout
setFilePointer() explicitly sets the pointer to the file to write to.

closeFile() closes the file opened withpenFile() The file is closed automatically when the
action is destroyed.

setBinary() writes the file in binary format if TRUE; writes the file in ASCII if FALSE (the
default).
setBuffer() writes to a buffer in memory rather than to a file.

For example, to write in binary to an already open file pointed fp. by

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
9, Applying Actions 18

SoWriteAction myAction;
FILE *fp;

myAction.getOutput() >setBinary(TRUE);
myAction.getOutput() >setFilePointer(fp);
myAction.apply(root);

To write in ASCII to a named file:

SoWriteAction myAction;

myAction.getOutput() >openFile("myFile.iv");
myAction.getOutput() >setBinary(FALSE);
myAction.apply(root);

myAction.getOutput() >closeFile();

See Chapter 11 for a complete description of the Inventor file format. Here is an example of the output
of SoWriteAction for a subgraph:

#lnventor V2.0 ascii
Separator {
Separator {

Transform {
scaleFactor12 1

}

Material {
ambientColor .2 .2 .2
diffuseColor .6 .6 .6
specularColor .5 .5 .5
shininess .5

}

Cube{

}
}

Searching for a Node

SoSearchActionsearches through the scene graph for paths to specific nodes, types of nodes, or
nodes with a given name. First, you initialize the action. Then, you specifpdeenode typeor

nameto search for (or a combination of these elements). If you spectgieatypeyou can also

specify whether to search for an exact type match, or to search for subclasses of the specified type as
well.

Specify the Search Criteria

First, specify what you are searching for, whether you want to find all matches, and how to traverse
the scene graph.

Searching for a Node

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
9, Applying Actions 19

If you want to search for a particular node (by pointer), ussettdode()method. For example, you
might usesetNode()to search for a particular light source node so that you can attach an editor to it.

Searching for a Node Type

Rather than searching for a specific node, you may want to searctyp@oénode (see Chapter 3).
When searching for a node type, you then have the choice of searching for all nodes of a particular
type, or for derivations of the given type (the default). The syntasetdiype()is as follows:

setTypgSoType t, int derivedisOk = TRUE);

Searching for a Name

Use thesetName()method to specify the name of the node to search for. (See Chapter 3 for more
information on naming.)

Specify Whether to Find All Matches

Use thesetinterest()method to specify which paths to return:

FIRST returns only the first path found (the default)
LAST returns only the last path found
ALL returns all paths found

Specify the Type of Traversal

Use thesetSearchingAll()method to specify whether to search using normal traversal (following
traversal order for switches and separators) or to search every node in the scene graph, regardless of
switch settings. The default is FALSE (search using normal traversal order).

Apply the Action

SoSearchActionis applied in the same manner as any other action.

Obtain the Results

To obtain the results of the search, use one of the following methods:
getPath() returns the found path (if interest is FIRST or LAST)
getPaths() returns the found path list (if interest is ALL)

See th@®pen Inventor C++ Reference Mandal a complete description of all methods available for
SoSearchAction

The following example searches a scene graph for any node derive8dtaoght. If it does not find
one, it creates and adds@wDirectionalLight. This example searches for only the first match by
callingsetinterest

(SoSearchAction::FIRST)

SoSearchAction mySearchAction;

Il Look for first existing light derived from class SoLight

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
9, Applying Actions 20

mySearchAction.setType(SoLight::getClassTypeld());
mySearchAction.setinterest(SoSearchAction::FIRST);

mySearchAction.apply(root);
if (mySearchAction.getPath() == NULL) { // No lights found

/I Add a default directional light to the scene
SoDirectionalLight *myLight = new SoDirectionalLight;
root >insertChild(myLight, 0);

}

Picking

SoRayPickActionfinds objects along a ray from the camera through a point on the near plane of the
view volume. This ray is typically specified by giving the coordinates of a window space pixel
through which it passesSoRayPickActiontraverses the scene graph you apply the action to and then

returns the paths to all shapes along the picking ray, sorted from nearest to farthest. The picking action
is primarily interested in geometry, transformation, and shape nodes.

Tip: TheSoSelectiomode picks objects automatically. You don’t need to explicitly use the pick
action to select objects. TBeHandleEventaction also performs picking automatically. In addition,
theSoEventCallbacknode allows you to register a callback function that is invoked whenever a
certain event (such as a mouse press) occurs over a specified object. See Chapter 10 for more
information onSoSelectionSoHandleEvent andSoEventCallback

Picking Style

By default, all objects in the scene graph are pickable (even invisible and transparent objects). To
make an object or group of objects invisible to the pick action, ins&oRitkStylenode in the

scene graph and set #tyle field to UNPICKABLE. Anything that follows in the scene graph cannot
be picked until th&oPickStylenode is reset to SHAPE (to pick points on the shape objects in the
scene) or BOUNDING_BOX (to pick points on the bounding boxes for the objects in the scene).
BOUNDING_BOX pick style is most often used f8oText3nodes. The pick style, like all other
properties, is saved and restoredSlmseparatorgroups.

Create an Instance of the Action
The constructor foBoRayPickActionhas one parameter, the viewport region (a required parameter).

An example of creating an instanceSafRayPickActionis

ShViewportRegion myViewport;
SoRayPickAction myPickAction(myViewport);

The viewport region is used to compute the bounding boxes for screen aligned objects such as
SoText2

Set Parameters

Before you apply the picking action, you can set the following parameters:

* Ray to pick along

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
9, Applying Actions 21

» Whether to return all objects along the ray, or only the closest one

The picking ray can be specified in one of two ways: either specify a window point and a radius, or
specify a point and a direction in world space. The first method is the more typical for interactive
programs, since you are generally most interested in the area underneath the cursor.

Specifying the Picking Ray with a Window Point

Before you apply the picking action, use fe¢Point() andsetRadius()methods to set the ray to be
used for picking.

The ray to pick along is typically specifiechilewport coordinatesvhere

(0, 0) is the lower left corner of the viewport ang\{idthl, vpHeightl) is the upper right corner

(see Figure 9 6). In the figure, the viewport is 1000 by 1000. The near plane of the camera maps to the
picking viewport.

To make it easier to pick lines and points, the ray can be augmented to be a cone (for a perspective
camera; see Figure 9 6) or a cylinder (for an orthographic camera). WstRhdius()method to
control the size of this cone or cylinder where it intersects the near plane of the camera. (The default
radius is 5 pixels.) Things that are picked must fall within this cone (or cylinder), as follows:

» For points and lines, if any part of the shape falls within this cone, it is picked. (A sphere drawn
with LINES draw style is still picked as a solid sphere.)

» For all other shapes, the ray itself must intersect the shape for it to be picked.

+y picking
region ™.
near
plane

Eve
+X

/7

Figure 9 6 Cone Representing the Picking Ray for a Perspective Camera

Specifying the Picking Ray with a World Space Ray

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
9, Applying Actions 22

You can also specify the picking ray by specifying a world space ray along which to pick. The ray is
defined as a starting point, a direction vector, and a near distance and far distance for the picked
objects. No radius is used. For example:

SbhViewportRegion viewport(400, 300);
ShVec2s cursorPosition(250, 125);

SoRayPickAction myPickAction(viewport);

myPickAction.setRay(SbVec3f(0.0, 0.0, 0.0), // starting point
SbVec3f(0.0, 0.0, 1.0); // direction vector

This example uses the default near and far distances, which disables clipping to the near and far
planes.

Picking the Closest Object

Use thesetPickAll() method to specify whether you want information returned for all objects picked
(sorted from closest to farthest), or just the closest one. Specify TRUE for all objects, or FALSE (the
default) for only the closest one.

Apply the Action

The picking action can be applied to either a node, a path, or a path list. To apply the picking action to
the root node of a scene graph:

pickAction >apply(rootNode);

Obtain Results

The results of the pick are stored inSoPickedPoint(for the first hit) or artsoPickedPointList(for
information on all hit objects). Use the methodsSaPickedPointto obtain this information.

SoPickedPoint

An SoPickedPointrepresents a point on the surface of an object that was picked. The picked point
contains the point of intersection, the surface normal and texture coordinates at that point, the index
into the current set of materials, and the path to the object that was intersected. Use the following
methods oisoPickedPointto obtain this information:

getPoint() returns the intersection point, in world space.
getNormal() returns the surface normal at the intersected point, in world space.
getTextureCoords()

returns the texture coordinates at the intersection point, in image space.

getMateriallndex()
returns the index into the current set of materials that is used at the intersection
point. If the materials are interpolated between vertices, the index corresponds to
the material at the closest vertex.

getPath() returns the path to the object that was intersected.

For example:

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
9, Applying Actions 23

SoPath *pathToPickedObiject;

const SoPickedPoint *myPickedPoint =
myPickAction.getPickedPoint();
if (myPickedPoint != NULL)
pathToPickedObject = myPickedPoint >getPath();

Figure 9 7 shows the path returned bySaRRayPickAction (which can be obtained with the
getPath()method orSoPickedPoinj. This path contains a pointer to each node in the path to the
picked object. Use the following methods®wePickedPointto obtain information about the pick in
theobject spacef a particular node in the path chain. You pass in a pointer to the node you are
interested in, or use the default (NULL) to obtain information about the tail of the path:

getObjectPoint() returns the intersection point, in object space

getObjectNormal()
returns the surface normal for the picked point

getObjectTextureCoords()
returns the texture coordinates for the picked point

SoPickedPaint

FPath
details

Y

Q
B @ B
Q

i
i
ZoCubeDetail
- O
O
(Cube)

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
9, Applying Actions 24

Figure 9 7 Path to Picked Point and Detail List

Using an SoDetalil

Each node in the picked path may have an asso8ateetailin which it can store additional
information about the pick. For some classes, this asso8ai2etailis NULL. Table 9 2 shows the
classes that store information in a subclasSoibetail

Figure 9 8 shows the class tree $mDetail

——— ZoConeDetall
——— SoCubeDetail
— ZoCylinderDetail
ZoDetail ————1——SoFaceDatall
— ZoLineDetail
— SoModeRitDetail
— ZoPointDetall
— ZoTextDetail
Figure 9 8 Detail Classes
Class Name Type of Detail Added Information Provided
SoCone SoConeDetall Contains information about
which part of the cone was hit
SoCube SoCubeDetalil Contains information about
which face (part) of the cube
was hit
SoCylinder SoCylinderDetail Contains information about
which part of the cylinder was
hit
SoText2, SoText3 SoTextDetall Specifies the index of the
string that was hit; the index
of the character within the
string that was hit; which part
of the text was hit; the
object space bounding box of
the character that was
intersected
SoFaceSet; all vertex based SoFaceDetall Specifies which face in the
shapes except lines, points, shape was hit
and NURBS
SoLineSet, SolndexedLineSet SoLineDetail Specifies which line in the
line set was hit
SoPointSet SoPointDetail Specifies which point in the

point set was hit

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
9, Applying Actions 25

Table 9 2 Classes That Store an SoDetail

Use thegetDetail()method orSoPickedPointto return the detail for a given node in the picked path.
This method takes a pointer to a node in the picked path. It returns information for the tail of the path
if NULL or no node is specified. For example, to determine whether a cylinder was hit and, if so,
whether it was the top part of the cylinder, the code would be as follows:

const SoDetail *pickDetail = myPickedPoint >getDetail();
if (pickDetail I= NULL && pickDetail >getTypeld() ==
SoCylinderDetail::getClassTypeld()) {
/l Picked object is a cylinder
SoCylinderDetail *cylDetail =
(SoCylinderDetail *) pickDetail;

/I See if top of the cylinder was hit
if (cylDetail >getPart() == SoCylinder::TOP) {
printf("Top of cylinder was hit\n");
}
}

The following fragment shows how you could find the closest vertex to the hit point of a face based
shape using aBoFaceDetail An SoFaceDetailcontains an array @oPointDetails You can

examine these details to find the coordinates of the point closest to the hit point by using the
getCoordinateIlndex() method orsoPointDetail Finding the node that contains the coordinates is

left to the application. (You can create a search action, apply it to the picked path, and ask for the last
SoCoordinate3node in the path. But you also need to know something about the structure of your
graptd for example, whether it contains Override flags or Ignore flags that may affect the search.)

/I This function finds the closest vertex to an intersection

/I point on a shape made of faces, passed in the

/I "pickedPoint" argument. It returns the SoCoordinate3 node
/I containing the vertex’s coordinates in the "coordNode"

/I argument and the index of the vertex in that node in the

/I "closestindex" argument. If the shape is not made of faces
I/l or there were any other problems, this returns FALSE.

static SbBool
findClosestVertex(const SoPickedPoint *pickedPoint,
SoCoordinate3 *&coordNode, int &closestindex)

{
const SoDetail *pickDetail = pickedPoint >getDetail();

if (pickDetail = NULL && pickDetail >getTypeld() ==
SoFaceDetail::getClassTypeld()) {
/I Picked object is made of faces
SoFaceDetail *faceDetail = (SoFaceDetail *) pickDetail;

/I Find the coordinate node that is used for the faces.
/I Assume that it's the last SoCoordinate3 node traversed
/I before the picked shape.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
9, Applying Actions 26

SoSearchAction mySearchAction;
mySearchAction.setType(SoCoordinate3::getClassTypeld());
mySearchAction.setinterest(SoSearchAction::LAST);
mySearchAction.apply(pickedPoint >getPath());

if (mySearchAction.getPath() '= NULL) { // We found one
coordNode = (SoCoordinate3 *)
mySearchAction.getPath() >getTail();

/I Get the intersection point in the object space
/I of the picked shape
SbVec3f objintersect = pickedPoint >getObjectPoint();

/I See which of the points of the face is the closest
/I to the intersection point
float minDistance = 1e12;
closestindex = 1;
for (inti = 0; i < faceDetail >getNumPoints(); i++) {
int pointindex =
faceDetall >getPoint(i) >getCoordinatelndex();
float curDistance = (coordNode >point[pointindex]
objIntersect).length();
if (curDistance < minDistance) {
closestindex = pointindex;
minDistance = curDistance;

if (closestindex >= 0)
return TRUE;

return FALSE;

Using the Pick Action
Example 9 4 shows setting up the pick action and writing the path to the picked osfdotito

Example 9 4 Writing the Path to the Picked Object

SbBool

writePickedPath (SoNode *root,
const SbViewportRegion &viewport,
const SbVec2s &cursorPosition)

{
SoRayPickAction myPickAction(viewport);

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
9, Applying Actions 27

/I Set an 8 pixel wide region around the pixel
myPickAction.setPoint(cursorPosition);
myPickAction.setRadius(8.0);

/I Start a pick traversal
myPickAction.apply(root);
const SoPickedPoint *myPickedPoint =
myPickAction.getPickedPoint();
if (myPickedPoint == NULL)
return FALSE; /I no object was picked

/I Write out the path to the picked object
SoWriteAction myWriteAction;
myWriteAction.apply(myPickedPoint >getPath());

return TRUE;

Calling Back to the Application

The SoCallbackAction allows you to traverse the scene graph and accumulate state. It includes
methods for calling back to application functions whenever nodes of a specified type are encountered
during the traversal. At every node, the callback function has access to the entire Inventor traversal
state. It can thus query any element in the state, such as the current coordinates, current normals, or
current material binding. See tBpen Inventor C++ Reference Manuail SoCallbackActionfor a
description of all state query functions.

The callback action also allows you to register callback functions that are called whenever certain
shape nodes are traversed. The primitives used to draw the shape are passed to the callback function
for use by the application.

This action provides a convenient mechanism for adding your own action to Inventor without
subclassing (se€ehe Inventor Toolmakdor information on creating a new action). It is particularly
useful for C programmers who want to add functionality to scene graph traversal.

Create an Instance of the Action

An example of creating an instanceSafCallbackActionis as follows:

SoCallbackAction cbAction;

Register Callback Functions

Inventor provides a number of methods for setting callback functions for a node. Each method takes a
node type, a pointer to the user callback function, and a pointer to user data. The function is called
whenever a node of the specified type or a subclass of that type, is encountered during traversal of the
scene graph.

General Purpose Callback Functions

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
9, Applying Actions 28

The following functions are set for any type of node:

addPreCallback()
adds a callback function that is called just before a node of a particular type is
traversed

addPostCallback()
adds a callback function that is called just after a node of a particular type is
traversed

addPreTailCallback()
adds a callback function that is called just before the last node in the path is
traversed

addPostTailCallback()
adds a callback function that is called just after the last node in the path is
traversed

In the case of a separator node,atldPreCallback()method is called before the children are
traversed, and theddPostCallback()method is called after the children are traversed but before the
state is restored. TtaldPreTailCallback() andaddPostTailCallback() methods are used only

when you apply the callback action to a path.

A general purpose callback function must return one of three values:

SoCallbackAction::CONTINUE
continue traversal of the scene graph.

SoCallbackAction::PRUNE
do not go any lower in the scene graph; continue traversal of the rest of the scene
graph above and to the right.

SoCallbackAction::ABORT
stop traversal of the scene graph and pop state back up to the root.

Primitive Generation

The following callback functions are set for a particular typghapenode. When these callback
functions are set and the shape is traversed, primitives for the shape are generated, the callback
function is invoked, and the primitives are passed to the callback function. You might use
addTriangleCallback(), for example, if you are writing your own renderer and you want to tessellate
all filled objects into triangles.

addTriangleCallback()
adds a callback function to a node that generates triangles, SmhcasSeor
SoNurbsSurface

addLineSegmentCallback()
adds a callback function to a node that generates line segments,SoicinaSet
or SolndexedLineSe(but not tcSoFaceSebr related classes even when the
draw style is LINES)

addPointCallback()
adds a callback function to a node that generates points, sboR@istSet(but

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
9, Applying Actions 29

For triangles, the associated callback is of the following form:

void SoTriangleCB(void *userData SoCallbackAction &ction,
const SoPrimitiveVertexv,

const SoPrimitiveVertexv2,

const SoPrimitiveVertexv3);

Here, the callback function is called once for each triangle the shape generates. An example of using
this callback function would be if you are writing a ray tracer and want to deal with only one type of
data structure for all polygonal shapes. A triangle callback function can be registered on spheres,
cones, cylinders, and NURBS surfaces, as well as on face sets and quad meshes.

An SoPrimitiveVertex is a vertex of a primitive shape (triangle, line segment, or point) that is
generated by a callback action. It contains an object space point, normal, texture coordinate, material
index, and a pointer to an instance ofSmDetail subclass. The detail may contain additional

information about the vertex.

Tip: Your callback function can use the value of the draw style element from the state if you want to
determine if the triangles would be rendered as points or lines. For example:

if(SoDrawStyleElement::get(action >getState())==
SoDrawStyleElement::LINES)

...[l/do something
SeeThe Inventor Toolmakdor more information on elements.

Apply the Action

SoCallbackAction can be applied to a node, a path, or a path list.

Using a Callback for Generated Primitives
Example 95 shows using the callback action to decompose a sphere into a set of triangle primitives.

Example 95 Using a Triangle Callback Function

SoSphere *mySphere = new SoSphere;
mySphere >ref();
printSpheres(mySphere);

void

printSpheres(SoNode *root)

{
SoCallbackAction myAction;

myAction.addPreCallback(SoSphere::getClassTypeld(),
printHeaderCallback, NULL);

myAction.addTriangleCallback(SoSphere::getClassTypeld(),
printTriangleCallback, NULL);

myAction.apply(root);

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
9, Applying Actions 30

SoCallbackAction::Response
printHeaderCallback(void *, SoCallbackAction *,
const SoNode *node)
{
printf("\n Sphere ");
/I Print the node name (if it exists) and address
if (! 'Inode >getName())
printf("named \"%s\" ", node >getName());
printf("at address %#x\n", node);

return SoCallbackAction::CONTINUE;

void
printTriangleCallback(void *, SoCallbackAction *,
const SoPrimitiveVertex *vertex1,
const SoPrimitiveVertex *vertex2,
const SoPrimitiveVertex *vertex3)
{
printf("Triangle:\n");
printVertex(vertex1);
printVertex(vertex2);
printVertex(vertex3);

}

void
printVertex(const SoPrimitiveVertex *vertex)
{
const SbVec3f &point = vertex >getPoint();
printf("\tCoords = (%g, %g, %g)\n",
point[0], point[1], point[2]);

const SbVec3f &normal = vertex >getNormal();
printf("\tNormal = (%g, %g, %g)\n",
normal[0], normal[1], normal[2]);

Chapter 10
Handling Events and Selection

Chapter Objectives
After reading this chapter, you'll be able to do the following:

» Explain how Open Inventor handles input events

» Select objects in the scene using one of Inventor’s built in selection policies
» Implement your own selection policy by creating an event callback node

» Highlight selected objects in the scene

» Write selection callback functions to allow the application to perform certain operations when the
selection list changes

This chapter describes the Open Inventor event model, which provides a simple mechanism for
passing events such as a key press or mouse movement to objects in the database for processing. In
much the same way a window system passes events to its client windows, Inventor passes events to
database objects that can handle them. Important concepts introduced in this chapter include the
Inventor programming model for event handling and the use &tKeRenderAreg a widget that

performs rendering and event handling on the Inventor databas8oHamdleEventActionis

discussed in detail, as well as the concepé&veit callback functiontheselection nodeand

highlighting.

Overview

When a user clicks a mouse button on a handle box manipulator and drags the object to a new location
on the screen, how does Inventor receive the user input from the mouse and translate the object
accordingly? What happens if the user clicks the mouse on a space in the rendered image that doesn’t
contain any objects? How does Inventor keep track of several user selected objects? These are all
guestions that need to be answered before you can write interactive Inventor applications.

This chapter begins by providing a brief description of how window specific events are translated into
Inventor events. It introduces you to the different kinds of Inventor events and the methods associated
with them. You will learn how the scene manager finds the event handler for a specific event and how
different nodes handle events.

General Programming Model for Event Handling

Inventor includes a built in event model for the scene database. This model is not based on any
specific window system or toolkit. When writing an Inventor program, you can select the X window
programming model and use the tools provided by the window system to open windows and pass
events into Inventor. Inventor provides event translation from X events into the Inventor event

classes. Figure 10 1 shows how X events are passed to the render area and then translated into
Inventor events that are handled by the Inventor scene manager. Since Inventor is independent of any
window system, you can also choose a different window system and then write your own event
translator.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
10, Handling Events and Selection 1

]

Figure 10 1 Event Processing in Inventor

Using the X Window System

Inventor provides a set of Xt utilities for use with the X Window System. This set of utilities contains
the following:

» Arender area "widget"
* Main loop and initialization functions

« An event translator utility

In addition to these features, the Inventor Component Library also contains a set of Xt components.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
10, Handling Events and Selection 2

In addition to these features, the Inventor Component Library also contains a set of Xt components.
These components include viewers and editors with a user interface for modifying the scene database
directly.

This chapter focuses on the aspects of Inventor that are independent of the window system:

» Events (derived frorSoEven)

¢ Scene manager

» Handle event action

» Event callback functions

» Selection node

Chapter 16 describes use of the Inventor Component Library in more detail. If you want to use
Inventor viewers and editors, you must use an Xt render aced@RenderAreg and the X Window

System model. If you are not using these viewers and editors, you can choose a different window
system and then implement your own render area, event loop, and event translator.

Render Area

The render area widget provides a convenient object for creating a window and translating
window specific events into generic Inventor events. With the X Window System model, you create
anSoXtRenderArea(see Figure 10 1). Window specific events are passed into this render area and
then automatically translated into a generic InveStiEvent

The render area provides the following:

» Builtin sensors that redraw the window when the scene changes or when the window resizes or
is exposed

» Builtin event processing

« Certain controls, such as the type of transparency and the amount of antialiasing

Inventor Events (SoEvent)

The class tree f@oEventis shown in Figure 10 2.

— Sokey board Event
— SoButienErent————— SohilouseButton Event
soEvent——— Solocation2 Event L SoSpacebal lButten Event
L Sohletion3Event

Figure 10 2 Event Classes
EachSoEventinstance contains the following information:
» Type identification $oTypée

+ Time the event occurred

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
10, Handling Events and Selection 3

e Cursor position when the event occurred

» State of the modifier keys (Shift, Control, Alt) when the event occurred

Subclasses @oEventcontain additional information. For exampmButtonEventcontains
information about whether the button was up or down when the event occurred.
SoMouseButtonEventcontains information about which button was pressed (button 1, 2, or 3).

See th@®pen Inventor C++ Reference Manwaitry onSoEventfor a list of methods available for
querying the event. In addition, you can use the following macros:

» SO_MOUSE_PRESS_EVENT{()You pass in aBoEventand a button number, and the macro
returns TRUE if that button was pressed.

» SO_MOUSE_RELEASE_EVENTD) You pass in aBoEventand a button number, and the
macro returns TRUE if that button was released.

SoKeyboardEventcontains information on which key was pressed (but does not indicate uppercase
or lowercase).

Tip: Using theSoKeyboardEvent::getKey()method is the same as
using XLookupKeysym() on an X key event.

An SolLocation2Eventis generated whenever the cursor moves. This event contaatsstiiaete

location of the cursor in window coordinates. (Window coordinates begin with (0, 0) at the lower left
corner of the window.) ABoMotion3Eventis generated whenever a 3D input device, such as the
spaceball, moves. This event contains the rotation and transkltitime tothe device's previous
position.

Tip: Inventor events are extensible. If you have a device that does not correspond toSodstamy
classes, you can create your own. (Blee Inventor Toolmake€Chapter 11.)

Scene Manager

As shown in Figure 10 5oSceneManageis a common class used to tie window system-dependent
render areas (such 8sXtRenderAreg to Inventor. The render area employs the scene manager to
handle the scene graph. The scene manager handles both rendering and event processing and is
independent of any particular window system.

Inventor Event Handling

In Inventor, events are distributed to the 3D objects contained in the scene database. Manipulator and
dragger objects, described in detail in Chapter 15, are the 3D objects in the Inventor scene graph that
handle events. Shape objects (such as sphere, cylinder, quad mesh), property objects (such as material
and draw style), transformation objects, light objects, and camera objects ignore events. Finding the
node that handles an event is discussed in "How Nodes Handle Events: SoHandleEventAction".

With Inventor, you can choose from one of four event handling mechanisms:

1. You can use Inventor's automatic event handling mechanism, provided by the scene manager, in
which certain kinds afiodeshandle events (see "How Nodes Handle Events:
SoHandleEventAction"). This is probably the easiest mechanism to use. (Note that you can also
create your own nodes to handle events. You might create your own node if you want to use it in

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
10, Handling Events and Selection 4

several different applications or

give it to other programmers. You could also create a new manipulator to handle evdiits. See
Inventor Toolmakefor more information on creating new nodes and manipulators.)

2. You can use Inventor&vent callbacknechanism, in which user written callback nodes handle
events (see "Using Event Callback Nodes"). This method handles events on a per object basis and
is fairly easy to implement. Its drawback is that, although the callback node does write to a file, it
has no fields describing which path it is monitoring or which events it is interested in.

3. You can override Inventor’'s event handling mechanisms entirely and pass all events directly to
the application (see "Sending Events Directly to the Application"). Use this method if you prefer
to work directly with X events and you do not need to handle events on a per object basis. This
method bypasses scene traversal and handles only window events.

4. You can use Inventor’'s generic callback mechanism in which user written callback nodes handle
all actions (see Chapter 17 for an example @a@Ballbacknode). Use this mechanism if you
need to handle events and you want to implement another action, such as rendering. If you are
only handling events, use Method 2 (the event callback node), because it does more work for
you.

Methods 1, 2, and 4 are recommended because they are window system-
independent and therefore more flexible. Methods 1 and 2 are probably the easiest.

How Nodes Handle Events: SoHandleEventAction

(Advanced)
Inventor provides a mechanism for automatic event handling by "smart" nodes, which can be
summarized as follows:

1. The render area registers interest in particular events with its window system.

2. The render area receives an event from its window sys$e{tRenderAreareceives an X
event.)

3. The render area translates the event int®a&tvent

4. TheSoEventis sent to the scene manager, which creates an instance of the
SoHandleEventAction.

5. (Advanced)
The handle event action is applied to the top node of the scene graph. This action traverses the
scene graph. Each node implements its own action behavior, as described in the following
paragraphs. When a node is found to handle the event (typically a manipulator), the
SoHandleEventActionstops traversing the scene graph and the node handles the event.

The following sections describe how different types of nodes impleGwandleEventAction

SoNode

SoNode the base class for all nodes, does nothing for the handle event action. Therefore, all
properties, transforms, shapes, cameras, and lights do nothing for this action.

SoGroup

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
10, Handling Events and Selection 5

When the handle event action is applied t&a@roup the group traverses its children from left to

right, asking each child to handle the event. After each child, it checks to see if the event was handled.
If it was, the handle event action ends its traversal of the scene graph. If the event was not handled, the
SoGroupasks the next child to handle the event.

The SoGroupuses thesHandled() method oSoHandleEventActionto find out if an event has been
handled. When a node handles an event, it selldandled()on the handle event action.

SoManipulator

Manipulators are the "smart" objects in the scene graph that handle certain kinds of events (see
Chapter 15 for a more detailed discussion). Typically, a manipulator replaces a node in the scene
graph with an editable version of that node. USlnglandleBoxManip you can change an object’s

size and position by replacing the transform node in the scene graph that affects the object with the
handle box manipulator. This manipulator then scales and translates itself in response to the user
moving the mouse. UsirgoTrackballManip, you can rotate an object around a center point by
replacing the appropriate transform node in the scene graph with a

trackball manipulator. This manipulator then changes its rotation field in response to the user moving
the mouse.

Manipulators, such as the trackball and handle box, require picking information in addition to the
event type. These manipulators g@tPickedPoint()on SoHandleEventActionto see which object

was picked. If the manipulator was picked, it handles the event. You can also create manipulators that
do not require a hit on their geometry to be activated. TBedénventor ToolmakeChapter 8, for
information on creating your own manipulator.)

Grabbing

A node can request that all subsequent events be sent directly to it until further notice. This request is
calledgrabbing For example, after receiving a mouse button down event, a manipulator might grab

all subsequent events until a mouse button up event occursei@eabber() method is called on the
handle event action, with a pointer to the manipulaiis)(

handleEA >setGrabber(this);

The handle event action now applies the action directly to the grabbing node instead of to the scene
graph root. To stop grabbing events, the manipulator usesléaseGrabber()method:

handleEA >releaseGrabber();

If the node callseleaseGrabber()for an event but did not handle the event, the handle event action
initiates a traversal at the root and passes the event to the entire scene graph. For example,
manipulators grab after a mouse

press event. However, if a mouse release occurs with no mouse motion in between, the manipulator
ungrabs and does not handle the event. The event is then passed to the scene graph for processing.

ThegetGrabber() method returns the node that is currently grabbing events. (See
SoHandleEventActionin theOpen Inventor C++ Reference Manyal

Note: Grabbing events in the scene graph does not perform an X server grab.

SoSelection

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
10, Handling Events and Selection 6

An SoSelectiomode, derived frorBoGroup is typically inserted near the top of the scene graph, as
shown in Figure 10 3. When the handle event action is applied3o%electiomode, it traverses its
children in the same way & Group However, if none of its children handles the event, the
selection node itself handles it.

camera Q @ SoSalection
If xi R.r "-."'

Figure 10 3 Inserting an SoSelection Node

Picking

When a left mouse button event occurs, 8tSelectiorobject needs to know which node was

picked. It calls thgetPickedPoint()method on the handle event actiddo$electiorchecks the

picked object on both mouse down and mouse up events to make sure that both events occurred over
the same object. Specify FALSE for thetPickMatching() method to disable this feature, and
SoSelectiorwill get the picked point only on mouse up events.)

The handle event action performs the pick the first time a node in the scene graph requests
information concerning the hit objects (picking is performed only when necessary).
SoHandleEventActioncaches this picking information so that any subsequent nodes encountered
during traversal, such as manipulators and the selection object, can have access to this information
quickly. Only one pick (at most) is performed during the travers&dbtandleEventAction

Selection Policy

After receiving the pick information, tf&oSelectiorclass implements the appropriate selection
policy. Currently, you can choose one of three

selection policies with theolicy field. SoSelectiorkeeps track of the selection list for you. Selected
objects can be highlighted by the render area (see "Highlighting Selected Objects"). The default
selection policySoSelection::SHIFT, is as follows:

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
10, Handling Events and Selection 7

» If the user clicks the left mouse button on a n&d&electiorclears the selection list and adds
the node to the list.

» If the user clicks the left mouse button on a node while pressing the Shitd&slection
toggles the node’s selection status (that is, if the node is currently in the selection list, it is
removed from the list; if the node is not currently selected, it is added to the selection list).

» If the user clicks the left mouse button on nothiBgSelectiorclears the selection list.
With theSoSelection::SINGLEpolicy, only one object can be selected at a time. This policy is as
follows:

» If the user clicks the left mouse button on a n&d&electiorclears the selection list and adds
the node to the list.

» If the user clicks the left mouse button on nothBBgSelectiorclears the selection list.

With theSoSelection:: TOGGLEpolicy, multiple objects can be selected at a time. This policy is as
follows:

» If the user clicks the left mouse button on a n&d&electiortoggles that node’s selection status
(that is, it adds the node to the list if it was not previously selected, or it removes the node from
the list if it was previously selected).

» If the user clicks the left mouse button on nothBBgSelectiordoes nothing.

Tip: Shift selection is the same as Single selection when the Shift key is not pressed, and Toggle
selection when the Shift key is pressed.

If none of these selection policies meets your needs, you can implement your own custom selection
policy by creating an event callback node and passing it a pointerSo3séectiomode. You can

then call select(}deselect()toggle() anddeselectAll()on theSoSelectiomode to implement your

new selection policy. An additional alternative is to derive your own classSoSelection

See "Selection” for more information on the selection list.

Finding the Event Handler

The following example illustrates the process of finding the event handler for a given event. Assume
you have a scene graph containing several shape objects, with a handle box manipulator that affects
the transformation of an indexed face set. The scene graph also comtivianip a manipulator

you've written that handles the middle mouse button event. This scene graph is shown in Figure 10 4.

If the user clicks the left mouse button on the handle box surrounding the face set object on the screen,
the scene manager receives the event and sends itSoHamdleEventActionwith thesetEvent()
method. Here is how the nodes in Figure 10 4 respond during the handle event action traversal:

1. TheSoSeparatorgroup asks each child, from left to right in the scene graph, to handle the event.

2. TheyourManipnode does not handle the event, since it handles only middle mouse button
events.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
10, Handling Events and Selection 8

) carGroup

S0

yvouriManip
{middle mouse)

faceSdat

handleBox
{left mouse)

Figure 10 4 Scene Graph with Manipulators

3. ThecarGroupnode traverses each of its children, from left to right, and asks them to handle the
event. The third child, also a group, traverses its children from left to right.

4. The handle box manipulator node, which handles left mouse events, needs to know if it is in the
picked path. It callgetPickedPoint()on theSoHandleEventAction Since it was hit, it then calls
setHandled()and handles the event.

In Figure 10 5, the scene graph contains a new instance of a fadeea8e({R Suppose the user

clicks on this face set instead of the handle box surroufalieGetlSince the handle box

manipulator is not contained in the pick path and has no effect on the pick path, it does not handle the
event. In this case, tl8Selectiorobject handles the event.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
10, Handling Events and Selection 9

yourianip
{middle mouse)

SHeR -l

faceSat2 faceSeti

PN

handleBox
{left mouse)

Figure 10 5 Picking a Shape Node

Using Event Callback Nodes (Advanced)

If you require an event handling behavior that is not provided by Inventor manipulators, you can
create your own manipulator, or you can write your own event handler usivgmincallback node
Creating new manipulators is discussedli Inventor ToolmakeChapter 8. Using event callback
nodes is discussed in this section.

An event callback nodeontains a user written function that is invoked whenever an event of a

specified type occurs, when the specified path is picked, and when the handle event action traverses
the event callback node. If no path is specified (that is, NULL), the event callback function is invoked
automatically every time an event of the specified type occurs and the node is traversed by the handle
event action. You can write multiple event callback functions and add them to the list of callback
functions maintained by ttf#oEventCallbacknode.

To specify whictBoEventghe callback node is interested in and to specify the callback, use the
addEventCallback() method:

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
10, Handling Events and Selection 10

SoEventCallback *eventCB = new SoEventCallback;
eventCB > addEventCallback(SoKeyboardEvent::getClassTypeld(),
myCallbackFunc , userData);

To specify the path to be monitored, usegéath()method.

When the callback function is invoked, it is passed the user data and a pointer to the instance of
SoEventCallback To remove a callback function from the event callback list, use the
removeEventCallback()method.

Tip: To have your callback invoked for every event type, fag&svent::getClassTypeld(as the
type.

The SoHandleEventAction discussed earlier in this chapter, does its work behind the scenes when
you use event callback functions. It performs a pick when necessary and caches the pick information.
The event callback function itself is responsible for setting whether the event was handled (with the
setHandled()method). If there are multiple event callback functions in an event callback node, all of
them are invoked, regardless of whether one of them has handled the event.

The event callback function can use any of the following metho8eEwnentCallback which
parallel those used in standard Inventor event handling:

getAction() returns the handle event action applied.
getEvent() returns the Inventor event to handle.

getPickedPoint() returns the object hit. The pick is performed automatically by the
SoHandleEventAction

grabEvents() tells the event callback node to grab events. However, the event callback functions
are still invoked only for events of interest.

releaseEvents() tells the event callback node to stop grabbing events.
setHandled() tells the action that the event was handled.
isHandled() returns whether the event has been handled.

Example 10 1 shows the use of event callback functions witBdEeentCallbacknode. It creates

an event callback node that is interested in key press events. The callback fumgepPressCHs

then registered with tredldEventCallback() method. The scene graph has four objects that can be
selected by picking with the left mouse button. (Use the Shift key to extend the selection to more than
one object.) When a key press occurs, it checks to see if the up or down arrow is pressed and scales
the picked object up or down accordingly.

Example 10 1 Using an Event Callback

/I An event callback node so we can receive key press events
SoEventCallback *myEventCB = new SoEventCallback;
myEventCB >addEventCallback(
SoKeyboardEvent::getClassTypeld(),
myKeyPressCB, selectionRoot);
selectionRoot >addChild(myEventCB);

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
10, Handling Events and Selection 11

I/l userData is the selectionRoot from main().
void
myKeyPressCB(void *userData, SoEventCallback *eventCB)
{
SoSelection *selection = (SoSelection *) userData;
const SoEvent *event = eventCB >getEvent();

/I Check for the Up and Down arrow keys being pressed.

if (SO_KEY_PRESS_EVENT(event, UP_ARROW)) {
myScaleSelection(selection, 1.1);
eventCB >setHandled();

} else if (SO_KEY_PRESS_EVENT(event, DOWN_ARROW)) {
myScaleSelection(selection, 1.0/1.1);
eventCB >setHandled();

}

}

Sending Events Directly to the Application (Advanced)

In some cases, you may want to short circuit Inventor event handling and send all events directly to
the applicationSoXtRenderAreacontains a method that enables you to pass events to an application
event handler. For example:

SoXtRenderArea *myRenderArea;
myRenderArea >setEventCallback(myEventCallback, userData);

When this method is passed a non NULL user function, all events that come into the render area are
passed to the user function. The callback function returns a Boolean value. If this value is TRUE, the
callback function handled the event and the render area does not send the event to the scene manager
for handling. If this value is FALSE, the event is sent to the scene graph for handling.

Note that the events sent to the event callback function are not Inventor events. For the
SoXtRenderAreg X events are passed. The application is thus assured of receiving every event,
even those that do not translate to Inventor events.

Example 10 2 demonstrates uséggEventCallback() which causes events to be sent directly to the
application without being sent into the scene graph.

Example 10 2 Sending Events Directly to the Application

/I Clicking the left mouse button and dragging will draw

// points in the xy plane beneath the mouse cursor.

I Clicking middle mouse and holding causes the point set
/I to rotate about the Y axis.

I Clicking right mouse clears all points drawn so far out

/I of the point set.

/l Have render area send events to us instead of the scene
I/l graph. We pass the render area as user data.
myRenderArea >setEventCallback(

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
10, Handling Events and Selection 12

myAppEventHandler, myRenderArea);

SbBool
myAppEventHandler(void *userData, XAnyEvent *anyevent)
{
SoXtRenderArea *myRenderArea = (SoXtRenderArea *) userData;
XButtonEvent *myButtonEvent;
XMotionEvent *myMotionEvent;
SbVec3f vec;
SbBool handled = TRUE;

switch (anyevent >type) {

case ButtonPress:

myButtonEvent = (XButtonEvent *) anyevent;

if (myButtonEvent >button == Button1) {
myProjectPoint(myRenderArea,

myButtonEvent >x, myButtonEvent >y, vec);

myAddPoint(myRenderArea, vec);

} else if (myButtonEvent >button == Button2) {
myTicker >schedule(); // start spinning the camera

} else if (myButtonEvent >button == Button3) {
myClearPoints(myRenderArea); // clear the point set

}

break;

case ButtonRelease:
myButtonEvent = (XButtonEvent *) anyevent;
if (myButtonEvent >button == Button2) {
myTicker >unschedule(); // stop spinning the camera

}

break;

case MotionNotify:
myMotionEvent = (XMotionEvent *) anyevent;
if (myMotionEvent >state & Button1Mask) {
myProjectPoint(myRenderArea,
myMotionEvent >X, myMotionEvent >y, vec);
myAddPoint(myRenderArea, vec);
}

break;

default:
handled = FALSE;
break;

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor

10, Handling Events and Selection 13

, Release 2 Chapter

return handled;

Selection

The SoSelectiomode provides several additional features that relate to the topic of user interaction.
These features include managing the selection list (introduced in "Selection Policy"), highlighting the
selected objects, and the use of user written callback functions that are invoked when the selection list
changes. The following sections describe each of these features.

Managing the Selection List

The SoSelectiomode keeps a list of paths to objects that have been selected. This list is called the
selection list Typically, the user selects an object or objects and then performs an operation on the
selected objects, such as copying them, deleting them, or setting their color.

Each path in the selection list begins with the selection node and ends with the selected object.
Objects can be added to and removed from the selection list in one of two ways:

* By the event processing mechanism of the selection object itself. This mechanism is based on the
current selection policy.

» By methods orsoSelectiorthat allow you to select, deselect, toggle, and clear objects from the
selection list. You need to use these methods only if you want to manage the selection list
directly.

The methods o8oSelectiorthat are available for direct management of the selection list are as

follows:

selectpath adds a path to the selection list

deseledfpath removes a path from the selection list

togglgpath toggles a path in the selection list (that is, adds the path if it is not already in the
list, or removes the path if it is in the list)

deselectAl() removes all paths from the selection list

isSelecte() returns TRUE if the passed path is in the selection list

getNumSelecte@) returns the length of the selection list
getList() returns the selection list
getPathindey returns one itenpéth in the selection list

For convenience, you can provide these methods with a node instead of a path. If the node is instanced
multiple times in the scene graph, the path to the first instance of the node is used.

For example, suppose each of the objects in the scene graph has a name associated with it, such as a
car part. The user selects the object by clicking on a name from a list displayed on the screen
("hubcap"). Your program then uses this name, finds the path to the selected object, and adds this path
to the selection list. Example 10 3 shows using a Motif style list to select objects in this manner. This
example shows selecting and deselecting objects using a Motif style list that contains names for four
objects (cube, sphere, cone, cylinder).

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
10, Handling Events and Selection 14

Example 10 3 Using a Motif Style List to Select Objects

I
/
I
I
I
I
I
I
I
I
I
I
I
I

-~

The scene graph has 4 objects which may be
selected by picking with the left mouse button
(use shift key to extend the selection to more
than one object).

Hitting the up arrow key will increase the size of
each selected object; hitting down arrow will decrease
the size of each selected object.

This also demonstrates selecting objects from a Motif style

list, and calling select/deselect functions on the

SoSelection node to change the selection. Use the Shift

key to extend the selection (i.e. pick more than one
item in the list.)

enum objects {

CUBE,
SPHERE,
CONE,

CYL,
NUM_OBJECTS

static char *objectNames[] = {

"Cube",
"Sphere",
"Cone",
"Cylinder"

cube >setName(objectNames[CUBE]);

The Inventor Mentor:

sphere >setName(objectNames[SPHERE));
cone >setName(objectNames[CONE]);
cyl >setName(objectNames[CYL]);

/I Create a table of object names

XmString *table = new XmString[NUM_OBJECTS];
for (i=0; ikNUM_OBJECTS; i++) {
table[i] = XmStringCreate(objectNames]i],
XmSTRING_DEFAULT_CHARSET);

/I Create the list widget
n=0;
XtSetArg(args[n], XmNitems, table);

10, Handling Events and Selection 15

Programming Object Oriented 3D Graphics with Open Inventor

, Release 2 Chapter

n++;
XtSetArg(args[n], XmNitemCount, NUM_OBJECTS);
n++;
XtSetArg(args[n], XmNselectionPolicy, XmMEXTENDED_SELECT);
n++;
motifList = XmCreateScrolledList(shell, "funcList", args, n);
XtAddCallback(motifList, XmNextendedSelectionCallback,

(XtCallbackProc) myListPickCB, (XtPointer) selection);

/I Clear the selection node, then loop through the list
/I and reselect
selection >deselectAll();

/I Update the SoSelection based on what is selected in

/I the list. We do this by extracting the string

/I from the selected XmString, and searching for the

/I object of that name.

for (inti=0; i < listData >selected_item_count; i++) {
mySearchAction.setName(

SoXt::decodeString(listData >selected_items]i]));

mySearchAction.apply(selection);
selection >select(mySearchAction.getPath());

}

Another example of how the selection list might be used is that the user selects several objects and
wants to make all of them twice their original size. Here, you wouldjetlist() or getPath()for

each of the selected objects. Then you would find the approfoatansform node in the path for

each object and modify iscaleFactorfield. Example 10 4 is an example of using the selection list in
this way.

Example 10 4 Using the Selection List

I/l Scale each object in the selection list
void
myScaleSelection(SoSelection *selection, float sf)
{
SoPath *selectedPath;
SoTransform *xform;
SbVec3f scaleFactor;
intij;
/I Scale each object in the selection list
for (i = 0; i < selection >getNumSelected(); i++) {
selectedPath = selection >getPath(i);

xform = NULL;

/I Look for the shape node, starting from the tail of the

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
10, Handling Events and Selection 16

/I Look for the shape node, starting from the tail of the
/I path. Once we know the type of shape, we know which
/I transform to modify
for (j=0; j < selectedPath >getLength() &&
(xform == NULL); j++) {
SoNode *n = (SoNode *)selectedPath >getNodeFromTail(j);
if (n >isOfType(SoCube::getClassTypeld())) {
xform = cubeTransform;
} else if (n >isOfType(SoCone::getClassTypeld())) {
xform = coneTransform;
} else if (n >isOfType(SoSphere::getClassTypeld())) {
xform = sphereTransform;
} else if (n >isOfType(SoCylinder::getClassTypeld())) {
xform = cylTransform;
}

}
/I Apply the scale

scaleFactor = xform >scaleFactor.getValue();
scaleFactor *= sf;
xform >scaleFactor.setValue(scaleFactor);
}
}

Highlighting Selected Objects

Usually, when objects are selected, they are highlighted or treated in some other special way to
distinguish them from unselected objects. WithSletRenderArea Inventor provides two

highlight styles. You can choose to have highlighted objects drawn in wireframe with a particular
color, line pattern, and line width, or you can have selected objects drawn with a wireframe bounding
box surrounding each object. The type of highlight can be sBo¥tRenderArea The default

highlight style is no highlight.

Figure 10 6 shows the class tree for the highlighting classes. Because highlighting objects are simply
another way to render the scene, Inventor highlights are derived fr@o®&idrenderAction. To
create your own custom highlights, §ée Inventor Toolmake€Chapter 11.

. ZobBox HighlightRenderacticn
SoGLRenderaction 4[
SoLineHighlightRenderaction

Figure 10 6 Highlight Classes

SO ction

To specify which highlight to use, pass a highlight tostt6&LRenderAction() method on
SoXtRenderArea The action will render highlights for selected objects in the scene. Note that
whenever you create a new highlight and pass it to the render area, you are responsible for deleting
the highlight after the render area is destroyed. The render area will not delete it for you.

Tip: The redraw sensor employed by the render area does not trigger a redraw when the selection

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
10, Handling Events and Selection 17

changes. Use thledrawOnSelectionChanges(ronvenience method @oXtRenderAreato ensure
that a redraw occurs when the selection changes. Pass the selection node that should be monitored for
changes.

How Highlighting Occurs

First, the highlight render action renders the scene graph. Then it renders the path for each object in
the selection list. Fd@8oLineHighlightRender

Action, the selected objects are drawn in wireframe, with the specified color, line pattern, and line
width. The following methods are available fwoLineHighlightRenderAction:

setColor (color) specifies the highlight color

setLinePattern (patterr)
specifies the line pattern of the highlight

setLineWidth (width)
specifies the line width of the highlight

ForSoBoxHighlightRenderAction the selected objects are drawn with a wireframe box surrounding
them, using the specified color, line pattern, and line width. Methods for
SoBoxHighlightRenderActionare the same as f8oLineHighlightRenderAction.

Custom Highlighting

If you want highlight styles other than the line and box highlight styles provided by Inventor, you can
do either of the following:

» Create a new subclass fr&@oGLRenderAction and pass it to
renderArea >setGLRenderAction()

» Specify NULL foraddSelectionHighlight()and then use selection callback functions, described
in the following section, to add geometry, draw style, and other required nodes to the scene graph
for highlighting selected objects. A common highlighting technique is to use selection callbacks
to add a manipulator to selected objects.

SeeThe Inventor Toolmake€hapter 10, for a detailed explanation of creating your own highlight.

Callback Functions for Selection Changes

The SoSelectiorclass has several types of callback functions associated with it: selection callbacks,
deselection callbacks, a pick filter callback, start callbacks, and finish callbacks. For example, you
might write a callback function that puts a trackball around an object every time it is selected. This
function would be aelection callbackunction. You would probably write a second callback function

to remove the trackball when the object is deselected. This function wouldelselaction callback

function. Thepick filter callbackfunction is invoked whenever an object is picked and is about to be
selected or deselected. This function allows you to truncate the selection path at a certain object type,
such as a node kit (see Example 10 8).

A start callback function is called whenever the selection is about to change, and a finish callback
function is called when the selection is finished changing. These functions are useful for

implementing undo and redo features. When the selection is about to change, you can save the current
selection in an undo buffer. To undo a change, you restore this saved information.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
10, Handling Events and Selection 18

Another example of a user callback function for selected objects would be a function that checks to
see if the material editor is on the screen when an object is selected. If it is, then the function finds the
material node affecting the selected object and attaches the material editor to that node.

The following methods allow you to specify what happens when an object is selected and deselected:

addSelectionCallbackfunctionNameuserDatd
removeSelectionCallbackunctionNameuserDat3g
are invoked whenever an object is selected.

addDeselectionCallbackunctionNameuserDatg
removeDeselectionCallbacfunctionNameuserData
are invoked whenever an object is deselected.

setPickFilterCallback(functionNameuserDatd
is invoked whenever an object is picked and is about to be selected or deselected.
This function allows you to truncate the selection path at a certain object type.

addStartCallback(functionNameuserDatg
removeStartCallbackfunctionNameuserData
are invoked whenever the selection list is about to
change.

addFinishCallback(functionNameuserDatg
removeFinishCallbackfunctionNameuserDatg
are invoked when the selection list is finished changing.

These methods allow you to pass in a callback function and a pointer to user data. If you specify
NULL for the pick filter callback function, whatever is picked will be selected and deselected.

Example 10 5 illustrates the use of selection callback functions. The scene graph in this example has a
sphere and a 3D text object. A selection node is placed at the top of the scene graph. When an object
is selected, a selection callback is invoked to change the material color of that object.

Example 10 5 Using Selection Callback Functions

#include <X11/Intrinsic.h>

#include <Inventor/Sb.h>

#include <Inventor/Solnput.h>

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/SoXtRenderArea.h>
#include <Inventor/nodes/SoDirectionalLight.h>
#include <Inventor/nodes/SoMaterial.h>
#include <Inventor/nodes/SoPerspectiveCamera.h>
#include <Inventor/nodes/SoPickStyle.h>
#include <Inventor/nodes/SoSelection.h>
#include <Inventor/nodes/SoSphere.h>
#include <Inventor/nodes/SoText3.h>

#include <Inventor/nodes/SoTransform.h>

// global data
SoMaterial *textMaterial, *sphereMaterial;

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
10, Handling Events and Selection 19

static float reddish[] = {1.0, 0.2, 0.2};
static float white[] = {0.8, 0.8, 0.8};

I/l This routine is called when an object gets selected.
/' We determine which object was selected, and change
// that object’s material color.
void
mySelectionCB(void *, SoPath *selectionPath)
{
if (selectionPath >getTail() >
isOfType(SoText3::getClassTypeld())) {
textMaterial >diffuseColor.setValue(reddish);
} else if (selectionPath >getTail() >
isOfType(SoSphere::getClassTypeld())) {
sphereMaterial >diffuseColor.setValue(reddish);

}
}

/I This routine is called whenever an object gets deselected.
Il We determine which object was deselected, and reset
/I that object’s material color.
void
myDeselectionCB(void *, SoPath *deselectionPath)
{
if (deselectionPath >getTail() >
isOfType(SoText3::getClassTypeld())) {
textMaterial >diffuseColor.setValue(white);
} else if (deselectionPath >getTail() >
isOfType(SoSphere::getClassTypeld())) {
sphereMaterial >diffuseColor.setValue(white);

}
}

void

main(int argc, char **argv)

{
/I Initialize Inventor and Xt
Widget myWindow = SoXt::init(argv[0]);
if (myWindow == NULL) exit(1);

/I Create and set up the selection node

SoSelection *selectionRoot = new SoSelection;
selectionRoot >ref();

selectionRoot >policy = SoSelection::SINGLE;
selectionRoot > addSelectionCallback(mySelectionCB);
selectionRoot > addDeselectionCallback(myDeselectionCB);

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
10, Handling Events and Selection 20

/I Create the scene graph
SoSeparator *root = new SoSeparator;
selectionRoot >addChild(root);

SoPerspectiveCamera *myCamera = new SoPerspectiveCamera,;
root >addChild(myCamera);
root >addChild(new SoDirectionalLight);

/I Add a sphere node

SoSeparator *sphereRoot = new SoSeparator;
SoTransform *sphereTransform = new SoTransform;
sphereTransform >translation.setValue(17., 17., 0.);
sphereTransform >scaleFactor.setValue(8., 8., 8.);
sphereRoot >addChild(sphereTransform);

sphereMaterial = new SoMaterial,
sphereMaterial >diffuseColor.setValue(.8, .8, .8);
sphereRoot >addChild(sphereMaterial);
sphereRoot >addChild(new SoSphere);

root >addChild(sphereRoot);

/I Add a text node

SoSeparator *textRoot = new SoSeparator;
SoTransform *textTransform = new SoTransform;
textTransform >translation.setValue(0., 1., 0.);
textRoot >addChild(textTransform);

textMaterial = new SoMaterial;

textMaterial >diffuseColor.setValue(.8, .8, .8);

textRoot >addChild(textMaterial);

SoPickStyle *textPickStyle = new SoPickStyle;

textPickStyle >style.setValue(SoPickStyle::BOUNDING_BOX);
textRoot >addChild(textPickStyle);

SoText3 *myText = new SoText3;

myText >string = "rhubarb";

textRoot >addChild(myText);

root >addChild(textRoot);

SoXtRenderArea *myRenderArea = new SoXtRenderArea(myWindow);
myRenderArea >setSceneGraph(selectionRoot);

myRenderArea >setTitle("My Selection Callback™);

myRenderArea >show();

/l Make the camera see the whole scene

const SbViewportRegion myViewport =
myRenderArea >getViewportRegion();

myCamera >viewAll(root, myViewport, 2.0);

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
10, Handling Events and Selection 21

SoXt::show(myWindow);
SoXt::mainLoop();
}

Pick Filter Callback (Advanced)

The pick filter callback returns a path for the new object to be selected, deselected, or toggled:

typedef SoPath *SoSelectionPickCB(void * userData , SoDetall * d);
void setPickFilterCallback (SoSelectionPickCB * f,

void * userData = NULL,

SbBool callOnlylfSelectable = TRUE);

This callback can look at the picked point to see what was picked and return a path to whatever the
selection policy is to be applied to. It can truncate the picked path so that it ends in a particular type of
node. If an unselectable object is picked, the pick filter callback determines how that information is
used. When the callback is set, the application passes in a Boolean value that specifies whether the
callback is called only if the object is selectable, or is called for all objects. The pick filter callback can
then return one of the following:

* NULLDO the selection behaves as if nothing were picked (for SINGLE and SHIFT selection
policies, this clears the selection list).

» Path] this path will be selected or deselected according to the selection policy. It must pass
through the selection node.

» Path not passing through the selection dbithe selection ignores this pick event and no change
is made to the selection list.

» Path containing only the selection nddepplies the selection policy as though nothing were
picked, but continues traversal.
Examples 10 6 through 10 8 illustrate sample pick filter callbacks the application could use.

Example 10 6 shows the use of the pick filter callback to implement a top level selection policy.
Rather than selecting the actual node that was picked, it always selects the topmost group beneath the
selection node. Figure 10 7 shows the two viewers created by this example.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
10, Handling Events and Selection 22

= Default Selection

= Top level Selection

& ¢RI 2D

A F
If J

Rotx Roly [T m Zoom |[45.8 Dolly ||| Rotx Roty [1 Zoom Hs.8 Dolly

Figure 10 7 Top Level Selection Policy (left) and Default Selection Policy (right)

Example 10 6 Creating a Top Level Selection Policy

#include <X11/StringDefs.h>
#include <X11/Intrinsic.h>

#include <Inventor/SoDB.h>

#include <Inventor/Solnput.h>

#include <Inventor/SoPath.h>

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>
#include <Inventor/actions/SoBoxHighlightRenderAction.h>
#include <Inventor/misc/SoPickedPoint.h>

#include <Inventor/nodes/SoSelection.h>

Il Pick the topmost node beneath the selection node
SoPath *
pickFilterCB(void *, const SoPickedPoint *pick)
{
/I See which child of selection got picked
SoPath *p = pick >getPath();
int i
for (i=0; i< p >getLength() 1;i++){
SoNode *n = p >getNode(i);
if (n >isOfType(SoSelection::getClassTypeld()))
break;

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
10, Handling Events and Selection 23

}
/I Copy 2 nodes from the path:

/I selection and the picked child
return p >copy(i, 2);

void
main(int argc, char *argv[])
{
// Initialization
Widget mainWindow = SoXt::init(argv[0]);

/I Open the data file
Solnput in;
char *datafile = "parkbench.iv";
if (! in.openFile(datafile)) {
fprintf(stderr, "Cannot open %s for reading.\n",
datafile);
return;

/I Read the input file

SoNode *n;

SoSeparator *sep = new SoSeparator;

while ((SoDB::read(&in, n) != FALSE) && (n !'= NULL))
sep >addChild(n);

/I Create two selection roots one will use the pick filter.
SoSelection *topLevelSel = new SoSelection;
topLevelSel >addChild(sep);

topLevelSel >setPickFilterCallback(pickFilterCB);

SoSelection *defaultSel = new SoSelection;
defaultSel >addChild(sep);

/I Create two viewers, one to show the pick filter for top

/I level selection, the other to show default selection.

SoXtExaminerViewer *viewerl = new
SoXtExaminerViewer(mainWindow);

viewerl >setSceneGraph(topLevelSel);

viewerl >setGLRenderAction(new SoBoxHighlightRenderAction());

viewerl >redrawOnSelectionChange(topLevelSel);

viewerl >setTitle("Top Level Selection");

SoXtExaminerViewer *viewer2 = new SoXtExaminerViewer();

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
10, Handling Events and Selection 24

viewer2 >setSceneGraph(defaultSel);

viewer2 >setGLRenderAction(new SoBoxHighlightRenderAction());
viewer2 >redrawOnSelectionChange(defaultSel);

viewer2 >setTitle("Default Selection™);

viewerl >show();
viewer2 >show();

SoXt::show(mainWindow);
SoXt::mainLoop();

}

Example 10 7 shows the use of the pick filter callback to pick through manipulators. In the complete
example, the scene graph contains the text "Open Inventor." Clicking the left mouse on an object
selects it and adds a manipulator to it. Clicking again deselects it and removes the manipulator. The
pick filter is used to deselect the object rather than select the manipulator.

Example 10 7 Picking through Manipulators

SoPath *
pickFilterCB(void *, const SoPickedPoint *pick)

{
SoPath *filteredPath = NULL;

/I See if the picked object is a manipulator.

/l'If so, change the path so it points to the object the

/l manip is attached to.

SoPath *p = pick >getPath();

SoNode *n = p >getTail();

if (n >isOfType(SoTransformManip::getClassTypeld())) {
/I Manip picked! We know the manip is attached
/I to its next sibling. Set up and return that path.
int manipindex = p >getindex(p >getLength() 1);
filteredPath = p >copy(0, p >getLength() 1);
filteredPath >append(manipindex + 1); // get next sibling

}
else filteredPath = p;

return filteredPath;

}

Example 10 8 illustrates using the pick filter callback to truncate the pick path at a node kit. This filter
facilitates editing the attributes of objects because the node kit takes care of the part creation details.

Example 10 8 Selecting Node Kits

I/l Truncate the pick path so a nodekit is selected
SoPath *

pickFilterCB(void *, const SoPickedPoint *pick)
{

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
10, Handling Events and Selection 25

/I See which child of selection got picked
SoPath *p = pick >getPath();
int i
for (i= p >getLength() 1;i>=0;i){
SoNode *n = p >getNode(i);
if (n >isOfType(SoShapeKit::getClassTypeld()))
break;

/I Copy the path down to the nodekit
return p >copy(0, i+1);

Chapter 11
File Format

Chapter Objectives
After reading this chapter, you'll be able to do the following:
e Write a scene graph to a file in ASCII or binary format
» Read a file into the Inventor database
» Use the Inventor file format as an alternative to creating scene graphs programmatically

* Read a scene graph from a buffer in memory

This chapter describes the Inventor ASCII file format. Whenever you apply a write action to a node,
path, or path list, the output file is written in this format. You can read files that use this format into

the Inventor scene database by using the read method on the database. The file format is also used for
transferring 3D copy and paste data between processes.

Writing a Scene Graph

As described in Chapter 9, you can apply a write action to a node, path, or path list. When the write
action is applied to a node, it writes the entire subgraph rooted at that node.

SoWriteAction writeAction;

writeAction.apply(root); //writes the entire scene graph to stdout

Reading a File into the Database

You can read a scene graph from a file into the scene database ustagl&i§) method on the
Inventor database. This example reads a file with the given filename and returns a separator
containing the file. It returns NULL if there is an error reading the file.

SoSeparator *
readFile(const char *filename)
{
/I Open the input file
Solnput myScenelnput;
if (!myScenelnput.openFile(filename)) {
fprintf(stderr, "Cannot open file %s\n", filename);
return NULL,;

/I Read the whole file into the database
SoSeparator *myGraph = SoDB::readAll(&myScenelnput);
if (myGraph == NULL) {
fprintf(stderr, "Problem reading file\n");
return NULL,;
}

myScenelnput.closeFile();

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
11, File Format 1

return myGraph;

}

There are twaead() methods. One method reads a graph rooted by a node, returning a pointer to that
node. The other reads a graph defined by a path. You must call the correct method, based on the
contents of the input. When you read in a model, you usually read a node. If you are cutting and
pasting with paths, you will need to read a path.

SoDBuses the class when reading Inventor data files. This class can also be used to read from a
buffer in memory. By defaul§olnput looks for a specified file in the current directory (unless the
specification begins with /). You can add directories to the search path waitdid&ectory

First() andaddDirectoryLast() methods (see th@pen Inventor C++ Reference Manwai Solnput

). Use theslearDirectories()method to clear the directory list.

You can also add a list of directories that is specified as the value of an environment variable. Use the
following methods orsolnput:

addEnvDirectoriesFirst()
addEnvDirectoriesLast()

File Format Syntax

The following sections outline the syntax for the Inventor ASCII file format. In this file format, extra
white space created by spaces, tabs, and new lines is ignored. Comments begin with a number sign (#)
anywhere on a line and continue to the end of the line:

this is a comment in the Inventor file format

For simplicity, this discussion focuseswriting a scene graph to a file. This same format applies to
files you create that will beeadinto the Inventor database.

See thepen Inventor C++ Reference Mandal descriptions of the file format for each Inventor
class.

File Header

Every Inventor data file must have a standard header to identify it. This header is the first line of the
file and has the following form:

#lnventor V2.0 ascii
or
#lnventor V2.0 binary

To determine whether a random file is an Inventor file, us&tB::isValidHeader() method and

pass in the beginning of the file in question. Although the header may change from version to version
(V2.0 is the current version), it is guaranteed to begin with a # sign, be no more than 80 characters,
and end at a newline. Therefore, the C () routine can be usebVElidHeader() method returns

TRUE if the file contains an Inventor header. Inventor also reads older (V1.0) files and converts them.

Writing a Node

A node is written with the following elements:

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
11, File Format 2

* Name of the node (without ti&® prefix)
e Open brace ({)
» Fieldswithin the node (if any), followed lghildrenof the node (if any)

» Close brace (})

For example:

DrawStyle {
style LINES
lineWidth 3
linePattern 255

Writing Values within a Field

Fields within a node are written as the name of the field, followed by the value or values contained in
the field. If the field value has not been changed from its default value, that field is not written out.
Fields within a node can be written in any order. An example of writing field values is as follows:

Transform {
translation 0 40.2

LightModel {
model BASE_COLOR

Material {
ambientColor .3.1.1
diffuseColor [.8.7 .2,
1.2.2,
2 1.2,
2.2 1]
specularColor .4 .3 .1
emissiveColor .1 0.1

}

Brackets surround multiple value fields, with commas separating the values, as shown for the
diffuseColor field in the preceding example. It's all right to have a comma after the last value as well:

[valuel, value2, valuds,

Single value () fields do not contain any brackets or commas. Multiple value () fields usually have
brackets, but they are not necessary if only one value is present:

specularColor .4 .3.1
or
specularColor [.4 .3 .1]

The value that is written depends on the type of the field, as described in the following list.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
11, File Format 3

Type of Field

Acceptable Formats

longs, shorts, unsigned shorts

floats

names, strings

enums

bit mask

vectors

colors

integers, in decimal, hexadecimal, or octal;
For example:

255
Oxff
0177

integer or floating point number. For example:

13
13.0
13.123
1.3e2

double quotation marks (" ") around the name if it is more than one word, or just
the name (with no white space) if it is a single word (quotation marks are
optional). For example:

label " front leftleg "

label car You can have any ASCII character in the string, including

newlines and backslashes, except for double quotation marks. To include a double
guotation mark in the string, precede it with a backslash (\").

either the mnemonic form of the enum or the integer form. (The mnemonic form
is recommended, both for portability and readability of code.) For example:

MaterialBinding {
value PER_FACE

}

one or more mnemonic flags, separated by a vertical bar (]) if there are multiple
flags. When more than one flag is used, parentheses are required:

Cylinder {
parts SIDES
}

Cylinder {
parts (SIDES | TOP)
}

n floats separated by white space:
(SbVeaf, wheren is
the number of

PerspectiveCamera {
components of the position 00 9.5
vector) }

3 floats (RGB) separated by white space:

BaseColor {

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter

11, File Format 4

rgb 0.30.20.6
}

rotation a 3 vector for the axis, followed by a float for the angle (in radians), separated by
white space:

Transform {
rotation 010 1.5708
#y axis ... pi\xb9 /2 radians

}
matrix 16 floats, separated by white space
path arSFPathhas one value, a pointer to a path. To write this value, write the path

(see "Writing a Path"). AMFPath has multiple values, which are all pointers to
paths. To write this value, enclose the path list in brackets, and use commas to
separate each patlir§t_path, second_path, ... nth_phth

node arBFNodehas one value, a pointer to a node. To write this value, write the node.
An MFNode has multiple values, which are all pointers to nodes. To write this
value, enclose the node list in brackets, and use commas to separate each node]
nodel, node2, ... noden

Boolean TRUE, FALSE or 0, 1:
SoFile {
isWriteBack FALSE

Ignore Flag

The Ignore flag for a field (see Chapter 3) is written as a tilde (~), either after or in place of the field
value or values. For example:

transparency [.9, .1] ~
or
transparency ~

The first case preserves the values even though the field is ignored. The second case uses the default
value but ignores the field.

Tip: The Ignore flag applies only to properties. It is not used for cameras, lights, and shapes.

Field Connections

Connections are written as the object containing the field or output connected to the field, followed by
a period (.) and then the name of the field or output. For example:

Separator {
DEF Trans Translation { translation 12 3}
Cube {}
}
Separator {
Translation { translation 0 0 0 = USE Trans.translation }

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
11, File Format 5

Cone {}
}

The value of a connected field (0 0 0 in this case) is optional, so the Sgaoisthtion node could
be written as

Translation { translation = USE Trans.translation }
If an ignored field is connected, the connection specification follows the Ignore flag:

translation 000 ~ = USE Trans.translation
#or
translation ~ = USE Trans.translation

If a value is given as well as a connection, the value is used for the field. If a value is sent along the
connection later, it will override the value.

Global Fields

A global field needs to have at least one connection in order for it to be written out. It is written out in
this format:

GlobalField{
type
value

}

The braces contain the type and value of the field. The name of the global field is stored as the name
of the value field. For example, tiext3 node could be connected to a global field (here,

currentFile) that stores the current file name an application is working onT@i8 node would

then always display that current file name. Here is the ASCII file format for that connection:

Text3 {
string "™ = GlobalField {
type SFString
currentFile "aircar.iv"
} . currentFile

}

Writing an Engine
The syntax for an engine definition is the same as that of a nongroup node:

EngineTypd
input_fields

}

Engines can’t be written on their own; they must be connected to at least one part of the scene graph.
A field to engine connection is specified as follows:

fieldname value engine . outputname
Here is an example of changing a sphere’s radius usiBg@neShotngine:

Sphere {
radius 0.5 = OneShot { duration 3.0 } . ramp

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
11, File Format 6

}

For a more complex example, see "Defining and Using Shared Instances of Nodes".

Writing a Path
A path (see Chapter 3) is written with the following elements:

 The wordPath

Open brace{()

* The entire subgraph that is rooted on the head node for the path

e Number of indices in the rest of the path chain

* The indices themselves

e Close brace}(

When Inventor encounters separator groups within the subgraph, it ignores them if they do not affect
the nodes in the path chain. Written indices for the children within a group are adjusted to account for
the skipped separator groups. For example, in Figure 11 1Niedmunted as child index 1 when

written, since the two previous children are separator groups that do not affect this node at all. (The
indices in the path itself remain unchanged.)

N

(child 0y —ignored— —-1ignored- N

Path

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
11, File Format 7

Figure 11 1 Adjusting Path Indices to Account for Separator Groups

Note: If a path contains connections to nodes that are not part of the path, these nodes are not written
out. For example, if a path contains an engine connected to a node outside the path, the engine will be
written, but the node will not be.

Example 11 1 illustrates the process of writing a path to a file. First, here is the file for the scene
graph, which creates chartreuse, rust, and violet spheres.

Separator {
PerspectiveCamera {
position 0 0 9.53374
aspectRatio 1.09446
nearDistance 0.0953375
farDistance 19.0675
focalDistance 9.53374

DirectionalLight {
}

Transform {
rotation 0.189479 0.981839 0.00950093 0.102051
center000

DrawStyle {
}

Separator {
LightModel {
model BASE_COLOR
}
Separator {
Transform {
translation 2.200
}
BaseColor {
rgb .2 .6 .3 # chartreuse

}
Sphere {}

}
Separator {
BaseColor {
rgb .6 .3.2 #rust

}
Sphere {}

}

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
11, File Format 8

Separator {
Transform {
translation 2.2 0 0
}
BaseColor {
rgb.3.2.6 # violet
}
Sphere {}
}
}

Figure 11 2 shows the scene graph for this file.

camera light xtm drawst separator
lighthod
xfm belr sphere belr sphere xfm belr sphere
(chartreuse) {rust) {violet)

Figure 11 2 Scene Graph for a Scene with Three Spheres

If you pick the third sphere (the violet one), the pick path could be written to a file as shown in
Example 11 1. First, the subgraph under the root node is written. This description is followed by the
number of indices in the path (3), and the indices themselves (4, 1, 2), as shown in Figure 11 3.

Example 11 1 Writing a Path

Path {
Separator {
PerspectiveCamera {
position 0 0 9.53374
aspectRatio 1.09446
nearDistance 0.0953375
farDistance 19.0675

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
11, File Format 9

focalDistance 9.53374
}
DirectionalLight {
}
Transform {
rotation 0.189479 0.981839 0.00950093 0.102051
}
DrawsStyle {
}
Separator {
LightModel {
model BASE_COLOR
}
Separator {
Transform {
translation 2.2 0 0
}
BaseColor {
rgb 0.30.2 0.6
}
Sphere {
}
}

N P WY

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
11, File Format 10

50 E O O

camera light xtm drawst separator
lightMod
s < @
xfm belr sphere belr sphere xfm belr sphere
(chartreuse) {rust) {(violet)
e P ath{x)

Figure 11 3 Pick Path for Violet Sphere

Defining and Using Shared Instances of Nodes

In the file format, the keyword DEF introduces a named instance of a node, path, or engine. It can be
referenced later with the USE keyword. For example:

/I This example shows keeping a cone between two cubes using an
Il InterpolateVec3f engine.

Separator {
DEF A Translation { translation 4 00}
Cube {}
}
Separator {
DEF B Translation { translation 4 5 6 }
Cube {}
}
Separator {
Translation { translation 0 0 0 =
InterpolateVec3f {
input0 0 0 0 = USE A.translation
inputl 0 0 0 = USE B.translation
alpha 0.5
} . output

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
11, File Format 11

}
Cone{}

}

The name can be any vathName In certain cases, Inventor adds some extra characters to the name
when the file is written out. For example, consider the somewhat unusual scene graph shown in

Figure 11 4. To indicate which instance of the beachball node is used by node B, the scene graph is
written out as follows:

Separator{
Separator{
DEF beachball+0
DEF beachball+1
}
Separator{
USE beachball+0
USE beachball+1
}
}

When the scene graph is read back in, the original names are preserved, buftia¢ions are
discarded.

[0:0]]

0 o

"beachball” "beachball”

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
11, File Format 12

Figure 11 4 Shared Instances of Nodes

Writing a Node Kit
When a node kit is written, it includes one field for each part. For example:

AppearanceKit {
lightModel LightModel { model PHONG }
drawStyle DrawStyle { style LINES}
material Material { diffuseColor .5.5.5}
complexity Complexity { value .5}

}

In this format, the name of the fielightModel) is followed by the name of the nodgghtModel),

and then the node’s fields and values (each part is containe@&otS&iNoddield). If the part has not

been created, or if it is NULL, it is not written out. However, if a part is created by default (such as the
shape part in th8oShapeKij}, and if the part is explicitly set to NULL, it is written out.

This example shows nesting node kits. Here, the appearance kit is the valuapquedrancefield.
The appearance kit, in turn, hamaterial field.

SeparatorKit {
appearance AppearanceKit {
material Material { diffuseColor 111}

}
}

When Inventor writes out a node kit, it writes out the intermediate parts. When you enter the
information yourself, you can use a shorthand method and omit the intermediate parts. For example, if
you omit theAppearanceKit, theSeparatorKit knows to add aAppearanceKit and put the

Material node inside. So, you could simply enter this:

SeparatorKit {
material Material { diffuseColor 111}
}
The file format for list parts within node kits is a bit more specialized. Each list part has three standard
fields:

containerTypeName
for example, separator or switch; in string format

childTypeName anSoMFString that lists the types of children that this node is allowed to contain
containerNode the node that contains the children
For example, here is tlehildList part of an instance &oSeparatorKit:

SeparatorKit {
childList NodeKitListPart {
containerTypeName "Separator”
childTypeNames "SeparatorKit"
containerNode Separator {
SeparatorKit {

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
11, File Format 13

transform Transform { translation 100}
}
SeparatorKit {
transform Transform { translation 010}
}
SeparatorKit {
transform Transform { translation 00 1}
}
}
}
}

By default, Inventor does not write out the internal parts, such as separators and groups, or fields with
default values. But if the node kit is in a path, everything is written out, as the following example

shows. Generally, it writes out the parts in the reverse order they are defined in the catalog, with the
leaf nodes first:

#lnventor V2.0 ascii

SeparatorKit {
appearance DEF +0 AppearanceKit {
material DEF +1 Material {
diffuseColor 101
}

}
childList DEF +2 NodeKitListPart {

containerTypeName "Separator"
childTypeNames "SeparatorKit"
containerNode DEF +3 Separator {
ShapeKit {
appearance DEF +4 AppearanceKit {
material DEF +5 Material {}
}
transform DEF +6 Transform {}
shape DEF +7 Cube {}
topSeparator Separator {

USE +4
USE +6
DEF +8 Separator {
USE +7

}

}

shapeSeparator USE +8

}
}
}

topSeparator Separator {

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
11, File Format 14

USE +0
USE +2

Including Other Files

To include a file within another file, use &oFilenode. This node is useful when you are building
scene graphs that include many objects. The objects can reside in their own fibes;ikmbdes
can be used to refer to them without copying them directly into the new fil&oHilenode is
written as

File {
name "myFile.iv"

}

where thaenamefield is the name of the file to be included. On read, the contents of the file myFile.iv
are added as hidden childrerSafile On write, Inventor just writes the filename (but not the
children).

The objects within aBoFilenode are not editable. You can copy the contents 8bBilenode
using the method

SoFile::copyChildren()

or you can modify theamefield of theSoFilenode. Whenever the value of tieemefield changes,

the new file is read in. If the name is not an absolute path name, the list of directori€3otepon

is used to search for the file (see "Reading a File into the Database"). automatically adds the directory
of the file being read to ’s list of directories to search.

For example, suppose you have myFile.iv, which contains windmill.iv.
Contents of /usr/tmp/myFile.iv:

#Inventor V2.0 ascii
File { name "myObjects/windmill.iv" }

Contents of /usr/tmp/myObjects/windmill.iv:

#Inventor V2.0 ascii
/lformat to make the windmill

When /usr/itmp/myFile.iv is read in, /usr/tmp is added to the directory search list. WBer-ilee

node in myFile.iv callSoDB::read, Solnput will find /usr/tmp/myObjects/windmill.iv, and it will be
read (the directory /usr/tmp/myObjects will also be added to the list of search directories). When
reading finishes, /usr/tmp/myObjects and /usr/tmp will be removed from the search directories list.

ASCII and Binary Versions

The SoOutput object in arBoWriteAction has asetBinary() method, which sets whether the output
should be in ASCII (default) or binary format (see Chapter 9) gét®utput() method returns a
pointer to th&soOutput When a file is written, Inventor inserts a header line that indicates whether
the file is in ASCII or binary format, as well as the Inventor version number (see "File Header").

Reading in Extender Nodes and Engines

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
11, File Format 15

As described iThe Inventor Toolmakedevelopers can create their own nodes or engines and use

them in new applications. This section describes what happens if you read in a file with references to
extender nodes and engines whose code may or may not be accessible to your program. (In most
cases, nodes and engines are interchangeable, so the discussion refers only to nodes for simplicity. In
cases where engines differ slightly from nodes, those differences are called out explicitly.)

When an Inventor node is read from a file, Inventor first checks to see if the node’s type has been
registered. If the name is found, an instance of that node is created and the fields for the node are read
in. This situation occurs if your program is linked with the code for the new node.

However, if your program is not linked with the code for the new node, things become slightly more
interesting. If your system supports dynamic loading of compiled objects, Inventor can find the
compiled object and recognize the new node. In this case, the author of the new node supplies the
compiled object for the node and places it in a directory that can be found by the system. (Check your
release notes for information on whether your system supports dynamic loading of shared objects and
how it implements searching directories for the objects.)

File Format for Unknown Nodes and Engines

If Inventor is unable to locate the code for the new node or engine, it creates an instance of the class
SoUnknownNodeor SoUnknownEngine The first keyword in the file format for all new nodes is
namedields, and it is followed by the field type and name of all fields defined within the node. For
example:

WeirdNode {
fields [SFFloat length, SFLong data |
length 5.3
Material {}
Cube {}

}

This unknown node has two fieldsngth anddata. Because thdatafield uses its default value, it is

not written out. The node also has two childrenSalaterial and arSoCube which are listed after

the fields ofWeirdNode. These nodes are treated as hidden children and are not used for rendering,
picking, or searching. They are only used by the write action.

The file format for new engines contains descriptions of both the inputs and outputs for the engine, as
follows:

WeirdEngine {
inputs [SFFloat factor, SFFloat seed]
factor 100
seed 0.5
outputs [SFFloat result |

}

Since no code accompanies the node, most operations on the unknown node will not function.
However, reading, writing, and searching can still be performed on this node (but not on its children).

Alternate Representation

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
11, File Format 16

The author of a new node class may also provide an alternate representation for the node, to be used in
cases where the node is treated as an unknown node. This representation is specified in the
alternateRepfield for the node, which contains the complete scene graph for the alternate
representation. This scene graph will be used in place of the actual node for picking, rendering, and
bounding box actions.

The following node kit provides an alternate representation:

Airplane {
fields [SFNode wing, SFNode fuselage, SFNode alternateRep]
wing Separator { ... the wing scene graph ... }
fuselage Separator { ... the fuselage scene graph ... }
alternateRep Separator {
Cube {}
Transform { translation 10 0 0 }
Cone {}

}
}

Reading from a String

"Reading a File into the Database" showed you how to read from a file. Example 11 2 shows how you
can read from a string stored in memory. Note that when a graph is read from a buffer, you do not
need the file header string. This example creates a dodecahedron from an indexed face set.

Example 11 2 Reading from a String

// Reads a dodecahedron from the following string:

/I (Note: ANSI compilers automatically concatenate

Il adjacent string literals together, so the compiler sees
// this as one big string)

static char *dodecahedron =

"Separator {"
" Material {"

" diffuseColor ["
" 100 010, 001, 01 1,"
" 101 510 501 511"
" 137 317, 3.71 55.8"
R
Y
" MaterialBinding { value PER_FACE } "
" Coordinate3 {"
" point["
" 1.726500.618, 111,"
" 00.618 1.7265, 0 0.618 1.7265,"
" 111, 111"
" 0.618 1.72650, 0.618 1.72650,"
" 111, 172650 0.618,"
" 111, 0.6181.72650,"

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
11, File Format 17

" 0.6181.72650, 111,"
" 1.726500.618, 1.72650 0.618,"
" 111, 00618 1.7265,"
" 00.618 1.7265, 111"
SERE
Y
IndexedFaceSet { "
coordindex ["
" 1,23,4,0, 1, 0,9,10,112,1, 1,"
" 4,7,8,9,0, 1, 3,5,6,7,4, 1,"
" 2,13,14,5,3, 1, 1,11,12,13,2, 1,"
" 10, 18, 19, 12, 11, 1, 19,15, 14, 13,12, 1,"
" 15, 16, 6, 5,14, 1, 8,7,6,16,17, 1,"
" 9,8,17,18, 10, 1, 18,17,16, 15,19, 1,"
SERE

// Routine to create a scene graph representing a dodecahedron
SoNode *
makeDodecahedron()
{
/I Read from the string.
Solnput in;
in.setBuffer(dodecahedron, strlen(dodecahedron));

SoNode *result;
SoDB::read(&in, result);

return result;

Chapter 12
Sensors

Chapter Objectives
After reading this chapter, you'll be able to do the following:

» Describe the different types of sensors that can be used in a scene graph and give possible uses
for each type

» Understand how sensors are scheduled in the delay queue and the timer queue and when they are
processed

» Write callback functions for use by data and timer sensors

» Set the priority of a delay queue sensor

This chapter describes how to add sensors to the scene graph. A sensor is an Inventor object that
watches for various types of events and invokes a user supplied callback function when these events
occur. Sensors fall into two general categodasa sensorsvhich respond to changes in the data
contained in a node’s fields, in a node’s children, or in a pathjraed sensorswhich respond to

certain scheduling conditions.

Introduction to Sensors

Sensors are a special class of objects that can be attached to the database. They respond to database
changes or to certain timer events by invoking a user supplied callback function. Data sensors

(derived fronSoDataSensor monitor part of the database and inform the application when that part
changes. Timer sensors (suctBag\larmSensorandSoTimerSenso) notify the application when

certain types of timer events occur. Note that timer "events" occur within Inventor and are not part of
the event model described in Chapter 10. See Figure 12 1 for a diagram of the portion of the class tree
that includes sensors.

— SoFieldSaensor
Salatafensor—— BolodeSenzor
—— soDelayCQueueSensor SoldleEensor — SoPathSansor

SoonesShotSaensor
SoSensor——

Sonlarmsensor
—— SoTimer2ueues ensor {
SoTimersensor

Figure 121 Sensor Classes

Sensor Queues

As the class tree in Figure 12 1 suggests, sensors are placed in one of two queues:

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
12, Sensors 1

» Timer queugewhich is called when an alarm or timer sensor is scheduled to go off
* Delay queugwhich is called whenever the CPU is idle (that is, there are no events or timer

sensors to handle) or after a user specifiable time out

When processing of either queue begins, all sensors in that queue are processed once, in order (see
"Using a Field Sensor").

Key Terms
The following discussion of data and timer sensors uses a few new terms.

» Triggeringa sensor means calling its user defined callback function and removing it from the
queue.

e Schedulinga sensor means adding it to a queue so that it can be triggered at some future time. If a
sensor is already scheduled, scheduling it again has no efifschedulinga sensor means
removing it from the queue without processing it.

* Notifyinga data sensor means letting it know that the node (or field or path) to which it is
attached has changed. A data sensor automatically schedules itself when it is notified of a change.

Data Sensors

There are three types of data sensors:

* SoFieldSensorwhich is attached to a field
» SoNodeSensomwhich is attached to a node

» SoPathSensarwhich is attached to a path

An SoFieldSensoiis notified whenever data in a particular field changesSéodeSensois

notified when data changes within a certain node, when data changes within any of the child nodes
underneath that node, or when the graph topology changes under the nSdaffrSensors

notified whenever data within any of the nodes in a certain path changes, or when nodes are added to
or deleted from that path. A node is considered to bee pathf traversing the path would cause the

node to be traversed.

Tip: Setting the value of a field to the same value it had before (for example,
field.setValue(field.getValue()))
is considered a change. Calling thech() method of a field or node is also considered a change.

A render area attaches a node sensor to the root of the scene graph so that it can detect when you
make any changes to the scene. It then automatically renders the scene again.

Data sensors are also useful if you want to monitor changes in part of a scene and communicate them
to another element in the scene. For example, suppose you have a material in the scene graph with an
editor attached to it. If the material changes, the editor needs to change the values of its sliders to
reflect the new material. AAoNodeSensaosupplies this feedback to the material editor.

Tip: Field to field connections are another way of keeping different parts of the scene graph in sync.
See Chapter 13.

General Sequence for Data Sensors

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
12, Sensors 2

The following sequence describes the necessary steps for setting up a data sensor:
1. Construct the sensor.

2. Set the callback function (see the next section).

Set the priority of the sensor (see "Priorities").

Attach the sensor to a field, node, or path.

o > w

When you are finished with the sensor, delete it.

Callback Function

Callback functionsas their name suggests, allow Inventor to call back to the application when some
predefined event occurs. A callback function usually takes a single argument\ditifpiihat can be

used to pass extra user defined data to the function. Callback functions used by sensors also have a
second argument of ty@Sensor* This argument is useful if the same callback function is used by
more than one sensor. The argument is filled with a pointer to the sensor that caused the callback.

In C++, a sensor callback function can be declared as a static member function of a class. In this case,
because static functions have no concephisfyou need to explicitly pass an instance of the class
you want to modify as user data:

colorSensor >setData(this);

Nonstatic C++ member functions are not suitable for use as callback functions.

Priorities
Classes derived fro®oDelayQueueSensarse priorities to maintain sorting in the delay queue. The

following methods are used to set and obtain the priority of a given sensor:

setPriority (priority)
assigns a priority to the sensor. All delay queue sensors have a default priority of
100. Sensors are sorted in the queue in order of their priority, with lower numbers

first.
getPriority() obtains the priority of a given sensor.
getDefaultPriority()

obtains the default priority (100) for a sensor.

A sensor with a priority of 0 has the highest priority. It triggers as soon as the change to the scene
graph is complete. If two sensors have the same priority, there is no guarantee about which sensor will
trigger first.

The SoXtRenderAreahas a redraw data sensor with a default priority of 10000. You can schedule
other sensors before or after the redraw by choosing appropriate priorities.

For example, to set the priority of a sensor so that it is triggered right before redraw:

SoNodeSensor *s;
SoRenderArea *renderArea;
s >setPriority(renderArea >getRedrawPriority() 1);

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
12, Sensors 3

Triggering a Data Sensor

When data in the sensor’s field, node, or path changes, the following things happen:

1. The sensor is notified that the data changed.

2. The sensor ischeduled that is, it is added to the delay queue, according to its priority.

3. At some future time, the queue is processed and all sensors in it are triggered.

4. When triggered, the sensor is removed from the queue, and it invokes its callback function.
5

The callback function executes. This function can access the trigger field, trigger node, or
trigger path responsible for the original notification (see "Using the Trigger Node and Field").

Using a Field Sensor

Example 12 1 shows attaching a field sensor tpdséionfield of a viewer's camera. A callback
function reports each new camera position.

Example 12 1 Attaching a Field Sensor

#include <Inventor/SoDB.h>

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>
#include <Inventor/nodes/SoCamera.h>

#include <Inventor/nodes/SoSeparator.h>

#include <Inventor/sensors/SoFieldSensor.h>

Il Callback that reports whenever the viewer’s position changes.
static void
cameraChangedCB(void *data, SoSensor *)

{

SoCamera *viewerCamera = (SoCamera *)data;

SbVec3f cameraPosition = viewerCamera >position.getValue();
printf("Camera position: (%g,%g,%g)\n",
cameraPosition[0], cameraPosition[1],
cameraPosition[2]);

main(int argc, char **argv)
{
if (argc 1= 2) {
fprintf(stderr, "Usage: %s filename.iv\n", argv[0]);
exit(1);
}

Widget myWindow = SoXt::init(argv[0]);
if (myWindow == NULL) exit(1);

Solnput inputFile;

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
12, Sensors 4

if (inputFile.openFile(argv[1l]) == FALSE) {
fprintf(stderr, "Could not open file %s\n", argv[1]);
exit(1);

}

SoSeparator *root = SoDB::readAll(&inputFile);
root >ref();

SoXtExaminerViewer *myViewer =

new SoXtExaminerViewer(myWindow);
myViewer >setSceneGraph(root);
myViewer >setTitle("Camera Sensor");
myViewer >show();

/I Get the camera from the viewer, and attach a
/I field sensor to its position field:
SoCamera *camera = myViewer >getCamera();
SoFieldSensor *mySensor =

new SoFieldSensor(cameraChangedCB, camera);
mySensor >attach(&camera >position);

SoXt::show(myWindow);
SoXt::mainLoop();
}

Using the Trigger Node and Field (Advanced)

You can use one of the following methods to obtain the field, node, or path that initiated the
notification of any data sensor:

» getTriggerField()
e getTriggerNode()
» getTriggerPath()

These methods work only for immediate (priority 0) sensors.

Thetrigger pathis the chain of nodes from the last node notified down to the node that initiated
notification. To obtain the trigger path, you must first setd riggerPathFlag()to set the

trigger path flag to TRUE since it's expensive to save the path information. You must make this call
before the sensor is notified. Otherwise, information on the trigger path is not saved and
getTriggerPath() always returns NULL. (By default, this flag is set to FALSE.) The trigger field and
trigger node are always available. Note tietiriggerField() returns NULL if the change was not to

a field (for exampleaddChild() ortouch() was called).

Example 12 2 shows usimgtTriggerNode()andgetTriggerField() in a sensor callback function
that prints a message whenever changes are made to the scene graph.

Example 12 2 Using the Trigger Node and Field

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
12, Sensors 5

#include <Inventor/SoDB.h>

#include <Inventor/nodes/SoCube.h>
#include <Inventor/nodes/SoSeparator.h>
#include <Inventor/nodes/SoSphere.h>
#include <Inventor/sensors/SoNodeSensor.h>

/I Sensor callback function:

static void

rootChangedCB(void *, SoSensor *s)

{
/I We know the sensor is really a data sensor:
SoDataSensor *mySensor = (SoDataSensor *)s;

SoNode *changedNode = mySensor >getTriggerNode();
SoField *changedField = mySensor >getTriggerField();

printf("The node named '%s’ changed\n”,
changedNode >getName().getString());

if (changedField != NULL) {
SbName fieldName;
changedNode >getFieldName(changedField, fieldName);
printf(" (field %s)\n", fieldName.getString());

}

else
printf(" (no fields changed)\n");

main(int, char **)

{
SoDB::init();

SoSeparator *root = new SoSeparator;
root >ref();
root >setName("Root");

SoCube *myCube = new SoCube;

root >addChild(myCube);

myCube >setName("MyCube");

SoSphere *mySphere = new SoSphere;

root >addChild(mySphere);

mySphere >setName("MySphere");
SoNodeSensor *mySensor = new SoNodeSensor;
mySensor >setPriority(0);

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
12, Sensors 6

mySensor >setFunction(rootChangedCB);
mySensor >attach(root);

/I Now, make a few changes to the scene graph; the sensor’s
/I callback function will be called immediately after each

/I change.

myCube >width = 1.0;

myCube >height = 2.0;

mySphere >radius = 3.0;

root >removeChild(mySphere);

Other Delay Queue Sensors

In addition to data sensors, two other types of sensors are added to the delay queue: the
SoOneShotSensoand theSoldleSensor

General Sequence for One Shot and Idle Sensors

The following sequence describes the necessary steps for setting up one shot and idle sensors:

1.

o > w

Construct the sensor.

Set the callback function (see "Callback Function").
Set the priority of the sensor (see "Priorities").
Schedule the sensor using skbhedule()method.

When you are finished with the sensor, delete it.

Note that these sensors must be scheduled explicitly. Usasbbedule()method to remove a
sensor from the queue.

SoOneShotSensor

An SoOneShotSensaoinvokes its callback once whenever the delayed sensor queue is processed.

This sensor is useful for a task that does not need to be performed immediately or for tsiséalthat

not be performed immediately (possibly because they are time consuming). For example, when
handling events for a device that generates events quickly (such as the mouse), you want to be able to
process each event quickly so that events don't clog up the event queue. If you know that a certain
type of event is time consuming, you can schedule it with a one shot sensor. For example:

handleEvent(SoHandleEventAction *action)

{

/ICheck for correct event type ...

/I Remember information from event for later processing
currentMousePosition = event >getPosition();

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
12, Sensors 7

/I Schedule a one shot sensor to do hard work later
SoOneShotSensor oneShot = new SoOneShotSensor(
OneShotTriggerCallback, NULL);
oneShot >schedule();
}
void OneShotTriggerCallback(void *userData, SoSensor *)
{
/I Do lengthy operation based on current mouse position;

}

Note that sensors that invoke their callback one time only, sibGrseShotSensoiSoldleSensor
andSoAlarmSensor continue to exist after their callback has been executed, but they do not trigger
again unless they are rescheduled. Usearkehedule()method to stop any sensor from invoking its
callback when it is scheduled.

The following example uses &wOneShotSensaio delay rendering until the CPU is idle.

SoOneShotSensor *renderTask;
main() {

renderTask = new SoOneShotSensor(doRenderCallback, NULL);
/I ... set up events, Ul, which will call changeScene()
/ routine.

}

void

changeScene()

{
/I ... change scene graph ...
renderTask >schedule();

}

void
doRenderCallback(void *userData, SoSensor *)
{

/... does rendering ...

}

SoldleSensor

An SoldleSensorinvokes its callback once whenever the application is idle (there are no events or
timers waiting to be processed). Use an idle sensor for low priority tasks that should be done only
when there is nothing else to do. Call the sensatiedule()method in its callback function if you

want it to go off repeatedly (but beware, since this keeps the CPU constantly busy). Note that idle
sensors may never be processed if events or timers happen so often that there is no idle time; see
"Processing the Sensor Queues" for details.

Timer Queue Sensors

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
12, Sensors 8

Timer queue sensors, like data sensors, can be used to invoke user specified callbacks. Instead of
attaching a timer queue sensor to a node or path in the scene graph, however, yacisadpl,

so that its callback is invoked at a specific time. (Timer queue sensors are sorted within the timer
queue by time rather than by priority.) Inventor includes two types of timer queue sensors:
SoAlarmSensorandSoTimerSensor

General Sequence for Timer Queue Sensors

The following sequence describes the necessary steps for setting up timer
gueue sensors:

1. Construct the sensor.

2. Set the callback function (see "Callback Function").

3. Set the timing parameters for the sensor.

4. Schedule the sensor using skbedule()method.

5. When you are finished with the sensor, delete it.

Timing parameters (when and how often the sensor is triggered) should not be changed while a

sensor is scheduled. Use timschedule()method to remove a sensor from the queue, change the
parameter(s), and then schedule the sensor again.

SoAlarmSensor

An SoAlarmSensor like an alarm clock, is set to go off at a specified time. When that time is reached
or passed, the sensor’s callback function is invoked. A calendar program might use an
SoAlarmSensor for example, to put a flag on the screen to indicate that it's time for your scheduled 2
o'clock meeting.

Use one of the following methods to set the time for this sensor:
setTimgtime) schedules a sensor to occutiiate

setTimeFromNowtime)
schedules a sensor to occur at a certain amouimefrom now

The time is specified using tBdTime class, which provides several different formats for time. Use
thegetTime() method ofSoAlarmSensorto obtain the scheduled time for an alarm sensor.

Example 12 3 shows using &oAlarmSensorto raise a flag on the screen when one minute has
passed.

Example 12 3 Using an Alarm Sensor

static void
raiseFlagCallback(void *data, SoSensor *)

{

/I We know data is really a SoTransform node:
SoTransform *flagAngleXform = (SoTransform *)data;

/I Rotate flag by 90 degrees about the z axis:

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
12, Sensors 9

flagAngleXform >rotation.setValue(SbVec3f(0,0,1), M_PI/2);
}

SoTransform *flagXform = new SoTransform;

/I Create an alarm that will call the flag raising callback:
SoAlarmSensor *myAlarm =

new SoAlarmSensor(raiseFlagCallback, flagXform);
myAlarm >setTimeFromNow(60.0);
myAlarm >schedule();

}

SoTimerSensor

An SoTimerSensoris similar to arBoAlarmSensor except that it is set to go off at regular intervals

O like the snooze button on your alarm clock. You might usedanmerSensorfor certain types of
animation, for example, to move the second hand of an animated clock on the screen. You can set the
interval and the base time for 8oTimerSensorusing these methods:

setinterval(interval)
schedules a sensor to occur at a gimesrval, for example, every minute. The
default interval is 1/30 of a second.

setBaseTim@ime
schedules a sensor to occur starting at a dgiven The default base time is right
nowd that is, when the sensor is first scheduled.

Before changing either the interval or the base time, you must first unschedule the sensor, as shown in
Example 12 4.

Example 12 4 creates two timer sensors. The first sensor rotates an object. The second sensor goes
off every 5 seconds and changes the interval of the rotating sensor. The rotating sensor alternates
between once per second and ten times per second. (This example is provided mainly for illustration
purposes. It would be better (and easier) to use two engines to do the same thing (see Chapter 13).

Example 12 4 Using a Timer Sensor

/I This function is called either 10 times/second or once every
Il second; the scheduling changes every 5 seconds (see below):
static void
rotatingSensorCallback(void *data, SoSensor *)
{
// Rotate an object...
SoRotation *myRotation = (SoRotation *)data;
SbRotation currentRotation = myRotation >rotation.getValue();
currentRotation = SbRotation(SbVec3f(0,0,1), M_P1/90.0) *
currentRotation;
myRotation >rotation.setValue(currentRotation);

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
12, Sensors 10

// This function is called once every 5 seconds, and
Il reschedules the other sensor.
static void
schedulingSensorCallback(void *data, SoSensor *)
{
SoTimerSensor *rotatingSensor = (SoTimerSensor *)data;
rotatingSensor >unschedule();
if (rotatingSensor >getinterval() == 1.0)
rotatingSensor >setinterval(1.0/10.0);
else
rotatingSensor >setinterval(1.0);
rotatingSensor >schedule();

SoRotation *myRotation = new SoRotation;
root >addChild(myRotation);

SoTimerSensor *rotatingSensor =

new SoTimerSensor(rotatingSensorCallback, myRotation);
rotatingSensor >setinterval(1.0); //scheduled once per second
rotatingSensor >schedule();

SoTimerSensor *schedulingSensor =

new SoTimerSensor(schedulingSensorCallback, rotatingSensor);
schedulingSensor >setinterval(5.0); // once per 5 seconds
schedulingSensor >schedule();

Processing the Sensor Queues (Advanced)

The following descriptions apply only to applications using the Inventor Component Library with the
Xt toolkit. Other window system toolkits may have a different relationship between processing of the
different queues. If you aren’t interested in the details of how timers are scheduled, you can skip this
section.

The general order of processing is event queue, timer queue, delay queue. A slight deviation from this
order arises because the delay queue is also processed at regular intervals, whether or not there are
timers or events pending. The sequence can be described as follows:

SoXt main loop calls XtAppMainLoop:

BEGIN:
If there’s an event waiting:
Process all pending timers.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
12, Sensors 11

Process the delay queue if the delay queue time out is
reached.
Process the event.
Go back to BEGIN.
else (no event waiting)
if there are timers,
Process timers.
Go back to BEGIN.
else (no timers or events pending)
Process delay queue.
Go back to BEGIN.

When the timer queue is processed, the following conditions are guaranteed:

» All timer or alarm sensors that are scheduled to go off before or at the time processing of the
queue ends are triggered, in order.

* When timer sensors are rescheduled, they are all rescheduled at the same time, after they have all
been triggered.

For example, in Figure 12 2, at timaafter the redraw, the timer queue is processed. Three timers
have been scheduled in the queue (timers 0, 1, and 2). Timers 0 and 1 are ready to go off (their trigger
time has already passed). Timer 2 is set to go off sometime in the future. The sequence is as follows:

1. Timer O is triggered.
2. Timer 1is triggered.

3. The scheduler checks the timer queue (the time isB)@nd notices that timer 2's time has
passed as well , so it triggers timer 2.

4. Timers 0, 1, and 2 are rescheduled at tine

5. The scheduler returns to the main event loop to check for pending events.

® ©
l——— Redraw ——=Process Timers—++— Reschedule —

Actual ' ' ' ' '

Sequence T, T1 T2 T0, T1, T2

of

Events

To ™ 12

Timers | | | I | |
Scheduled 0 1 2 3 4

Figure 12 2 Triggering and Rescheduling Timers

The delay queue is processed when there are no events or timer sensors pending or when the delay
queue’s time out interval elapses. By default, the delay queue times out 30 times a second. You can
change this interval with tt&oDB::setDelaySensorTimeout(nethod. Idle sensors are ignored

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
12, Sensors 12

when the delay sensor causes processing of the delay queue (because the CPU is not really idle under
this condition).

When the delay queue is processed, the following conditions are guaranteed:
» All sensors in the delay queue are triggered, in order of priority.

» Each sensor is triggered once and only once, regardless of whether the sensor reschedules itself.

Chapter 13
Engines
Chapter Objectives
After reading this chapter, you'll be able to do the following:
» Connect fields in a scene graph to each other
» Create and use global fields in the database
» Connect a variety of engines to fields and other engines in a scene graph
» Disable engine connections temporarily
» Create a simple engine network
* Animate parts of a scene using engines

» Use the rotor, blinker, shutter, and pendulum nodes to animate parts of a scene graph

This chapter describesginesclasses of Inventor objects that can be connected to fields in the scene
graph and used #mimateparts of the scene ortonstraincertain elements of the scene to each

other. It also describes how fields can be connected to engines and to other fields, and how to use and
createglobal fieldsin the database.

Introduction to Engines

In earlier chapters, you've created scene graphs with 3D objects that responded to user events. The 3D
objects themselves were fixed, and they moved only in response to user interaction or to sensor

activity. In this chapter, you'll learn about a new class of object, cafigthesthat allows you to

encapsulate both motion and geometry into a single scene graph. Just as you would connect a

real world engine to other equipment to spin a flywheel or turn a fan belt, you "wire" engine objects

into the scene database to cause animated movement or other complex behavior in the scene graph.
Engines can also be connected to other engines so that they move or react in relation to each other, and
eventually make changes to the Inventor database.

As a simple example, consider a scene graph that describes the geometry for a windmill. You can
attach an engine object that describes the rotation of the windmill blades and performs an incremental
rotation of the blades in response to time. This scene graph, including the engine, can be saved in an
Inventor file. Whenever the scene graph is read in, the windmill is dispdegitie blades animate.

Both the geometry and the behavior are described by the nodes and engines in the scene graph.

A more complex example would involve wiring two objects together. For example, you might create a
scene with a car whose motion is based on an engine object. A second engine could look at the car’s
motion and turn that information into camera motion so that the camera could follow the moving car.
Or you might wire two engines together so that one engine affects the activity of the other engine. In
the case of the windmill, you could connect a second engine in front of the rotation engine to filter
time so that the windmill blades rotate only between the hours of nine in the morning and five at night.

In some cases, you could use either a sensor or an engine to create a certain effect. Table 13 1
compares sensors and engines to help you weigh the trade offs between the two.

Sensors Engines

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
13, Engines 1

Are part of the application (are not written tre part of the scene graph (can be read from

file) file and written to file)
Have user defined callback functions Have built in functions
Allow explicit control over order of firing Are evaluated automatically

Can be attached to any kind of field (field Have inputs and outputs of a fixed type

data sensors)

Can affect objects outside the scene graph Can affect only other nodes or engines in a
scene graph

Table 13 1 Comparison of Sensors and Engines

General Uses of Engines

Engines are generally used in two different ways:

» To animate parts of a scene

» To constrain one part of a scene in relation to some other part of the scene

Figure 13 1 and Figure 13 2 show applications that use engines. In Figure 13 1, four different classes
of links are creatéd struts, hinges, cranks, and double struts. Engines are used to connect links

end to end. The objects in Figure 13 2 use engines to edit transform nodes that animate the animals
and objects in the scene.

=| [lrteraclive Linkage Programm

| D ey 2 | 2]

| Rotx Roty W IIIIIiim Zoom 5o Dolly‘

Figure 131 Mechanisms Made from a Set of Link Classes

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
13, Engines 2

= Examiner Viewer

o e = A e B

i Rotx Roty | Zoom 50, Dolly

Figure 13 2 Objects That Use Engines for Animation and Placement

As shown in Example 13 1 later in this chapter, you can connect parts of a scene to a clock so that
animation in the scene occurs in relation to changes in time. Example 13 6 shows an example of
constraints, where the movement of an object is constrained to a set path.

You can think of an engine as a black box that receives input values, performs some operation on
them, and then copies the results into one or more outputs. Both the inputs and the outputs of the
engine can be connected to other fields or engines in the scene graph. When an engine’s output values
change, those new values are sent to any fields or engines connected to them.

An engine, shown in Figure 13 3, has inputs derived Bofieldand outputs derived from
SoEngineOutput Each engine evaluates a built in function when its input values change. The
resulting output values are then sent to all fields and engines connected to that engine. Because
SoEngineis derived from th&oBaseclass, it includes methods for reading and writing to files.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
13, Engines 3

outputs: derived from
SoEngineOutput

Inputs: derived
from SoField

SoEngine

Figure 13 3 Anatomy of an Engine

For example, the engine shown in Figure 13 3 could repr8s&tamposeVec4fan engine that
creates a®oMFVec4fobject. It has four inputs of tyf@oMFFloat and one output of type
SoMFVec4t This engine composes the four inputs into $aklFVec4foutput.

Types of Engines

Figure 13 4 shows the class tree for engines, which can be grouped according to the kinds of
operations they perform.

Arithmetic engines are as follows:
+ SoCalculator
* SoBoolOperation

» SolnterpolateFloat, SolnterpolateRotation, SolnterpolateVec2f, SolnterpolateVec3f,
SolnterpolateVec4f

e SoTransformVec3f

» SoComposeVec?2f, SoDecomposeVec?2f
SoComposeVec3f, SoDecomposeVec3f
SoComposeVec4f, SoDecomposeVecaf
SoComposeRotation, SoDecomposeRotation
SoComposeMatrix, SoDecomposeMatrix

» SoComputeBoundingBox

Animation engines are as follows:
e SoElapsedTime
* SoOneShot

* SoTimeCounter

Triggered engines are as follows:

* SoCounter

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
13, Engines 4

* SoOnOff
e SoTriggerAny

e SoGate

Engines used for array manipulation are as follows:
* SoSelectOne

e SoConcatenate

ZoBaze

SoFieldContainar -ﬂ.SuEngine ZoBoolCpemtion

— SeCakulater

— SoComposailatix

— SolomposeRotation

— SoiomposeRotationFrom To

— Solompossiiec2

— SoComposeiiacdf

— Solompossiiecdf

— SoComputeBounding Box

F— SeConcatenate

— SoCounter

— Solecomposeiiatrp:

— SolecompossRotation

— SoDecomposstfec2f

F— Solecomposstfes3f

— SolDecomposeec 4f

— SoElapeedTime

— SoGate

— Zolntarpolate SolnterpokteFloat
— SeConCHt ZolnterpolteRotation
— SoCimes hot Zolnterpolatetiec2 f
— Sodelecttne Zolnterpoltetecdf
— SeTimeCountaer Solnterpoktetiecdf
— SoTransfomecdf

— SoTrggersny

— SolnknownEngine jgaa Chaptar:)

Figure 13 4 Engine Class Tree

Making Field Connections

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
13, Engines 5

Use theconnectFrom()method orSoFieldto connect a field to another field or engine. When you
connect fields of different types, the value of the input field is automatically converted to the new
output field type. The syntax for connecting a field is as follows:

void connectFron(SoField field);
void connectFrom(SoEngineOutputéngineOutpyt

For example, to connect thdentation field in anSoPerspectiveeamera to theotation field of an
SoTransform:

xform >rotation.connectFrom(&pCamera >orientation);
To connect th&oElapsedTimeengine to thetring field of anSoText3node:
yourText >string.connectFrom(&elapsedTime >timeOut);

Suppose you connect two fields as shown in Figure 13 5. In this example, the top arrow indicates that
fieldAis the source field arféeldBis the destination field. The bottom arrow indicatesfia@Bis

the source field anfieldAis the destination field. Once you have set up this connection, whenever

you changdieldA fieldBchanges. When you chanfigddB fieldAchanges. You may be concerned

that you've set up an infinite loop where the two fields continuously update each other. Actually,
when the value ifieldAchangedjeldBchanges. At this poirfieldAknows that it has already been
changed and does not change again.

() —
_
Field A FieldB

Figure 135 Field to Field Connections

Use thalisconnect()method to break a field connection (on the destination field), and use the
isConnected()method to query whether a connection exists. Methods suselt\édue()can also be
called on a field that is connected from another field or engine. Whoever sets the field value last, wins.

Multiple Connections

The termengine networkefers to the collection of engines and fields that are "wired together" in the
scene graph. When planning larger engine networks, you may sometimes consider having multiple
connections to a field or engine. The rule to follow is that a given field or engine can have only one
incoming connection, but it can have multiple outgoing connections. Figure 13 6 illustrates this
principle.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
13, Engines 6

— — — — —

Figure 13 6 Multiple Outputs Are Allowed

If you callconnectFrom()on a field or engine that has already been connected from a different
source, the original connection is broken and the new connection is made.

Field Conversion

When you connect fields of different types, Inventor automatically converts values from one type to
another. It performs the following conversions when necessary:

» Any field type to String

» String to any field type

* Between any two ddool, Float, Long, Short, ULong, UShort
* BetweenColor andVec3f

+ BetweerFloat andTime

* BetweerMatrix andRotation

+ BetweerNameandEnum

* BetweerRotation andVec4f(quaternion)

* From anMF field to itsSFversion, and from a8Ffield to itsMF version

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
13, Engines 7

Multiple step conversions are not suppoffethat is, although you can convert directly fronea4f
to aRotation and &Rotation to aMatrix , you cannot convert from\aec4fto aMatrix .

If your program tries to connect a field to a field or engine output of a different type and no
conversion between the types exists, the connection will not be made and a debugging error will
occur. Sedhe Inventor Toolmakdor details on how to create your own field converter.

Reference Counting

Reference counting for engines is similar to that for nodes. Field to field connections, including
connections from an engine’s input to a field, do not increment any reference counts. Each

engine output to field connection increments the engine’s reference count by 1. Similarly, removing
an engine output’s field connection decrements its reference count. If the last connection is removed,
the reference count for that engine goes to 0 and it is deleted. To preserve the engine when you are
disconnecting it, reference it. Also, be aware that field connections are broken when the node or
engine containing the field is deleted. This, in turn, could cause a connected engine to be deleted as
well.

Disabling a Connection

To temporarily disable a field connection, aalableConnectiofFALSE) on the destination field or
callenabldFALSE) on the engine output.

This method is useful when you want to temporarily disable a large engine network. If you disconnect
the field from the engine, that engine might be unreferenced to 0, and then mistakenly deleted.
Disabling a field connection does not affect the engine’s reference count. Use the
isConnectionEnabled()method to query whether a connection has been enabled.

Updating Values

When you change one value in an engine network, you can assume that all other values that depend
on this value are updated at once. In fact, for efficiency, fields and inputs are marked when they are
out of date, but they are updated only when their values are used. A complicated engine network, for
example, could be connected to an unselected child of a switch group and never used. In this case, its
values could be marked as needing to be updated but never actually reevaluated because the engine
network is never traversed.

Some engines, such as the gate and animation engines, can selectively control when their values are
updated. Many of these engines use a field of 8gfFTriggerthat updates the output value one
time only when the field is touched. See "Gate Engine" for more information.

Global Fields

Global fields are fields in the Inventor database that you can access by name and that are not
contained in any specific node or engine. One built in global field is providedatiiéme global

field, which is of typesSoSFTime This field contains the current real clock time and can be connected

to fields or engines to create clock based animation. You can create additional global fields as
required. If you were creating a key frame animation editor, for example, you might want to create a
"current frame" field that could be connected to various engines. Once the field is created, you use the

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
13, Engines 8

standard field methods to connect it to other parts of the scene graph.
Use thecreateGlobalField() method ofSoDBto create a global field:

static SoField SoDB::createGlobalFieldconst SbName Bame
SoTypetyps;
There can be only one global field with a given name. If there is already a field with the given name

and type, it is returned. If there is already a field with the given name, but it is of an incompatible type,
NULL is returned.

ThegetGlobalField() method returns the global field with the given name:
static SoField SoDB::getGlobalFieldconst SbName Bamé;

The type of the returned field can be checked using the field ctgd3$gpeld() method. For
example,

if (globalField >isOfType(SoSFFloat::getClassTypeld()) ...
An example of using thealTime global field is
engineA >inputl.connectFrom(SoDB::getGlobalField("realTime"));

Example 13 1 creates a digital clock that connec&odmrext3string to theealTime global field.
Figure 13 7 shows the scene graph for this example. Figure 13 8 shows the digital clock.

Example 13 1 Using the Real Time Global Field

#include <Inventor/SoDB.h>

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/SoXtRenderArea.h>

#include <Inventor/nodes/SoDirectionalLight.h>
#include <Inventor/nodes/SoMaterial.h>

#include <Inventor/nodes/SoPerspectiveCamera.h>
#include <Inventor/nodes/SoSeparator.h>

#include <Inventor/nodes/SoText3.h>

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
13, Engines 9

Foct

IR

myCamera SoDirectionalLight mylatenal

T

my Text

—_—_— — —_— —_— — — =

real Time

Figure 13 7 Scene Graph for the Digital Clock Example

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
13, Engines 10

The Inventor Mentor:
13, Engines 11

Tuesday, 09/28/93 08:50:46 PM

Figure 13 8 Digital Clock That Uses the Real Time Global Field

main(int , char **argv)
{
/I Initialize Inventor and Xt
Widget myWindow = SoXt::init(argv[0]);
if (myWindow == NULL)
exit(1);

SoSeparator *root = new SoSeparator;
root >ref();

/I Add a camera, light, and material

SoPerspectiveCamera *myCamera = new SoPerspectiveCamera;

root >addChild(myCamera);

root >addChild(new SoDirectionalLight);
SoMaterial *myMaterial = new SoMaterial;
myMaterial >diffuseColor.setValue(1.0, 0.0, 0.0);
root >addChild(myMaterial);

/I Create a Text3 object, and connect to the realTime field
SoText3 *myText = new SoText3;
root >addChild(myText);

Programming Object Oriented 3D Graphics with Open Inventor

, Release 2 Chapter

myText >string.connectFrom(SoDB::getGlobalField("realTime"));

SoXtRenderArea *myRenderArea = new SoXtRenderArea(myWindow);
myCamera >viewAll(root, myRenderArea >getSize());

myRenderArea >setSceneGraph(root);

myRenderArea >setTitle("Date & Time");

myRenderArea >show();

SoXt::show(myWindow);
SoXt::mainLoop();

Animation Engines

The following engines can be used to animate objects in the scene graph. Each of these engines has a
timeln field, which is connected automatically to tealTime global field when the engine is
constructed. This field can, however, be connected to any other time source.

e SoElapsedTimél functions as a stopwatch; outputs the time that has elapsed since it started
running.

e SoOneShdil runs for a preset amount of time, then stops.

* SoTimeCounter] cycles from a minimum count to a maximum count at a given frequency.

Elapsed Time Engine

The elapsed time engine is a basic controllable time source. You can start, stop, reset, pause, and
control the speed of this engine. If you pause it (by settingathgefield to TRUE), it stops updating
itstimeOut field, but it keeps counting internally. When you turn off the pause, it jumps to its current
position without losing time.

Example 13 2 uses the output from an elapsed time engine to control the translation of a figure. The
resulting effect is that the figure slides across the scene. Figure 13 9 shows the scene graph for this
example. ThéimeOut output of the elapsed time engimeyCounteyis connected to an
SoComposeVec3éngine glideDistance This second engine inserts theeOut value into thex slot

of a vector. Once the value is in vector format, it can be connectedttartbkation field of the
slideTranslatiomode.

Note that theimeOut value is ar5oSFTime but theSoComposeVec3éngine requires inputs of type
SoSFFloat Inventor performs this conversion automatically for you, converting the time to a number
of seconds.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
13, Engines 12

root

- .E'
A
i@] . S n
! J .
I

myCamera SoDirectionallight | slide Translation initial Transform - figureObject

|
iz
e L1 01
A o

realTime myCounter slideDistance

Figure 139 Scene Graph for Elapsed Time Engine Example

Example 13 2 Using an Elapsed Time Engine

/I Set up transformations

SoTranslation *slideTranslation = new SoTranslation;

root >addChild(slideTranslation);

SoTransform *initialTransform = new SoTransform;
initialTransform >translation.setValue(5., 0., 0.);
initialTransform >scaleFactor.setValue(10., 10., 10.);
initialTransform >rotation.setValue(SbVec3f(1,0,0), M_PI/2.);
root >addChild(initial Transform);

/I Read the figure object from a file and add to the scene
Solnput mylnput;
if ('mylInput.openFile("jumpyMan.iv"))

return (1);
SoSeparator *figureObject = SoDB::readAll(&mylnput);
if (figureObject == NULL)

return (1);
root >addChild(figureObject);

/I Make the X translation value change over time.
SoElapsedTime *myCounter = new SoElapsedTime;
SoComposeVec3f *slideDistance = new SoComposeVec3f;
slideDistance >x.connectFrom(&myCounter >timeOut);
slideTranslation >translation.connectFrom(

&slideDistance >vector);

One Shot Engine

The SoOneShoengine is started when tisgger input is touched (with eithéouch() or setValue().

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
13, Engines 13

It runs for the specifieduration, updating itgimeOut field until it reaches the duration time. The

ramp output, a float value from 0.0 (when the trigger starts) to 1.0 (when the duration is reached), is
provided as a convenience. For examplerdah® output of a one shot engine could be connected to
thealphainput of a rotation interpolation to make a door open.

This engine has two flags stored inSoSFBitMaskfield. The Retriggerable flag specifies whether to
start the cycle over if a trigger occurs in the middle of a cycle. If this flag is not set (the default), the
trigger is ignored and the cycle is finished. If this flag is set, the cycle restarts when a trigger occurs.

The Hold_Final flag specifies what happens at the end of the cycle. If this flag is not set (the default),
all outputs return to 0 when the cycle finishes. If this flag is seisf#twdive output returns to 0, but
ramp andtimeOut stay at their final values.

Time Counter Engine

The SoTimeCounterengine counts from a minimum counti) to a maximum countifax). The
value forstepindicates how the timer counts (the default is in increments of 1fr&dueencyinput
specifies the number of min to max cycles per second.

Unlike the one shot and elapsed time engines, the time counter engine does not output a time; it
outputs the curremount Each time the time counter starts a cycle, it triggesyitsOut output. This
output can be used to synchronize one of the triggered engines with some other event.

Example 13 3 uses the output from two time counter engines to control the horizontal and vertical
motion of a figure. The resulting effect is that the figure jumps across the screen.

This example creates three engines, as shown in Figure 13 10. The outpyuropihidthCountefa
time counter engine) is connected toxheput of thgump engine (arsoComposeVec3éngine).

The output of theumpHeightCountefanother time counter engine) is connected tg thput of the
jumpengine. Th@gumpengine composes a vector usingkl@dy inputs, and then feeds this vector
into thetranslation field of thejumpTranslatiomode. Figure 13 11 shows scenes from this example.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
13, Engines 14

root

jumpTranslation intial Transform manObject

f
I
I
|
I
I
I
I
I
I
I
I

!

Lr

jumpHeightCounter

Figure 13 10 Scene Graph for the Time Counter Example

Example 13 3 Using Time Counter Engines

I/l Set up transformations

SoTranslation *jumpTranslation = new SoTranslation;

root >addChild(jumpTranslation);

SoTransform *initialTransform = new SoTransform;
initialTransform >translation.setValue(20., 0., 0.);
initialTransform >scaleFactor.setValue(40., 40., 40.);
initialTransform >rotation.setValue(SbVec3f(1,0,0), M_PI/2.);
root >addChild(initial Transform);

/l Read the man object from a file and add to the scene
Solnput mylnput;
if (!'mylnput.openFile("jumpyMan.iv"))

return (1);
SoSeparator *manObject = SoDB::readAll(&mylnput);
if (manObject == NULL)

return (1);
root >addChild(manObject);

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
13, Engines 15

Figure 13 11 Controlling an Object’'s Movement Using Time Counter Engines

/I Create two counters, and connect to X and Y translations.

/l The Y counter is small and high frequency.

/I The X counter is large and low frequency.

// This results in small jumps across the screen,

/I left to right, again and again and again.

SoTimeCounter *jumpHeightCounter = new SoTimeCounter;
SoTimeCounter *jumpWidthCounter = new SoTimeCounter;

SoComposeVec3f *jump = new SoComposeVec3f;

jumpHeightCounter >max = 4;
jumpHeightCounter >frequency = 1.5;
jumpWidthCounter >max = 40;
jumpWidthCounter >frequency = 0.15;

jump >x.connectFrom(&jumpWidthCounter >output);
jump >y.connectFrom(&jumpHeightCounter >output);
jumpTranslation >translation.connectFrom(&jump >vector);

Gate Engine

This section discusses thateenginewhich provides a convenient mechanism for selectively
copying values from input to output. It also introducesetiablefield and therigger field, used by
other engines.

By default, each time a value in an engine network changes, the new value propagates through the
network. If a value is constantly changing, however, you may not want this change to propagate
continuously through the scene graph. In this case, you might want to sample the value at regular
intervals, or update the value only when a certain event occurs. Use the gate engine to control when
such values are sent to the rest of the scene graph.

When you construct the gate engine, you pass in the type of its input and output fields. This type must
be the type of a multiple value field. (If you want to gate a single value field, just pass in the
corresponding multiple

value type and Inventor will automatically convert it.) Other engines with similar constructors are
SoSelectOnandSoConcatenate

SoGatehas these two inputs:

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
13, Engines 16

enable(SoSFBool) allows continuous flow of updated values

trigger (SoSFTrigger)
copies a single value

When theenablefield is TRUE, data is allowed to be copied to the engine output each time a new

value is received as input. To send only one value to the engine outputesetitlefield to FALSE

and use thaigger field to send the value. When thigiger field is touched, one value is sent. The

trigger field is touched by calling eithéouch() or setValue()on it. Example 13 4 connects an

elapsed time enginenfyCounterto a gate enginenfyGate. Pressing the mouse button enables and
disables the gate engine, which in turn controls the motion of a duck in the scene. The scene graph for
this example is shown in Figure 13 12.

root
i@i ’;\ @ duck 6—'
myCamera SoDirectionallight globalRotXYZ _p;oﬁc]) myEveniCB

@@ A

i
: duckRotXYZ initialTransform duckObject
|
[
|

realTime myCounter myGate

gy
. -

Figure 13 12 Scene Graph for Gate Engine Example

Example 13 4 Using a Gate Engine

// Duck group
SoSeparator *duck = new SoSeparator;
root >addChild(duck);

// Read the duck object from a file and add to the group
Solnput mylnput;
if (Imylnput.openFile("duck.iv"))

return (1);
SoSeparator *duckObject = SoDB::readAll(&mylnput);
if (duckObject == NULL)

return (1);

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
13, Engines 17

Il Set up the duck transformations

SoRotationXYZ *duckRotXYZ = new SoRotationXYZ;
duck >addChild(duckRotXYZ);

SoTransform *initialTransform = new SoTransform;
initialTransform >translation.setValue(0., 0., 3.);
initialTransform >scaleFactor.setValue(6., 6., 6.);
duck >addChild(initial Transform);

duck >addChild(duckObject);

I/l Update the rotation value if the gate is enabled.

SoGate *myGate = new SoGate(SoMFFloat::getClassTypeld());
SoElapsedTime *myCounter = new SoElapsedTime;

myGate >input >connectFrom(&myCounter >timeOut);
duckRotXYZ >axis = SoRotationXYZ::Y; // rotate about Y axis
duckRotXYZ >angle.connectFrom(myGate >output);

/l Add an event callback to catch mouse button presses.

// Each button press will enable or disable the duck motion.

SoEventCallback *myEventCB = new SoEventCallback;

myEventCB >addEventCallback(
SoMouseButtonEvent::getClassTypeld(),
myMousePressCB, myGate);

root >addChild(myEventCB);

/I This routine is called for every mouse button event.
void
myMousePressCB(void *userData, SoEventCallback *eventCB)
{
SoGate *gate = (SoGate *) userData;
const SoEvent *event = eventCB >getEvent();
/I Check for mouse button being pressed
if (SO_MOUSE_PRESS_EVENT(event, ANY)) {

/I Toggle the gate that controls the duck motion
if (gate >enable.getValue())

gate >enable.setValue(FALSE);
else

gate >enable.setValue(TRUE);

eventCB >setHandled();

}
}

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
13, Engines 18

Arithmetic Engines

By convention, all inputs and outputs for the arithmetic engines in Inventor are multipleM@jue (

fields. If you supply a value of ty[®oSF it is automatically converted to ¥ field. Another

important feature is that if you supply an array of values for one of the inputs, the output will also be
an array (aMF value). If an engine has more than one input, some inputs may have more values than
others. For exampl@putl might have five values arnput2 might have only three values. In such
cases, the last value of the field with fewer values is repeated as necessary to fill out the array. (Here,
the third value ofnput2 would be repeated two more times.)

Boolean Engine

As shown in Figure 13 13, the Boolean englBeBoolOperation has two Boolean inputa andb)
and oneSoSFEnuminput pperation) that describes the operation to be performed.

output
Inverse

o

operation

Figure 13 13 SoBoolOperation Engine

Operation Output Is TRUE If

CLEA never TRUE

R

SET always TRUE

A Ais TRUE

NOT_A Ais FALSE

B B is TRUE

NOT_B B is FALSE

A_OR_B Ais TRUE or B is TRUE
NOT_A_OR_B Ais FALSE or B is TRUE
A_OR_NOT_B Ais TRUE or B is FALSE
NOT_A_OR_NOT_B Ais FALSE or B is FALSE
A_AND B A and B are TRUE
NOT_A_AND_B A'is FALSE and B is TRUE
A_AND_NOT_B Ais TRUE and B is FALSE

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
13, Engines 19

NOT_A_AND_NOT_B A and B are FALSE
A _EQUALS B A equals B
A_NOT_EQUALS_B A does not equal B

This engine has two outputsjtput andinverse Theinversefield is TRUE ifoutput is FALSE, and
vice versa. If either of the inputs contains an array of values (they are &aiyfpeBool), the output
will also contain an array of values.

Example 13 5 modifies Example 13 4 and adds a Boolean engine to make the motion of the smaller
duck depend on the motion of the larger duck. The smaller duck moves when the larger duck is still.
Figure 13 14 shows an image created by this example.

Figure 13 14 Swimming Ducks Controlled by a Boolean Engine

Example 13 5 Using a Boolean Engine

// Bigger duck group

SoSeparator *bigDuck = new SoSeparator;

root >addChild(bigDuck);

SoRotationXYZ *bigDuckRotXYZ = new SoRotationXYZ;
bigDuck >addChild(bigDuckRotXYZ2);

SoTransform *biglnitialTransform = new SoTransform;
biglnitialTransform >translation.setValue(0., 0., 3.5);
biglnitialTransform >scaleFactor.setValue(6., 6., 6.);

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
13, Engines 20

bigDuck >addChild(bigInitial Transform);
bigDuck >addChild(duckObiject);

/l Smaller duck group

SoSeparator *smallDuck = new SoSeparator;

root >addChild(smallDuck);

SoRotationXYZ *smallDuckRotXYZ = new SoRotationXYZ;
smallDuck >addChild(smallDuckRotXYZ);

SoTransform *smalllnitialTransform = new SoTransform;
smalllnitialTransform >translation.setValue(0., 2.24, 1.5);
smalllnitialTransform >scaleFactor.setValue(4., 4., 4.);
smallDuck >addChild(smalllnitial Transform);

smallDuck >addChild(duckObiject);

/l Use a gate engine to start/stop the rotation of
I the bigger duck.
SoGate *bigDuckGate =

new SoGate(SoMFFloat::getClassTypeld());
SoElapsedTime *bigDuckTime = new SoElapsedTime;
bigDuckGate >input >connectFrom(&bigDuckTime >timeOut);
bigDuckRotXYZ >axis = SoRotationXYZ::Y;
bigDuckRotXYZ >angle.connectFrom(bigDuckGate >output);

/l Each mouse button press will enable/disable the gate

/Il controlling the bigger duck.

SoEventCallback *myEventCB = new SoEventCallback;

myEventCB >addEventCallback(
SoMouseButtonEvent::getClassTypeld(),
myMousePressCB, bigDuckGate);

root >addChild(myEventCB);

// Use a Boolean engine to make the rotation of the smaller
// duck depend on the bigger duck. The smaller duck moves
/l only when the bigger duck is still.

SoBoolOperation *myBoolean = new SoBoolOperation;
myBoolean >a.connectFrom(&bigDuckGate >enable);
myBoolean >operation = SoBoolOperation::NOT_A,;

SoGate *smallDuckGate = new
SoGate(SoMFFloat::getClassTypeld());

SoElapsedTime *smallDuckTime = new SoElapsedTime;

smallDuckGate >input >connectFrom(&smallDuckTime >timeOut);

smallDuckGate >enable.connectFrom(&myBoolean >output);

smallDuckRotXYZ >axis = SoRotationXYZ::Y;

smallDuckRotXYZ >angle.connectFrom(smallDuckGate >output);

Calculator Engine

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
13, Engines 21

The calculator engin&oCalculator, is similar to the Boolean engine, but it handles a wider range of
operations and has more inputs and outputs. As shown in Figure 13 13, this engine has the following
inputs and outputs:

Inputs SoMFFloat a,b,c,defgh
SoMFVec3f A/B,C,D,E,FG,H
SoMFString expression

Outputs SoEngineOutput 0a, ob, oc, od (SoMFFloat)
SoEngineOutput 0A, 0B, oC, oD (SoMFVec3f)

Theexpressioninput, shown at the bottom of the engine, is of ypkIFString and is of the form:
"lhs=rhs'

Ihs(lefthand side) can be any one of the outputs or a temporary variable. This engine provides eight
temporary floating point variables (ta - th) and eight temporary vector variables (tA - tH).

ths (righthand side) supports the following operators:
Type of Operator Example

Binary operators + * [<>>=<===1= && ||
Unary operators !

Ternary operator cond ? trueexpr : falseexpr

Parentheses expr)

Vector indexing vec [inf]

Functions funcéxpr ...)

Terms integer or floating point constants; named

constants such as MAXFLOAT,

MINFLOAT, M_LOG2E, M_PI; the names

of the calculator engine’s inputs, outputs, and
temporary variables (a, b, A, B, oa, ob, ta, th,
tA, tB, and so on)

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
13, Engines 22

2258

oB
0
oD

ToTmMoOOD»ow 0 OO0 TR

eXpression

Figure 13 15 SoCalculator Engine
See th@pen Inventor C++ Reference Mandal detailed information on using these operators.

Here is a simple example of using the calculator engine. It uses the following inputs and outputs:

Inputs Outputs

2 vectors (A, B) 0A (f times the negation of the cross product
of A and B)

2 scalars (a, f) oa (convert a from degrees to radians)

To specify the expression for a calculator engine cabiégithe code would be

calc >expression.set1Value(0, "oa=a* M_PI/180";
calc >expression.setlValue(l, "0A = f* cross(A, B)");

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
13, Engines 23

Multiple expressions are evaluated in order, so a variable assigned a value in an earlier expression can
be used in the righthand side of a later expression. Several expressions can be specified in one string,
separated by semicolons.

The expressions can also operate on arrays. If one input contains fewer values than another input, the
last value is replicated as necessary to fill out the array. All the expressions will be applied to all
elements of the arrays. For example, if ipabntains multiple values and ingutontains the value

1.0, then the expression "oa = a + b" will add 1 to all of the elemeats in

Using the Calculator to Constrain Object Behavior

Example 13 6 shows using the calculator engine to move a flower along a path. The calculator engine
computes a closed, planar curve. The output of the engine is connected to the translation applied to a
flower object, which then moves along the path of the curve. Figure 13 16 shows the scene graph for
this example. The dancing flower is shown in Figure 13 17.

[0.0]]

flowerGroup

— s
!
e P

|) .

! danceTranslation mtialTranstorm flower

real Time thetaCounter calcXZ

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
13, Engines 24

Figure 13 16 Scene Graph for Calculator Engine Example

Example 13 6 Using a Calculator Engine

I/l Flower group
SoSeparator *flowerGroup = new SoSeparator;
root >addChild(flowerGroup);

// Read the flower object from a file and add to the group
if (!'mylnput.openFile("flower.iv"))

exit(1);

SoSeparator *flower= SoDB::readAll(&mylnput);
if (flower == NULL)

exit(1);

/I Set up the flower transformations

SoTranslation *danceTranslation = new SoTranslation;
SoTransform *initialTransform = new SoTransform;
flowerGroup >addChild(danceTranslation);
initialTransform >scaleFactor.setValue(10., 10., 10.);
initialTransform >translation.setValue(0., 0., 5.);
flowerGroup >addChild(initialTransform);

flowerGroup >addChild(flower);

Figure 13 17 Using a Calculator Engine to Constrain an Object’'s Movement

I/l Set up an engine to calculate the motion path:

I/l r = 5*cos(5*theta); x = r*cos(theta); z = r*sin(theta)
/I Theta is incremented using a time counter engine,

I/l and converted to radians using an expression in

/Il the calculator engine.

SoCalculator *calcXZ = new SoCalculator;
SoTimeCounter *thetaCounter = new SoTimeCounter;

thetaCounter >max = 360;
thetaCounter >step = 4;
thetaCounter >frequency = 0.075;

The Inventor Mentor:
13, Engines 25

Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter

calcXZ >a.connectFrom(&thetaCounter >output);

calcXZ >expression.setlValue(0, "ta=a*M_PI1/180"); // theta
calcXZ >expression.setlValue(l, "tb=5*cos(5*ta)"); // r
calcXZ >expression.setlValue(2, "td=tb*cos(ta)"); // x
calcXZ >expression.set1Value(3, "te=tb*sin(ta)"); // z
calcXZ >expression.setlValue(4, "oA=vec3f(td,0,te)");
danceTranslation >translation.connectFrom(&calcXZ >0A);

Nodes Used for Animation

Engines are usually connected to nodes. You can, though, create a node class that has built in engines
automatically connected to it. Here are some examples that Inventor provides. These nodes provide a
convenient mechanism for adding animation to a scene graph:

» SoRotoris a transformation node that spins the rotation angle while keeping the axis constant.
* SoPendulumis a transformation node that oscillates between two rotations.
* SoShuttleis a transformation node that oscillates between two translations.

» SoBlinkeris a switch node that cycles through its children.

Let’s look at examples of rotor and blinker nodes.

Rotor Node

The SoRotor node, derived frorBoRotation changes the angle of rotation at a specified speed. You
can use aoRotornode any place you would useZwoRotation It has these fields:

rotation (SoSFRotation)
specifies the rotation (axis and initial angle). The angle changes when the rotor
spins.

speed SoSFFloat) specifies the number of cycles per second.
on (SoSFBool) TRUE to run, FALSE to stop. The default is TRUE.

The number of times a second it is updated depends on the application. This node contains an engine
that is connected to the real time global field. Example 13 7 illustrates how you could use this node to
rotate the vanes of a windmill. It specifies the rotation and speed for the rotor node and adds it to the
scene graph before the windmill vanes, as shown in Figure 13 18. The rotation axis of the windmill
vanes is (0.0, 0.0, 1.0) and the initial angle is 0.0. This rotation angle is updated automatically by the
rotor node.

Example 13 7 A Spinning Windmill Using an SoRotor Node

#include <Inventor/SoDB.h>

#include <Inventor/Solnput.h>

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>
#include <Inventor/nodes/SoSeparator.h>

#include <Inventor/nodes/SoRotor.h>

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
13, Engines 26

SoSeparator *
readFile(const char *filename)
{
/I Open the input file
Solnput myScenelnput;
if (!myScenelnput.openFile(filename)) {
fprintf(stderr, "Cannot open file %s\n", filename);
return NULL;

root

L L

windmill Tower my Rotor windmillVanes

Figure 13 18 Scene Graph for Rotor Node Example

/I Read the whole file into the database
SoSeparator *myGraph = SoDB::readAll(&myScenelnput);
if (myGraph == NULL) {

fprintf(stderr, "Problem reading file\n");

return NULL;

}

myScenelnput.closeFile();
return myGraph;

}

main(int, char **argv)

{

/I Initialize Inventor and Xt
Widget myWindow = SoXt::init(argv[0]);

SoSeparator *root = new SoSeparator;

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter

13, Engines 27

root >ref();

/I Read in the data for the windmill tower

SoSeparator *windmillTower =
readFile("windmillTower.iv");

root >addChild(windmillTower);

/I Add a rotor node to spin the vanes

SoRotor *myRotor = new SoRotor;

myRotor >rotation.setValue(SbVec3f(0, 0, 1), 0); // z axis
myRotor >speed = 0.2;

root >addChild(myRotor);

/I Read in the data for the windmill vanes

SoSeparator *windmillVanes =
readFile("windmillVanes.iv");

root >addChild(windmillVanes);

/I Create a viewer
SoXtExaminerViewer *myViewer =
new SoXtExaminerViewer(myWindow);

/I Attach and show viewer
myViewer >setSceneGraph(root);
myViewer >setTitle("Windmill");
myViewer >show();

I/l Loop forever
SoXt::show(myWindow);
SoXt::mainLoop();

Blinker Node

The SoBlinker node, derived frorBoSwitch cycles among its children by changing the value of the
whichChild field. This node has the following fields:

whichChild (SoSFLong)
index of the child to be traversed.

speed $oSFFloat) cycles per second.
on (SoSFBool) TRUE to run, FALSE to stop. The default is TRUE.

When it has only one chil&oBlinker cycles between that child (0) and SO_SWITCH_NONE.
Example 13 8 shows how you could make the text string "Eat at Josie’s" flash on and off.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
13, Engines 28

Eat At

Figure 13 19 Flashing Sign Controlled by a Blinker Node

Example 13 8 Using a Blinker Node to Make a Sign Flash

// Add the non blinking part of the sign to the root
root >addChild(eatAt);

// Add the fast blinking part to a blinker node
SoBlinker *fastBlinker = new SoBlinker;

root >addChild(fastBlinker);

fastBlinker >speed = 2; // blinks 2 times a second
fastBlinker >addChild(josie);

// Add the slow blinking part to another blinker node
SoBlinker *slowBlinker = new SoBlinker;

root >addChild(slowBlinker);

slowBlinker >speed = 0.5; // 2 secs per cycle; 1 on, 1 off
slowBlinker >addChild(frame);

Chapter 14
Node Kits

Chapter Objectives

After reading this chapter, you'll be able to do the following:

» Use node kits in a scene graph, selecting the required parts and setting their values
» Explain the difference between a path, a full path, and a node kit path

» Create a simple motion hierarchy using node kits

This chapter describes node kits, which are a convenient mechanism for creating groupings of

Inventor nodes. When you create a shape node such as an indexed triangle strip set, you usually also
need at least a coordinate node, a material node, and a transform node. You may also want to specify
drawing style and a material binding. Instead of creating each of these nodes individually, specifying
values for their fields, and then arranging them into a subgraph, you can simphboSthapeKit

which already contains information on how these nodes should be arranged in the subgraph. You then
use a special set of convenience methods to specify which nodes you want to use and to set and get the
values of these nodes. This chapter introduces the concepts of node kits, natédgs catalog

entries, andiidden children

Why Node Kits?

Node kits offer a convenient way to create both simple and complex graphs of hodes. Node kits can
contain other node kits, a feature that allows you to build hierarchies of kits relative to each other.
Some of the advantages of node kits include the following:

* Node kits organize a number of Inventor nodes into a subgraph that has a higher level meaning
for you. AnSoShapeKit for example, can describe a shape that can move and has a particular
appearance. The shape and its properties are all packaged into one node kit. You do not need to
worry about how the nodes are placed into the graph because the node kit takes care of this
organization for you.

* Node kits are flexible, allowing you to create complex subgraphs that use many Inventor
features, or simple subgraphs that use only a few features.

* Node kits create collections of nodes efficiently. They create only the nodes needed for a
particular instance.

» Node kits provide shortcut routines for creating nodes and setting values in them. Your code is
short and easy to read.

* Through subclassing, you can design your own node kits that are tailored to the kinds of
groupings used in your particular application. (Blee Inventor ToolmakeChapter 7.)

Hidden Children and SoNodeKitPath

A node kit contains a collection of nodes. The node kit manages these nodes and how they are
arranged in its subgraph. You can create and remove these nquiets @f the node kit. But,
because the node kit is actually managing these parts, you do not have direct access to them. These

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
14, Node Kits 1

parts are referred to as thidden childrerof the node kit. Although a node kit is a grouping of nodes,
it is not subclassed fro®oGroug methods such axldChild() do not exist for node kits.

Whenever you perform a pick or a search action, a path may be returned. The default path returned,
SoPath stops at the first node in the path that has hidden children (often a node kit). If you need more
detailed information about what is in the path underneath the node kit, you can Saftdtieo an
SoFullPath which includes hidden children as well as public children. If, for example, you search for
spheres in a given scene graph, you may get a path to a node kit with hidden children, one of which is
a sphere. Th8oPathreturned by the search action ends in the node kit. In most cases, you can
probably ignore the hidden children. But if you need information about them, you can cast this path to
anSoFullPath

You will probably use node kit paths more often than you use full paths. If you use full paths with
node kits, take care not to change the node kit's structure.

Tip: When you cast a path (not a pointer) to a full path, be sure to cast a pointer; otherwise a new
instance of the path is created. For example, you can do this:

SoPath &pathRef;

((SoFullPath *) &pathRef) >getLength();

But don't do this:

length = ((SoFullPath) pathRef).getLength();

Another kind of path is theoNodeKitPath which contains only the node kits and leaves out the
intermediate nodes in the path. You might use a node kit path if you are looking at a motion hierarchy
(see Example 14 3) and you want to think of each kit as an object. Figure 14 1 shows a path, a full
path, and a node kit path for the same subgraph. The shaded circles are node kits, and the light circles
are not.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
14, Node Kits 2

myScena myScene

e O O

“topSeparator”

“childList’

group

support C) support

“topSeparator”

“childList"

group

beam O beam

“topSeparator”

IIS hapell

—

SoFullPath SoPath SoNodeKitPath

Figure 14 1 Different Types of Paths

Node Kit Classes
Figure 14 2 shows the class tree for node kits, which are all deriveshBaseKit

See the entry f@doBaseKitin theOpen Inventor C++ Reference Manuat a complete list of the
methods for getting and setting parts in node kits.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
14, Node Kits 3

SoBase — ZoFieldContainer— SoMode —O ZoBasekit —

Figure 14 2 Node Kit Classes

Node Kit Catalog

— SoAppearncekit
— SoiCamerakir

— SclnteracticnKit

— Solepamtorkit {

L solightkt

— SoBcenakit

SoDmgger ..
fraa Chaptar +5)
SoShapeKi

SoWrapperbit

Each node kit class shown in Figure 14 2 has an assoc#&tddg The catalog lists all the parts

(nodes) available in this kit, in the same way as an electronics or software catalog lists all the items
available for sale. Just as you order items selectively from a software catalog, you can choose nodes
selectively from a node kit catalog. In addition to simply listing the available parts, a node kit catalog

also describes how the nodes are arranged into a subgraph when you select them.

For example, the catalog for 80ShapeKitis shown in Figure 14 3.

When you first create @onShapeKit you get the "base model,” shown in Figure 14 4. By default, the

"shape" part is a cube. You can change this shape and also add options as you need them.

The Inventor Mentor:
14, Node Kits 4

Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter

SoShapa kit

"callbacklist" "opSepammr

6@% @

*pickStylet ety e mnsiom” | 'nomal Bindng" ‘shapeHints® | “coomdnaes” | “temeCoodnates”| ‘profleCoodnate | proilelist PocalTranstomn
"appearance” ‘transform® "rrertenid Bindng" “texuneCoodnateBindng” "coondnate®" “nomrel” ety eCoomdnateFunction’ "proile():ordnam "childList" "shapeaSapa ator

"shape”

Figure 14 3 Catalog for SoShapeKit

Soshapekit

“topSeparator”

"shapeSeparator”

II5 hapell

Figure 14 4 Basic Version of an SoShapeKit

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
14, Node Kits 5

A node kit catalog contains a separate entry to describe each paBoJ$hapeKitcatalog shown in
Figure 14 3 has 24 entries. Each catalog entry contains the following pieces of information:

* Nameof the part

* Typeof node

» Defaulttype (used ifypeis an abstract class)

* Whether this part isreated by default

» Name of this part'parent

* Name of theight sibling of this part

* Whether this part is lést

» Ifthe partis a list, thgype of group nod#hat is used to contain the list items
e Ifthe partis a list, the permissitiede typesor entries in this list

* Whether this part ipublic

ollowing | le cataloq enfries SoShaneki

Information Sample Entry 1 Sample Entry 2

Name "callbackList" "transform"

Type SoNodeKitListPart SoTransform

Default Type (Not Applicable) (Not Applicable)

Created by Default? FALSE FALSE

Parent Name "this" "topSeparator"”

Right Sibling "topSeparator" "texture2Transform"

Is It a List? TRUE FALSE

List Container Type SoSeparator (Not Applicable)

List Element Type SoCallback (Not Applicable)
SoEventCallback

Is It Public? TRUE TRUE

An SoShapeKitcontains another node kit, "appearance," which BakppearanceKit The catalog
for SoAppearanceKitis shown in
Figure 14 5.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
14, Node Kits 6

SoAppearancekit

“callbackList" “font"

“Iigthodel“@ @ "texture2"
"environment" @ @ "complexity"

"drawStyle" "matenal"

Figure 14 5 Catalog for SoAppearanceKit

Parts Created by Default
The following constructor creates an instance dbaShapeKit
SoShapeKit *myShapeKit = new SoShapeK:it();

When an instance of a node kit is created, certain nodes are created by default. In the kits provided,
theSoShapeKit SoLightKit, andSoCameraKitcreate the parts "shape,” "light," and "camera,"
respectively. The default types for these partsSax@ube SoDirectionalLight, and
SoPerspectiveCamera

When the shape kit is constructed, it automatically creates the cube node as well as the top separator
and shape separator nodes for the group. (Internal nodes, such as the separator node, are automatically
created when you add a node lower in the node kit structure.) At this point, the scene graph would

look like Figure 14 4. The shape kit now consists of four nodeSdiShapeKitnode itself, the top

separator node, the shape separator (used for caching even when the transform or material is

changing) and the cube node. The other nodes in the shape kit catalog are not created until you
explicitly request them, as described below.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
14, Node Kits 7

Soshapekit

“topSeparator”

"shapeSeparator”

II5 hapell

o000

Figure 14 6 Creating an Instance of SoShapeKit

Selecting Parts and Setting Values

Next you can use theet()method, a method f@oBaseKitthat is inherited by all node kits. Use the
set()method to create a pand specify field values in the new node. This method has two different
forms:

se{nameValuePairListStrig // uses braces to separate
/I part names from value pairs

or
se{partNameStringparameterStriny // does not use braces

An example of the first form afet() which makes a material node and
sets the diffuse color field to purple is as follows:

myShape >set("material { diffuseColor 1 0 1 }");
An example of the second forms#t() which does the same thing, is as follows:

myShape >set("material", "diffuseColor 1 0 1");

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
14, Node Kits 8

The scene graph for this instance of the shape kit now looks like Figure 14 7. Note that the
SoAppearanceKitnode is created automatically when you request the material node. Also note that
the node is created only if it does not yet exist. Subsequent cedi)tedit the fields of the material

node rather than recreate it.
O SoShapeKit

“topSeparator”

"appearance” : : "shapeSeparator”

“material” "shape”

Figure 14 7 Adding the Material Node
Now suppose you want to make the cube wireframe rather than solid, and twice its original size:

myShape >set("drawStyle { style LINES }
transform { scaleFactor 2.0 2.0 2.0} ";

The scene graph now looks like Figure 14 8.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
14, Node Kits 9

SoShapeKit

"topSeparator”
“appearance” "shapeSeparator”
"transtorm”
“drawStyle” "matenial” "shape"

Figure 14 8 Adding Draw Style and Transform Nodes

Note that you can use thet()method to create the nodes in any order. The node kit automatically
inserts the nodes in their correct positions in the scene graph, as specified by the node kit catalog.

This instance of the shape kit now contains eight nodes, as shown in Figure 14 8.

Other Methods: getPart() and setPart()

Two other useful methods 8bBaseKit()aregetPart() andsetPart().

The getPart() Method
ThegetPart() method returns the requested node (part):
getPart(partName makelfNeedéd

If makelfNeeded TRUE and no node is present, the node is created. In addition, if any extra nodes
are needed to connect the node to the top node ("this") of the node kit, those nodes are created as well.

For example:
xf = (SoTransform *) myKit >getPart("transform", TRUE);

looks for "transform™ and either returns it (if found) or makes it (if not found). It then assigns this node
to xf. If you specify FALSE fomakelfNeedednd the node kit has no "transform" yet, the method
returns NULL without creating the node. If the catalog for the type of node kit you are using does not

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
14, Node Kits 10

have an entry for a part named "transform,"gégPart() method returns NULL.

The setPart() Method

ThesetPart() method inserts the given node as a new part in the
node Kkit:

setPar{partName node);

If extra nodes are required to connect the part into the node kit structure, those nodes are created as
well. For example, suppose you want another node kit to share the transforxf)nzrdated in the
previous example:

myOtherKit >setPart("transform”, xf);

If the given node is not derived from the type of that part, as described in the node kit catalog, the part
will not be set. If you have linked with the debugging library, an error message will print.

To delete the transform node entirely, use a NULL argument for the node pointer:
myOtherKit >setPart("transform”, NULL);

To change the "shape" 8oShapeKitfrom the default cube to a cone:

myShape >setPart("shape”, new SoCone);

And, of coursesetPart() will do nothing if there is no part with the specified name in the catalog.

Macros for Getting Parts

Instead of using thgetPart() method, you can use the macros SO_GET_PART() and
SO_CHECK_PARTY(). If you compile with the debugging version of the Inventor library, these
macros perform casting and type check the result for you. (If you link with the optimized version of
Inventor, no type checking is performed.)

The SO_GET_PART() Macro

The syntax for SO_GET_PARTY() is as follows:
SO_GET_PART(kitContainingPart, partName, partClassName
This macro does the type casting for you and is equivalent to

(partClassNamé) kitContainingPart-getPart(partName TRUE);

Since themakelfNeededrgument is TRUE in this macro, the part is created if it is not already in the
node Kit.

For example:

xf = SO_GET_PART(myKit, "transform", SoTransform);

The SO_CHECK_PART() Macro
The syntax for SO_CHECK_PART() is as follows:
SO_CHECK_PART(kitContainingPart, partName, partClassName

This macro does the type casting for you and is equivalent to

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
14, Node Kits 11

(partClassNamé) kitContainingPart-getPart(partName FALSE);

Since themakelfNeededrgument is FALSE in this macro, the pamdscreated if it is not already in
the node kit.

For example:

xf = SO_CHECK_PART(myKit, "transform”, SoTransform);

if (xf == NULL)
printf("Transform does not exist in myKit.");
else

printf("Got it!");

Specifying Part Names

Suppose you have created the three node kit classes shown in Figure 18 (seentor
Toolmaker Chapter 7, for information on how to subclass node kits):

» An SoGoonKit which defines the complete creature, a goon. This goon consists of an
SoAppearanceKit two instances ddolLegKit forleglandleg2 and arSoConefor body

* An SolLegKit, which defines a leg for a goon. This class contairSappearanceKit an
SoFootKit, and arBoCylinderfor thigh

» An SoFootKit, which defines a foot for a goon. This class contairSodppearanceKit an
SoCubefortoel, and arsoCubefor toe2

After creating an instance 8bGoonKit (myGoof), you can be very specific when asking for the
parts. For example:

myCube = SO_GET_PART(myGoon, "toel", SoCube);

first looks in the catalog ofiyGoorfor toel If it doesn't findtoeland some children in the catalog
are node kits, it looks inside the leaf node kitdded and uses the first match it finds. Here, the
match would be found in the footlefyl But what if you really wartbelinleg2? In that case, you
may specify:

myCube = SO_GET_PART(myGoon, "leg2.toel", SoCube);
which returngoelinleg2 This is equivalent tleg2.foot.toel

You can also refer to parts by indexing into any part that is defined as a list in theé_tfdalog
example, "childList[0]" or "callbackList[2]."

The following excerpts illustrate three different ways to create node kit parts and set their values.
These excerpts assume you have subclassed to create your own class, deriSed&weKit an
SoGoonKit (seeThe Inventor ToolmakeChapter 7). This goon has a body, legs, and feet, as
described earlier.

This fragment shows setting each part individually:

SoGoonKit *myGoon = new SoGoonKit();

myGoon >set("body.material”, "diffuseColor [1 0 0]");
/l makes body red

myGoon >set("leg2.toel", "width 2 height 3 depth 1");
/I creates toe with proper dimensions

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
14, Node Kits 12

Figure 149 Three Node Kit Classes for Making "Goons"
This fragment shows getting parts and editing them:

SoGoonKit *myGoon = new SoGoonKit();

SoMaterial *bodyMtl;

SoCube *toe;

bodyMtl = SO_GET_PART(myGoon, "body.material”, SoMaterial);
bodyMtl >diffuseColor.setValue(1, 0, 0);

toe = SO_GET_PART(myGoon, "leg2.toel", SoCube);

toe >width.setValue(2);

toe >height.setValue(3);

toe >depth.setValue(1);

This fragment shows setting both parts in one command:

SoGoonKit *myGoon = new SoGoonKit();
myGoon >set("body.material { diffuseColor[100]}
leg2.toel {width 2
height 3
depth 1 }");

Creating Paths to Parts

Sometimes you will need a path down to one of the node kit pfmtsnstance, to replace a part with
a manipulator as described in Chapter 15. UsertfaePathToPart() method to obtain the path to
the desired node for the manipulator.

createPathToPart (partName , makelfNeeded , pathToExtend);
For example, after picking a node kit, replace the transform part with a trackball manipulator:

SoPath *pickPath = myPickAction >getPath();

if((pickPath '= NULL) &&
(pickPath >getTail() >isOfType(SoBaseKit::getClassTypeld())){
SoTrackballManip *tb = new SoTrackball;
SoBaseKit *kit = (SoBaseKit *) pickPath >getTail();

/I extends the pick path all the way down

/I to the transform node
SoPath *attachPath = kit >createPathToPart("transform",
TRUE, pickPath);
tb >replaceNode(attachPath);

Note that usingeplaceNode()Jdoes more work for you than simply calling
setPart("transform", tb)
Field values are copied from the existing "transform" part into the trackball manipulator’s fields.

If the pathToExtengbarameter is NULL or missingreatePathToPart() simply returns the path from
the top of the node kit to the specified part (see Figure 14 10):

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
14, Node Kits 13

SoPath *littlePath;
littlePath = myKit >createPathToPart("transform”, TRUE);

SincemakelfNeeded TRUE, the "transform” part will be created if it does not already exist.
However, ifmakelfNeedets FALSE and the part does not exesgatePathToParteturns NULL.

Tip: If you want to view the full path, including hidden children, be sure to caSof&thto an

SoFullPath
“this"
"topSeparator”
"appearance" "shapeSeparator”
“transtorm”
"material” "shape”
= |iitlePath

Figure 14 10 Obtaining the Path to a Given Part

If the pathToExtengharameter is usedreatePathToPart() extends the path provided all the way

down to the specified part within the node kit (here, the "transform" node). (See Figure 14 11.) If the
path provided as input (in this cap&kPath) does not include the specified node bigjPathequals

NULL. If the path given as input extends past the specified node kit, the path will first be truncated at
the node kit before extending it to reach the part.

bigPath = myKit >createPathToPart("transform", TRUE, pickPath);

To create a path to a child within a list part, use the same indexing notation as you wsmifkinf)
orgetPart():

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
14, Node Kits 14

pathToListElement = createPathToPart("callbackList[0]", TRUE);

" n "shapeSeparator”
appearance "transform"

"matenial" "shape"

— bigPath

pickPath

Figure 14 11 Extending a Given Path to the Desired Part

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
14, Node Kits 15

Using List Parts

Some node kit parts are actudlbts of parts. These lists, of typ@oNodeKitListPart, are a special

type of group that restricts its children to certain classes of nodes. Examples are "childList" (found in
SoSeparatorKit andSoSceneKit and "cameralList" and "lightList" (both found $0SceneKix

Whenever you add a child to a node kit list, the group checks to see if that child is legitimate. If the
child is not legitimate, it is not added (and if you are using the debugging library, an error is printed).

UsegetPart() to obtain the requested list, then use any of the standard group methods for adding,
removing, replacing, and inserting children in the parts list. (But remember that each of these
methods is redefined to check the types of children before adding them.) For example:

SoPointLight *myLight = new SoPointLight;
Is = (SoNodeKitListPart *) k >getPart("lightList", TRUE);

Is >addChild(myLight);

Using Separator Kits to Create
Motion Hierarchies

SoSeparatorKitis a class of node kit. All classes derived from separator kit inherit a part called
"childList," of typeSoNodeKitListPart. Through use of the "childList," separator kits allow you to
think in terms of how parts of an object move relative to each other. Each element of the child list is,
in turn, anSoSeparatorKit and may contain its own transform node. By nesting separator Kkits,
multiple levels of relative motion can be achieved.

Figure 14 12 shows how you might group individual parts that move together. Assume you have
already made an individuSloSeparatorKit for each part in a balance scale, shown in Figure 14 12.
You wanttrayl andstring1to move as a unit, ariday2 andstring2to move as a unit. But when the
beam moves, both trays and both strings move with it.

As you arrange these group Kits into a hierarchy, you don’t need to think in terms of the individual
parts each group kit contains ("material," "complexity," and so on). You can think of the objects
themselves (beam, strings, trays) and how they move relative to each othahildlhist for
SoSeparatorKit can contain any node derived fr&nSeparatorKit, so any type of separator kit is
permissible as an entry in this list.

The following code constructs the hierarchy shown in Figure 14 12. A working version of this model
is provided in Example 14 3 at the end of this chapter.

scale >setPart("childList[0]", support);
scale >setPart("childList[1]", beam);
beam >setPart("childList[0]", stringl);
beam >setPart("childList[1]", string2);
stringl >setPart("childList[0]", tray1l);
string2 >setPart("childList[0]", tray2);

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
14, Node Kits 16

llb eam"

"SC ale"

() "string1" "string2"

"support" "beam"

1 1
"tray1" "tray2"

"string1" "string2"

"tray1" "tray2" "support”

Figure 14 12 Hierarchical Motion Relationships

Examples

This section includes three examples of node kits. The first example usee$vapeKits The
second example, with detailed comments, use&&irapperKit and arSoSceneKithat contains an
SolLightKit and arSoCameraKit The third example uses various node kits as well as an
SoEventCallbackwith an associated function for animating the balance scale.

Simple Use of Node Kits

Example 14 1 uses node kits to create two 3D words and shows use of node kit methods to access the
fields of the "material" and "transform" parts of the shape kits. It uses a calculator engine and an
elapsed time engine to make the words change color and fly around the screen. Figure 14 13 shows
two images from this example.

Example 14 1 Simple Use of Node Kits

#include <Inventor/engines/SoCalculator.h>
#include <Inventor/engines/SoElapsedTime.h>
#include <Inventor/nodekits/SoShapeKit.h>
#include <Inventor/nodes/SoMaterial.h>
#include <Inventor/nodes/SoSeparator.h>
#include <Inventor/nodes/SoText3.h>

#include <Inventor/nodes/SoTransform.h>

#include <Inventor/Xt/SoXt.h>
#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>

main(int , char **argv)

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
14, Node Kits 17

The Inventor Mentor:

Widget myWindow = SoXt::init(argv[0]);
if (myWindow == NULL) exit(1);

SoSeparator *root = new SoSeparator;
root >ref();

/I Create shape kits with the words "HAPPY" and "NICE"
SoShapeKit *happyKit = new SoShapeKit;

root >addChild(happyKit);

happyKit >setPart("shape", new SoText3);

happyKit >set("shape { parts ALL string \"HAPPY\"}");
happyKit >set("font { size 2}");

SoShapeKit *niceKit = new SoShapeKit;

root >addChild(niceKit);

niceKit >setPart("shape”, new SoText3);

niceKit >set("shape { parts ALL string \"NICE\"}");
niceKit >set("font { size 2}");

/I Create the Elapsed Time engine
SoElapsedTime *myTimer = new SoElapsedTime;
myTimer >ref();

T G (R g e e b

HAPFY

NICE

= b n-u-rl

Figure 14 13 Using an SoShapeKit with Engines

/I Create two calculators one for HAPPY, one for NICE.
SoCalculator *happyCalc = new SoCalculator;
happyCalc >ref();
happyCalc >a.connectFrom(&myTimer >timeOut);
happyCalc >expression = "ta=cos(2*a); th=sin(2*a);\

0A = vec3f(3*pow(ta,3),3*pow(th,3),1); \

14, Node Kits 18

Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter

oB = vec3f(fabs(ta)+.1,fabs(.5*fabs(tb))+.1,1);\
oC = vec3f(fabs(ta),fabs(tb),.5)";

/I The second calculator uses different arguments to
/I sin() and cos(), so it moves out of phase.
SoCalculator *niceCalc = new SoCalculator;
niceCalc >ref();
niceCalc >a.connectFrom(&myTimer >timeOut);
niceCalc >expression = "ta=cos(2*a+2); tb=sin(2*a+2);\
0A = vec3f(3*pow(ta,3),3*pow(tb,3),1); \
oB = vec3f(fabs(ta)+.1,fabs(.5*fabs(tb))+.1,1); \
oC = vec3f(fabs(ta),fabs(tb),.5)";

/I Connect the transforms from the calculators...
SoTransform *happyXf

= (SoTransform *) happyKit >getPart("transform”, TRUE);
happyXf >translation.connectFrom(&happyCalc >0A);
happyXf >scaleFactor.connectFrom(&happyCalc >0B);
SoTransform *niceXf

= (SoTransform *) niceKit >getPart("transform", TRUE);
niceXf >translation.connectFrom(&niceCalc >0A);
niceXf >scaleFactor.connectFrom(&niceCalc >0B);

/I Connect the materials from the calculators...
SoMaterial *happyMtl

= (SoMaterial *) happyKit >getPart("material", TRUE);
happyMtl >diffuseColor.connectFrom(&happyCalc >0C);
SoMaterial *niceMtl

= (SoMaterial *) niceKit >getPart("material", TRUE);
niceMtl >diffuseColor.connectFrom(&niceCalc >0C);

SoXtExaminerViewer *myViewer = new
SoXtExaminerViewer(myWindow);

myViewer >setSceneGraph(root);

myViewer >setTitle("Frolicking Words");

myViewer >viewAll();

myViewer >show();

SoXt::show(myWindow);
SoXt::mainLoop();

Using Node Kits with Editors

Example 14 2 reads in a desk from a file and puts it in the "contents” part of an SoWrapperKit. It adds
a directional light editor to the light in the scene and a material editor to the desk, as $tiguwe in

14 14. The scene is organized using an SoSceneKit, which contains lists for grouping lights
("lightList"), cameras ("cameralList"), and objects ("childList") in a scene.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
14, Node Kits 19

Example 14 2 Using Node Kits and Editors

#include <Inventor/SoDB.h>

#include <Inventor/Solnput.h>

#include <Inventor/nodekits/SoCamerakKit.h>
#include <Inventor/nodekits/SoLightKit.h>

#include <Inventor/nodekits/SoSceneKit.h>
#include <Inventor/nodekits/SoWrapperKit.h>
#include <Inventor/nodes/SoMaterial.h>

#include <Inventor/nodes/SoPerspectiveCamera.h>
#include <Inventor/nodes/SoSeparator.h>

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/SoXtDirectionalLightEditor.h>
#include <Inventor/Xt/SoXtMaterialEditor.h>
#include <Inventor/Xt/SoXtRenderArea.h>

= Mair Window: Desk [A Scene K

Figure 14 14 Using an SoSceneKit with Directional Light and Material Editors

main(int , char **argv)

{
/I Initialize Inventor and Xt
Widget myWindow = SoXt::init(argv[0]);
if (myWindow == NULL) exit(1);

/I SCENE!

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
14, Node Kits 20

SoSceneKit *myScene = new SoSceneKit;
myScene >ref();

/I LIGHTS! Add an SoLightKit to the "lightList." The
/I SoLightKit creates an SoDirectionalLight by default.
myScene >setPart("lightList[0]", new SoLightKit);

/I CAMERA!! Add an SoCameraKit to the "cameralList." The
/I SoCameraKit creates an SoPerspectiveCamera by default.
myScene >setPart("cameralList[0]", new SoCameraKit);
myScene >setCameraNumber(0);

/I Read an object from file.
Solnput mylnput;
if (!mylnput.openFile("desk.iv"))
return (1);
SoSeparator *fileContents = SoDB::readAll(&mylnput);
if (fileContents == NULL) return (1);
/I OBJECT!! Create an SoWrapperKit and set its contents to
/I be what you read from file.
SoWrapperKit *myDesk = new SoWrapperKit();
myDesk >setPart("contents"”, fileContents);
myScene >setPart("childList[0]", myDesk);
/I Give the desk a good starting color
myDesk >set("material { diffuseColor .8 .3 .1 }");

/I MATERIAL EDITOR!! Attach it to myDesk’s material node.

/l Use the SO_GET_PART macro to get this part from myDesk.
SoXtMaterialEditor *mtIEditor = new SoXtMaterialEditor();
SoMaterial *mtl = SO_GET_PART(myDesk,"material",SoMaterial);
mtlEditor >attach(mtl);

mtlEditor >setTitle("Material of Desk");

mtlEditor >show();

/| DIRECTIONAL LIGHT EDITOR!! Attach it to the
/l SoDirectionalLight node within the SoLightKit we made.
SoXtDirectionalLightEditor *ItEditor =
new SoXtDirectionalLightEditor();
SoPath *ItPath = myScene >createPathToPart(
"lightList[0].light", TRUE);
[tEditor >attach(ltPath);
[tEditor >setTitle("Lighting of Desk");
[tEditor >show();

SoXtRenderArea *myRenderArea = new SoXtRenderArea(myWindow);

/I Set up Camera with ViewAll...

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
14, Node Kits 21

/I use the SO_GET_PART macro to get the camera node.

/I viewall is a method on the 'camera’ part of

/I the cameraKit, not on the cameraKit itself. So the part

/I we ask for is not 'cameralList[0]’ (which is of type

/I SoPerspectiveCameraKit), but

/I ’cameralList[0].camera’ (which is of type

/I SoPerspectiveCamera).

SoPerspectiveCamera *myCamera = SO_GET_PART(myScene,
"cameralist[0].camera", SoPerspectiveCamera);

ShViewportRegion myRegion(myRenderArea >getSize());

myCamera >viewAll(myScene, myRegion);

myRenderArea >setSceneGraph(myScene);

myRenderArea >setTitle("Main Window: Desk In A Scene Kit");

myRenderArea >show();

SoXt::show(myWindow);
SoXt::mainLoop();

Creating a Motion Hierarchy

Example 14 3 creates a balance scale using node kits and their motion hierarchies. Figure 14 15
shows the balance scale created by this example.

= Oaltaics Seake M oF Madekita = O

 —

Press Lelt or Right Arraw Key

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
14, Node Kits 22

Figure 14 15 A Balance Scale Created with Node Kits

Example 14 3 Using Node Kits to Create a Motion Hierarchy

/I This example illustrates the creation of motion hierarchies
Il using nodekits by creating a model of a balance style scale.

/' It adds an SoEventCallback to the "callback" list in the

// nodekit called "support.’

/I The callback will have the following response to events:
/I Pressing right arrow key == lower the right pan

Il Pressing left arrow key == lower the left pan

/I The pans are lowered by animating three rotations in the
// motion hierarchy.

/I Use an SoText2Kit to print instructions to the user as part
Il of the scene.

#include <Inventor/events/SoKeyboardEvent.h>
#include <Inventor/nodekits/SoCamerakKit.h>
#include <Inventor/nodekits/SoLightKit.h>
#include <Inventor/nodekits/SoSceneKit.h>
#include <Inventor/nodekits/SoShapeKit.h>
#include <Inventor/nodes/SoCone.h>

#include <Inventor/nodes/SoCube.h>

#include <Inventor/nodes/SoCylinder.h>
#include <Inventor/nodes/SoEventCallback.h>
#include <Inventor/nodes/SoText2.h>

#include <Inventor/nodes/SoTransform.h>
#include <Inventor/nodes/SoPerspectiveCamera.h>

#include <Inventor/Xt/SoXt.h>
#include <Inventor/Xt/SoXtRenderArea.h>

/I Callback Function for Animating the Balance Scale.

/I used to make the balance tip back and forth

/I Note: this routine is only called in response to KeyPress

/I events since the call 'setEventinterest(KeyPressMask)’ is
/Il made on the SoEventCallback node that uses it.

/I The routine checks if the key pressed was left arrow (which
Il is XK_Left in X windows talk), or right arrow (which is

/I XK_Right)

/I The balance is made to tip by rotating the beam part of the
/I scale (to tip it) and then compensating (making the strings
/I vertical again) by rotating the string parts in the opposite

/I direction.

void

tipTheBalance(

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
14, Node Kits 23

void *userData, // The nodekit representing 'support’, the
/I fulcrum of the balance. Passed in during
// main routine, below.
SoEventCallback *eventCB)
{

const SoEvent *ev = eventCB >getEvent();

/l Which Key was pressed?
/I If Right or Left Arrow key, then continue...
if (SO_KEY_PRESS EVENT(ev, RIGHT_ARROW) ||
SO_KEY_PRESS_EVENT(ev, LEFT_ARROW)) {
SoShapeKit *support, *beam1, *stringl, *string2;
ShRotation startRot, beamincrement, stringlncrement;

/I Get the different nodekits from the userData.
support = (SoShapeKit *) userData;

/I These three parts are extracted based on knowledge of

/l the motion hierarchy (see the diagram in the main

// routine.
beaml = (SoShapeKit *)support >getPart("childList[0]",TRUE);
stringl = (SoShapeKit *) beaml >getPart("childList[0]",TRUE);
string2 = (SoShapeKit *) beam1 >getPart("childList[1]",TRUE);

/[Set angular increments to be .1 Radians about the Z Axis

/[The strings rotate opposite the beam, and the two types

/lof key press produce opposite effects.

if (SO_KEY_PRESS _EVENT(ev, RIGHT_ARROW)) {
beamincrement.setValue(SbVvec3f(0, 0, 1), .1);
stringlncrement.setValue(SbVec3f(0, 0, 1), .1);

}

else {
beamincrement.setValue(SbVec3f(0, 0, 1), .1);
stringIncrement.setValue(SbVec3f(0, 0, 1), .1);

}

/I Use SO_GET_PART to find the transform for each of the
/I rotating parts and modify their rotations.

SoTransform *xf;

xf=SO_GET_PART(beaml, "transform”, SoTransform);
startRot = xf >rotation.getValue();

xf >rotation.setValue(startRot * beamincrement);

xf = SO_GET_PART(stringl, "transform", SoTransform);
startRot = xf >rotation.getValue();
xf >rotation.setValue(startRot * stringlncrement);

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
14, Node Kits 24

xf = SO_GET_PART(string2, "transform”, SoTransform);
startRot = xf >rotation.getValue();
xf >rotation.setValue(startRot * stringlncrement);

eventCB >setHandled();

}
}

main(int , char **argv)

{
Widget myWindow = SoXt::init(argv[0]);
if (myWindow == NULL) exit(1);

SoSceneKit *myScene = new SoSceneKit;
myScene >ref();

myScene >setPart("lightList[0]", new SoLightKit);
myScene >setPart("cameralList[0]", new SoCameraKit);
myScene >setCameraNumber(0);

/I Create the Balance Scale put each partin the
/I childList of its parent, to build up this hierarchy:
1

1 myScene
I |

1 support

I |

1 beam

I |

I

1 I

1 stringl string2
1 I

i trayl tray2

SoShapeKit *support = new SoShapeKit();

support >setPart("shape”, new SoCone);

support >set("shape { height 3 bottomRadius .3 }");
myScene >setPart("childList[0]", support);

SoShapeKit *beam = new SoShapeKit();

beam >setPart("shape”, new SoCube);

beam >set("shape { width 3 height .2 depth .2 }");
beam >set("transform { translation 0 .50} ");
support >setPart("childList[0]", beam);

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
14, Node Kits 25

The Inventor Mentor:
14, Node Kits 26

SoShapeKit *stringl = new SoShapeKit;
stringl >setPart("shape", new SoCylinder);
stringl >set("shape { radius .05 height 2}");
stringl >set("transform { translation 1.5 1 0}");
stringl >set("transform { center 0 1 0 }");

beam >setPart("childList[0]", stringl);

SoShapeKit *string2 = new SoShapeKit;
string2 >setPart("shape", new SoCylinder);
string2 >set("shape { radius .05 height 2}");
string2 >set("transform { translation 1.5 10} ");
string2 >set("transform { center 01 0} ");

beam >setPart("childList[1]", string2);

SoShapeKit *trayl = new SoShapeKit;
trayl >setPart("shape", new SoCylinder);
trayl >set("shape { radius .75 height .1 }");
trayl >set("transform { translation 0 10} ");
stringl >setPart("childList[0]", trayl);

SoShapeKit *tray2 = new SoShapeKit;
tray2 >setPart("shape", new SoCylinder);
tray2 >set("shape { radius .75 height .1 }");
tray2 >set("transform { translation 0 10} ");
string2 >setPart("childList[0]", tray2);

/I Add EventCallback so Balance Responds to Events
SoEventCallback *myCallbackNode = new SoEventCallback;
myCallbackNode >addEventCallback(
SoKeyboardEvent::getClassTypeld(),
tipTheBalance, support);
support >setPart("callbackList[0]", myCallbackNode);

/I Add Instructions as Text in the Scene...

SoShapeKit *myText = new SoShapeKit;

myText >setPart("shape”, new SoText2);

myText >set("shape { string \"Press Left or Right Arrow Key\"
)

myText >set("shape { justification CENTER }");

myText >set("font { name \"Helvetica Bold\" }");

myText >set("font { size 16.0 }");

myText >set("transform { translation 0 2 0 }");

myScene >setPart("childList[1]", myText);

SoXtRenderArea *myRenderArea = new SoXtRenderArea(myWindow);

/| Get camera from scene and tell it to viewAll...

Programming Object Oriented 3D Graphics with Open Inventor

, Release 2 Chapter

/I Get camera from scene and tell it to viewAll...

ShViewportRegion myRegion(myRenderArea >getSize());

SoPerspectiveCamera *myCamera = SO_GET_PART(myScene,
"cameralist[0].camera", SoPerspectiveCamera);

myCamera >viewAll(myScene, myRegion);

myRenderArea >setSceneGraph(myScene);
myRenderArea >setTitle("Balance Scale Made of Nodekits");
myRenderArea >show();

SoXt::show(myWindow);
SoXt::mainLoop();

Chapter 15
Draggers and Manipulators
Chapter Objectives
After reading this chapter, you'll be able to do the following:
» Connect draggers to fields or engines in the scene graph
» Explain the difference between a dragger and a manipulator

» Write callback functions that are performed when interaction starts or finishes, when the mouse
moves, or when the value in a dragger’s field changes

» Use manipulators in your application to allow the user to edit nodes in the scene graph directly

» Customize the appearance of a dragger

This chapter describes how to alsaggersandmanipulators which are special objects in the scene

graph that have a user interface and respond to events. Manipulators, such as the handle box,
trackball, and directional light manipulator, are nodes that employ draggers to enable the user to
interact with them and edit them. For information on how draggers receive and respond to events, see
Chapter 10.

What Is a Dragger?

A dragger is a node in the scene graph with specialized behavior that enables it to respond to user
events. All Inventor draggers have a built in user interface, and they insert geometry into the scene
graph that is used for picking and user feedback. Figure 15 1 shows the class tree for dragger classes.

Types of Draggers

For all draggers subclassed fr&aDragger, the user employs a click drag release motion with the
mouse. Table 15 1 indicates the use of each dragger subclass&bfboagger For example, the
drag point dragger responds to dragging by translating in three dimensions.

Subclasses @oDraggerfall into two general categoriesimpledraggers andompoundiraggers. In
general, simple draggers perform only one operation, such as a scale or a translation. Compound
draggers perform several operations and are composed of multiple simple draggers. Simple draggers
can be used in three ways:

* You canconnect the fiel@f a simple dragger to other fields or to engines in the scene graph.
This is a simple way to set up dependencies within the scene graph.

» You can writecallback functionghat are performed when interaction starts or finishes, whenever
the mouse moves, or when the value in the dragger’s field changes.

* You can use the simple draggerdasding blockgo create more complex draggers.
Compound draggers are similar to simple draggers, except that they have more parts because they are

comprised of two or more draggerseTdoTransformBoxDragger for example, uses a scale
dragger, three rotators, and six translators.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
15, Draggers and Manipulators 1

~oBaze

I
soFieldContainer

= nr|~4|:|je
Su:uEIlaseFCit
Su:nlnlte ractionkit—soDragger —— - CenterballD ragoer
— SoDirctionallightDragosr
— ZoDragPointDragger
— SoHandleBoxDrgger
— SodackDragger
— SoPointLightDragger
— SoRotateCylind rical Dragger
— SoFctateDiEcDrRgger
— ZoRotateEpherical Dragger
— Sodsak1Dragoer
— SoocakZDragosr
— ZodcakUniformDrRgger
— SodcakUniformDRgger
— SoopotlightDegger
— ZoTabBox Dragger
— ZoTabPlanebragger
— SolrackballD@gger
— ZoTransformBox DRgger

— ZoTranzsktel DRgger

— Solranzhtez DEgger

Figure 151 Dragger Classes

Dragger Use

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
15, Draggers and Manipulators 2

SoCenterballDragger rotation, center

SoDirectionalLightDragger rotation

SoDragPointDragger translation

SoHandleBoxDragger translation, scale

SoJackDragger rotation, translation, uniform scale (three
dimensions)

SoPointLightDragger translation

SoRotateCylindricalDragger rotation

SoRotateDiscDragger rotation

SoRotateSphericalDragger rotation

SoScalelDragger scale (one dimension)

SoScale2Dragger scale (two dimensions)

SoScaleUniformDragger uniform scale (three dimensions)

SoScale2UniformDragger uniform scale (two dimensions)

SoSpotLightDragger translation, rotation, cone angle

SoTabBoxDragger scale, translation

SoTabPlaneDragger scale (two dimensions), translation (two
dimensions)

SoTrackballDragger rotation, scale

SoTransformBoxDragger rotation, translation, scale

SoTranslatelDragger translation (one dimension)

SoTranslate2Dragger translation (two dimensions)

Table 15 1 Uses of Draggers

Manipulators versus Draggers

Manipulators are subclasses of other nodes (such as SoTransform or SoDirectionalLight) that employ
draggers (as hidden children) to respond to user events and edit themselves. Figure 15 2 shows the
portions of the class tree that contain manipulator classes. Each manipuinsa dragger that
responds directly to user events and in turn modifies the fields of the manipulator. A manipulator
inserts geometry into the scene that provides feedback to the user; this geometry is provided by the
manipulator’s dragger. ABoHandleBoxManip for example, inserts cubes and lines into the scene
that allow the user to edit the scale and translate fields®d&ransform node by moving the mouse

in various ways (see Figure 15 3). This geometry is part @dhtandleBoxDraggercontained

within theSoHandleBoxManipmanipulator. ArSoTrackballManip allows the user to edit the

rotation field of arSoTransformnode by inserting a sphere surrounded by three ribbons into the
scene (see Figure 15 4). The user can then rotate or scale the object inside this trackball.

A dragger moves only itself when it responds to user events. A manipulator, on the other hand, moves
itself and affects other objects in the scene graph because, as a sutstdsamdform or SoLight,

it functions as a transform or light node and modifies the traversal state. A dragger supplies geometry
and a user interface for a manipulator. A manipulator uses the values it receives from the dragger and
copies them into its own fields. When interaction finishes and the manipulator is removed from the
scene graph, it copies its values into the transform or light node it was replacing.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
15, Draggers and Manipulators 3

ZoBasa

SoFieldCaontainer
|

SaoMode Solight Solirectiznallight — ZoDirestionallighthiznip
i:SoF'ointLig ht SoPeintLighthlanip
SeSpotlight SoSpotLightilanip
SoTransform ation — SoTranstorm @SUTransfnrmManip — SoCenterballManip

— SoHandkeboexManip
— Sodackiianip
— SoTabBoxhanip

— SoTrRekbalianip

L SoTmRnsformBoxilanip

Figure 15 2 Manipulator Classes

A manipulator replaces a node in the scene graph, substituting an editable version of that node for the
original. When interaction finishes, the original (non editable) node can be restored. Each manipulator
contains a dragger that allows the user to edit its fields. Manipulators derivesioffoamsform are

as follows:

SoCenterBallManip
SoHandleBoxManip
SoJackManip
SoTabBoxManip
SoTrackballManip
SoTransformBoxManip

Other manipulators include tiB®PointLightManip, derived fronSoPointLight, and the
SoDirectionalLightManip, derived fromSoDirectionalLight.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
15, Draggers and Manipulators 4

=l Seenallrwer i =0
file Gt Viewing Saaon Eitors Mamps Ggier

|8 |4 ERER e |-= | o

Aot Roby (7 T Loom |55 Dol
| —

Figure 15 3 Handle Box Manipulator

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
15, Draggers and Manipulators 5

qmmwm | =[]
Mg balt Viewhp Selmaten Soltoes Mamips gl

—en

(| Rob< Poby T | Zoom e |25 Dally

Figure 15 4 Trackball Manipulator

Simple Draggers

A simple dragger moves in 3D space in response to click drag release mouse events. Its position in
space is determined by its position in the scene graph. Each simple dragger has a field that reflects the
current state of the dragger. For example, the SoRotateDiscDragger has a rotation field that indicates
its current rotation value. This field can be connected to other fields in the scene graph or to the input
field of an engine (see the following section). Callback functions can also be used with simple
draggers, as described in "Callback Functions".

Field Connections

A convenient way to use a dragger is to connect its fields to other fields or engines in the scene graph.
For example, th8oTranslatelDraggerhas aranslation field that could be used in a variety of

ways. Figure 15 5 shows how this field could be used to edit the radius of a cone node. Since the
dragger’'dranslation field is anSoSFVec3fyou need to use &oDecomposeVec3ngine to

extract thex value of the dragger’s

translation. Thix value is then fed into tHettomRadiusfield of the cone node. Now, whenever the
dragger is translated, the radius of the cone changes.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
15, Draggers and Manipulators 6

(o8]

—_—— = —— =k

r

myDragger : my [ransform :
|

|

myEngine

myCone

Figure 155 Connecting a Dragger’s Field to Another Field in the Scene Graph

Example 15 1 shows the code for connecting these fields and engines. Figure 15 6 shows an image

created by this example.

Example 15 1 Using a Simple Dragger

/I Create myDragger with an initial translation of (1,0,0)
SoTranslatelDragger *myDragger = new SoTranslatelDragger;
root >addChild(myDragger);

myDragger >translation.setValue(1,0,0);

/I Place an SoCone below myDragger
SoTransform *myTransform = new SoTransform;
SoCone *myCone = new SoCone;

root >addChild(myTransform);

root >addChild(myCone);

myTransform >translation.setValue(0,3,0);

The Inventor Mentor:
15, Draggers and Manipulators 7

Programming Object Oriented 3D Graphics with Open Inventor

, Release 2 Chapter

/I SoDecomposeVec3f engine extracts myDragger’'s x component
/I The result is connected to myCone’s bottomRadius.
SoDecomposeVec3f *myEngine = new SoDecomposeVec3f;
myEngine >vector.connectFrom(&myDragger >translation);
myCone >bottomRadius.connectFrom(&myEngine >X);

Figure 15 6 Using a Dragger and Engine to Edit the Radius of a Cone

Callback Functions

Any dragger or manipulator can use callback functions to pass data back to the application. This
callback mechanism can be used to augment the default functionality of the dragger or manipulator.
Several lists of callback functions and associated data, ofSbéallbackList, are automatically

created when a dragger is constructed. You can add functions to and remove functions from these lists
and pass a pointer to the user callback data. Draggers use these lists of callback functions:

» Start callbacks called when manipulation starts
e Motion callbackél called after each mouse movement during manipulation
» Value changed callbackscalled when any of the dragger’s fields change

* Finish callbacksl called when manipulation finishes

The following methods add functions to and remove functions from these callback lists:

addStartCallback(functionNameuserDatg
removeStartCallbackfunctionNameuserDatag

addMotionCallback(functionNameuserDatg
removeMotionCallback(functionNameuserDatd

addValueChangedCallbackfunctionNameuserData
removeValueChangedCallbackunctionNameuserDatd

addFinishCallback(functionNameuserDatd
removeFinishCallbackfunctionNameuserDatg

These methods are called 8aDragger. To call one of these methods on the manipulator, call

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
15, Draggers and Manipulators 8

getDragger()first, then call the callback list method.

For example, you could write a start callback function that would turn an object to wireframe during
manipulation and a finish callback function that would turn it back to filled drawing style when
manipulation finishes. You could write a value changed callback to find out when the value being
manipulated has changed, and then usgetéalue()method to obtain the field's new value.

Using Multiple Draggers

Example 15 2 uses thre@anslatelDraggersto change thg y, andzcomponents of a translation that
affects some 3D text. Figure 15 7 shows two images created by this program.

= Jusr s (R

[——— T | e —

Figure 157 A Slider Box That Uses Draggers and Engines to Move Text

Example 15 2 Using Multiple Draggers

/I Uses 3 translatelDraggers to change the x, y, and z

/I components of a translation. A calculator engine assembles
/I the components.

/I Arranges these draggers along edges of a box containing the
/I 3D text to be moved.

/I The 3D text and the box are made with SoShapeKits

#include <Inventor/engines/SoCalculator.h>
#include <Inventor/nodekits/SoShapeKit.h>
#include <Inventor/nodes/SoCube.h>
#include <Inventor/nodes/SoSeparator.h>
#include <Inventor/nodes/SoText3.h>
#include <Inventor/nodes/SoTransform.h>

#include <Inventor/Xt/SoXt.h>
#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>

#include <Inventor/draggers/SoTranslate1Dragger.h>

main(int , char **argv)

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
15, Draggers and Manipulators 9

Widget myWindow = SoXt::init(argv[0]);
if (myWindow == NULL) exit(1);

SoSeparator *root = new SoSeparator;
root >ref();

/I Create 3 translatelDraggers and place them in space.
SoSeparator *xDragSep = new SoSeparator;
SoSeparator *yDragSep = new SoSeparator;
SoSeparator *zDragSep = new SoSeparator;

root >addChild(xDragSep);

root >addChild(yDragSep);

root >addChild(zDragSep);

/I Separators will each hold a different transform
SoTransform *xDragXf = new SoTransform;
SoTransform *yDragXf = new SoTransform;
SoTransform *zDragXf = new SoTransform;

xDragXf >set("translation 0 4 8");

yDragXf >set("translation 8 0 8 rotation 0 0 1 1.57");
zDragXf >set("translation 8 4 0 rotation 010 1.57");
xDragSep >addChild(xDragXf);

yDragSep >addChild(yDragXf);

zDragSep >addChild(zDragXf);

/I Add the draggers under the separators, after transforms
SoTranslatelDragger *xDragger = new SoTranslatelDragger;
SoTranslatelDragger *yDragger = new SoTranslate1lDragger;
SoTranslatelDragger *zDragger = new SoTranslatelDragger;
xDragSep >addChild(xDragger);

yDragSep >addChild(yDragger);

zDragSep >addChild(zDragger);

/I Create shape kit for the 3D text

/I The text says 'Slide Arrows To Move Me’
SoShapeKit *textKit = new SoShapeKit;
root >addChild(textKit);

SoText3 *myText3 = new SoText3;

textKit >setPart("shape”, myText3);
myText3 >justification = SoText3::CENTER;
myText3 >string.set1Value(0,"Slide Arrows");
myText3 >string.set1Value(1,"To");
myText3 >string.set1Value(2,"Move Me");
textKit >set(“font { size 2}");

textKit >set("material { diffuseColor 1 1 0}");

/I Create shape kit for surrounding box.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
15, Draggers and Manipulators 10

/l'lIt's an unpickable cube, sized as (16,8,16)
SoShapeKit *boxKit = new SoShapeKit;

root >addChild(boxKit);

boxKit >setPart("shape"”, new SoCube);

boxKit >set("drawStyle { style LINES }");

boxKit >set("pickStyle { style UNPICKABLE }");
boxKit >set("material { emissiveColor 1 0 1 }");
boxKit >set("shape { width 16 height 8 depth 16 }");

/I Create the calculator to make a translation

/I for the text. The x component of a translatelDragger’'s
/[translation field shows how far it moved in that

/I direction. So our text’s translation is:

/I (xDragTranslate[0],yDragTranslate[0],zDragTranslate[0])
SoCalculator *myCalc = new SoCalculator;

myCalc >ref();

myCalc >A.connectFrom(&xDragger >translation);
myCalc >B.connectFrom(&yDragger >translation);
myCalc >C.connectFrom(&zDragger >translation);
myCalc >expression = "0A = vec3f(A[0],B[0],C[0])";

/I Connect the the translation in textKit from myCalc
SoTransform *textXf = (SoTransform *)

textKit >getPart("transform”, TRUE);
textXf >translation.connectFrom(&myCalc >0A);

SoXtExaminerViewer *myViewer = new
SoXtExaminerViewer(myWindow);

myViewer >setSceneGraph(root);

myViewer >setTitle("Slider Box");

myViewer >viewAll();

myViewer >show();

SoXt::show(myWindow);
SoXt::mainLoop();

Manipulators
You can use manipulators in your application in various ways:

* You can use theeplaceNode()method to replace certain kinds of nodes in the scene graph with
an editable version. When the user is finished manipulating the node, usgldice Manip()
method to restore the original node to the scene graph.

* You can write your own callback functions to use the field values of the manipulator. The
callback functions described in "Callback Functions" can be used for any manipulator. (Recall
that these functions belong to the dragger, so you need to call getDragger() before using them.)

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
15, Draggers and Manipulators 11

You can also combine use of these two techniques. For example, you ogplaseNode(Xo

replace arsoTransform with a manipulator. Then you can use a value changed callback to notify the
application when any of the manipulator’'s dragger fields changes, and the application can use this new
value, if desired.

The following sections describe both of these techniques in more detail.

Replacing a Node with a Manipulator

To use any manipulator in an application, follow these basic steps:
1. Construct the manipulator.

2. Reference it if you plan on reusing it.

3. Replace the node in the scene graph with the manipulator. Manipulators derived from
SoTransform, such as the handle box and trackball, replacgodmansform node. An
SoDirectionalLight
Manip replaces aBoDirectionalLight node, arsoPointLightManip replaces aBoPointLight
node, and so on.

Replacing a Node
ThereplaceNode(Imethod takes a path as an argument:
replaceNode (SoPath* p)

The path is supplied by the application. For example, Figure 15 8 shows the path to a target
SoTransform node. When a transform manipulator replaces this node, editing the manipulator will
affectcube2n the scene graph.

Manipulators subclassed froBoTransformManip use special nodes to maintain their shape (so that
the trackball remains spherical, for example) and to ensure that they surround the shape objects they
affect. These nodes are describedlie Inventor Toolmaker

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
15, Draggers and Manipulators 12

cube3

xform cube2

xform cubei

Figure 15 8 Specifying the Path to the Target Node

Removing the Manipulator
To remove the manipulator from the scene graph:

1. Use theeplaceManip() method to restore the original node to the scene graph. In the example,
the field values from the manipulator are copied into the transform node.

2. Useunref() on the manipulator so that it will be deleted.

Because the manipulator methoeglaceManip() andreplaceNode()exchange the new node for the
tail of the given path, you can reuse the path for subsequent calls to these methods.

For example, if we begin with:

myManip = new SoTrackballManip;

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
15, Draggers and Manipulators 13

myPathToTransform = createPathtoTransform(pickPath);

Then we can call:

myManip >replaceNode(myPathToTransform);

to put the manipulator at the end of the path.

Later, we can call

myManip >replaceManip(myPathToTransform, new SoTransform);
to remove the manipulator and replace it with a transform.

1.

Using the replaceNode() Method

Example 15 3 displays a cube, a sphere, and a lamp. The lamp is read from a file and inserted as the
"contents" part of aBoWrapperKit. When the user picks the cube, a trackball replaces the

transform node that affects the cube. When the user picks the sphere, a handle box replaces the
transform node that affects the sphere. When the user picks the lamp, a transform box replaces the
"transform" part of the wrapper kit containing the lamp. Figure 15 9 shows an image created by this
program. This example shows the following techniques:

» UsingreplaceNode(JandreplaceManip() to make certain nodes in the scene graph editable and
to restore the original nodes when manipulation finishes

e Using selection callbacks (see Chapter 10)

Example 15 3 Using Manipulators to Transform Objects

/I Note that for illustration purposes, the

I/l cube and SoWrapperKit already have transform nodes
/l associated with them; the sphere does not. In all cases,
I the routine createTransformPath() is used to find the

Il transform node that affects the picked object.

#include <Inventor/SoDB.h>

#include <Inventor/Solnput.h>

#include <Inventor/manips/SoHandleBoxManip.h>
#include <Inventor/manips/SoTrackballManip.h>
#include <Inventor/manips/SoTransformBoxManip.h>
#include <Inventor/nodekits/SoWrapperKit.h>
#include <Inventor/nodes/SoCamera.h>

#include <Inventor/nodes/SoCube.h>

#include <Inventor/nodes/SoGroup.h>

#include <Inventor/nodes/SolLight.h>

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
15, Draggers and Manipulators 14

A ackier Mardoustors

|55 | i ez e | = | ||

Robx Aoty E—T——TT| Zoom g [¥5.0 Dally

Figure 159 Adding Manipulators to a Scene

#include <Inventor/nodes/SoMaterial.h>
#include <Inventor/nodes/SoSelection.h>
#include <Inventor/nodes/SoSphere.h>
#include <Inventor/nodes/SoTransform.h>

#include <Inventor/Xt/SoXt.h>
#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>

/ function prototypes

void selectionCallback(void *, SoPath *);

void deselectionCallback(void *, SoPath *);
void dragStartCallback(void *, SoDragger *);
void dragFinishCallback(void *, SoDragger *);

// global data

SoSeparator *root;

SoHandleBoxManip *myHandleBox;
SoTrackballManip *myTrackball;
SoTransformBoxManip *myTransformBox;
SoPath *handleBoxPath = NULL;
SoPath *trackballPath = NULL;

SoPath *transformBoxPath = NULL;

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
15, Draggers and Manipulators 15

main(int, char **argv)

{
/I Initialize Inventor and Xt
Widget myWindow = SoXt::init(argv[0]);
if (myWindow == NULL) exit(1);

/I Create and set up the selection node

SoSelection *selectionRoot = new SoSelection;

selectionRoot >ref();

selectionRoot >
addSelectionCallback(selectionCallback, NULL);

selectionRoot >
addDeselectionCallback(deselectionCallback, NULL);

/I Create the scene graph
root = new SoSeparator;
selectionRoot >addChild(root);

/l Read a file into contents of SoWrapperKit
Il Translate it to the right.
SoWrapperKit *myWrapperKit = new SoWrapperKit;
root >addChild(myWrapperKit);
Solnput mylnput;
if (!mylnput.openFile("luxo.iv"))

return (1);
SoSeparator *objectFromFile = SoDB::readAll(&mylnput);
if (objectFromFile == NULL) return (1);
myWrapperKit >setPart("contents”,objectFromFile);
myWrapperKit >set("transform { translation 3 1 0 }");
SoMaterial *wrapperMat

= (SoMaterial *) myWrapperKit >getPart("material”, TRUE);
wrapperMat >diffuseColor.setValue(.8, .8, .8);

Il Create a cube with its own transform.
SoSeparator *cubeRoot = new SoSeparator;
SoTransform *cubeXform = new SoTransform;
cubeXform >translation.setValue(4, 0, 0);

root >addChild(cubeRoot);

cubeRoot >addChild(cubeXform);

SoMaterial *cubeMat = new SoMaterial;
cubeMat >diffuseColor.setValue(.8, .8, .8);
cubeRoot >addChild(cubeMat);

cubeRoot >addChild(new SoCube);

// Add a sphere node without a transform
/I (one will be added when we attach the manipulator)

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
15, Draggers and Manipulators 16

/I (one will be added when we attach the manipulator)
SoSeparator *sphereRoot = new SoSeparator;
SoMaterial *sphereMat = new SoMaterial,

root >addChild(sphereRoot);

sphereRoot >addChild(sphereMat);

sphereRoot >addChild(new SoSphere);

sphereMat >diffuseColor.setValue(.8, .8, .8);

/I Create the manipulators

myHandleBox = new SoHandleBoxManip;
myHandleBox >ref();

myTrackball = new SoTrackballManip;
myTrackball >ref();

myTransformBox = new SoTransformBoxManip;
myTransformBox >ref();

/I Get the draggers and add callbacks to them. Note

// that you don’t put callbacks on manipulators. You put

// them on the draggers which handle events for them.
SoDragger *myDragger;

myDragger = myTrackball >getDragger();

myDragger >addStartCallback(dragStartCallback,cubeMat);
myDragger >addFinishCallback(dragFinishCallback,cubeMat);

myDragger = myHandleBox >getDragger();
myDragger >addStartCallback(dragStartCallback,sphereMat);
myDragger >addFinishCallback(dragFinishCallback,sphereMat);

myDragger = myTransformBox >getDragger();
myDragger >addStartCallback(dragStartCallback,wrapperMat);
myDragger >addFinishCallback(dragFinishCallback,wrapperMat);

SoXtExaminerViewer *myViewer

= new SoXtExaminerViewer(myWindow);
myViewer >setSceneGraph(selectionRoot);
myViewer >setTitle("Attaching Manipulators");
myViewer >show();
myViewer >viewAll();

SoXt::show(myWindow);
SoXt::mainLoop();

/I Is this node of a type that is influenced by transforms?
SbBool
isTransformable(SoNode *myNode)

{

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
15, Draggers and Manipulators 17

if (myNode >isOfType(SoGroup::getClassTypeld())
|| myNode >isOfType(SoShape::getClassTypeld())
|| myNode >isOfType(SoCamera::getClassTypeld())
[| myNode >isOfType(SoLight::getClassTypeld()))
return TRUE;

else
return FALSE;

/I Create a path to the transform node that affects the tail
/I of the input path. Three possible cases:
/I [1] The path tail is a node kit. Just ask the node kit for
I a path to the part called "transform"
/I [2] The path tail is NOT a group. Search siblings of path
I tail from right to left until you find a transform. If
I none is found, or if another transformable object is
I found (shape,group,light,or camera), then insert a
1 transform just to the left of the tail. This way, the
I manipulator only affects the selected object.
/I [3] The path tail IS a group. Search its children left to
I right until a transform is found. If a transformable
1 node is found first, insert a transform just left of
I that node. This way the manip will affect all nodes
1 in the group.
SoPath *
createTransformPath(SoPath *inputPath)
{

int pathLength = inputPath >getLength();

if (pathLength < 2) // Won't be able to get parent of tail

return NULL;

SoNode *tail = inputPath >getTail();

/l CASE 1: The tail is a node kit.
/I Nodekits have built in policy for creating parts.
I/l The kit copies inputPath, then extends it past the
/I kit all the way down to the transform. It creates the
/I transform if necessary.
if (tail >isOfType(SoBaseKit::getClassTypeld())) {
SoBaseKit *kit = (SoBaseKit *) tail;
return kit >createPathToPart("transform”, TRUE,inputPath);
}

SoTransform *editXf = NULL;
SoGroup *parent;
SbBool existedBefore = FALSE;

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
15, Draggers and Manipulators 18

/l CASE 2: The tail is not a group.
SbBool isTailGroup;
isTailGroup = tail >isOfType(SoGroup::getClassTypeld());
if (lisTailGroup) {
/['parent’ is node above tail. Search under parent right
/I to left for a transform. If we find a 'movable’ node
/I insert a transform just left of tail.
parent = (SoGroup *) inputPath >getNode(pathLength 2);
int taillndx = parent >findChild(tail);

for (int i = taillndx; (i >= 0) && (editXf == NULL);i ¥
SoNode *myNode = parent >getChild(i);
if (myNode >isOfType(SoTransform::getClassTypeld()))
editXf = (SoTransform *) myNode;
else if (i != taillndx && (isTransformable(myNode)))
break;
}
if (editXf == NULL) {
existedBefore = FALSE;
editXf = new SoTransform;
parent >insertChild(editXf, taillndx);

}
else
existedBefore = TRUE;
}
/I CASE 3: The tail is a group.
else {

/I Search the children from left to right for transform

/I nodes. Stop the search if we come to a movable node
/I and insert a transform before it.

parent = (SoGroup *) tail;

for (inti=0;
(i < parent >getNumcChildren()) && (editXf == NULL);
i++) {

SoNode *myNode = parent >getChild(i);
if (myNode >isOfType(SoTransform::getClassTypeld()))
editXf = (SoTransform *) myNode;
else if (isTransformable(myNode))
break;
}
if (editXf == NULL) {
existedBefore = FALSE;
editXf = new SoTransform;
parent >insertChild(editXf, i);
}
else
existedBefore = TRUE;

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
15, Draggers and Manipulators 19

/I Create 'pathToXform.” Copy inputPath, then make last

// node be editXf.

SoPath *pathToXform = NULL;

pathToXform = inputPath >copy();

pathToXform >ref();

if (lisTailGroup) // pop off the last entry.
pathToXform >pop();

/l add editXf to the end

int xflndex = parent >findChild(editXf);

pathToXform >append(xfindex);

pathToXform >unrefNoDelete();

return(pathToXform);

/[This routine is called when an object

Il gets selected. We determine which object

/l was selected, then call replaceNode()

/I to replace the object’s transform with

/[a manipulator.

void

selectionCallback(
void *, // user data is not used
SoPath *selectionPath)

{
/I Attach the manipulator.
/l Use the convenience routine to get a path to
/I the transform that affects the selected object.
SoPath *xformPath = createTransformPath(selectionPath);
if (xformPath == NULL) return;
xformPath >ref();

/I Attach the handle box to the sphere,
/I the trackball to the cube
/I or the transformBox to the wrapperKit
if (selectionPath >getTail() >isOfType(
SoSphere::getClassTypeld())) {
handleBoxPath = xformPath;
myHandleBox >replaceNode(xformPath);
}
else if (selectionPath >getTail() >
isOfType(SoCube::getClassTypeld())) {
trackballPath = xformPath;
myTrackball >replaceNode(xformPath);

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
15, Draggers and Manipulators 20

}

else if (selectionPath >getTail() >
isOfType(SoWrapperKit::getClassTypeld())) {
transformBoxPath = xformPath;
myTransformBox >replaceNode(xformPath);

}
}

/[This routine is called whenever an object gets
I/l deselected. It detaches the manipulator from
/ the transform node, and removes it from the
I/l scene graph that will not be visible.
void
deselectionCallback(
void *, // user data is not used
SoPath *deselectionPath)
{
if (deselectionPath >getTail() >
isOfType(SoSphere::getClassTypeld())) {
myHandleBox >replaceManip(handleBoxPath,NULL);
handleBoxPath >unref();
}
else if (deselectionPath >getTail() >
isOfType(SoCube::getClassTypeld())) {
myTrackball >replaceManip(trackballPath,NULL);
trackballPath >unref();
}
else if (deselectionPath >getTail() >
isOfType(SoWrapperKit::getClassTypeld())) {
myTransformBox >replaceManip(transformBoxPath,NULL);
transformBoxPath >unref();

}
}

/I This is called when a manipulator is
[/l about to begin manipulation.
void
dragStartCallback(
void *myMaterial, // user data
SoDragger *) /I callback data not used

{
((SoMaterial *) myMaterial) >diffuseColor=SbColor(1,.2,.2);

}

/I This is called when a manipulator is
/l done manipulating.
void

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
15, Draggers and Manipulators 21

dragFinishCallback(
void *myMaterial, // user data
SoDragger *) // callback data not used

{
((SoMaterial *) myMaterial) >diffuseColor=SbColor(.8,.8,.8);

}

Customizing a Dragger (Advanced)

This section describes how to modify the appearance of a dragger. This customization is performed
either by changing the default geometry for a part or by changing the part after an instance of a
dragger has been built. Although the look and feel of a dragger can be changed or removed in this
manner, no new functionality can be added.

Using theSoTrackballDragger as an example, this section describep#resof a dragger and how
they combine to make the whole dragger. It explains howeabmetryfor each part can be changed

or removed, and how that can affect the functionality of the dragger. Example 15 4 illustrates how
parts of arBoTranslatelDraggercan be changed after it has been built.

Parts of a Dragger

Every dragger is a node kit that is constructed out of pappsrtds simply a piece of the dragger that
has some task associated with it. Often, two parts act as a pair. One part is displayed when it is in use
(oractive, and the other is displayed when that part is not in usegctive. For example, for the

trackball’'s inactive "XRotator" part, a white stripe is displayed, and for its active "XRotatorActive"
part, a yellow stripe is displayed.

Each dragger has a resource file associated with it that contains an Inventor scene graph describing
the default geometry for each part. By creating a new resource file, you can override the default and
give the part a new shape or new properties such as color or drawing style. In the resource file, scene
graphs are labeled with their unique resource names.

Many classes of draggers use the same part names. For example, the trackball, rotate disc,

rotate cylindrical, and rotate spherical draggers each have a part named "rotator." Since the default
parts are stored in the global dictionary, each part in each class must have a unique resource name. In
all cases, the class name (without the "So" or "Dragger") is prepended to the part name. Table 15 2
shows how the resource names and part names relate.

For example, th8oTrackballDragger has twelve parts. Table 15 2 lists the resource and part names
of eight of these parts (for brevity, the "userRotator" and "userAxis" parts are omitted). When you
interact with a trackball dragger, you are actually interacting with its parts. For example, if the mouse
goes down over the trackball's "XRotator" part, a rotation abowtdRes is initiated.

Resource Names Part Names Task

trackballRotator rotator Free rotation

trackball RotatorActive rotatorActive

trackballXRotator XRotator Rotation about x axis
trackballXRotatorActive XRotatorActive

trackballYRotator YRotator Rotation about y axis
trackballYRotatorActive YRotatorActive

trackballZRotator ZRotator Rotation about z axis

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
15, Draggers and Manipulators 22

trackballZRotatorActive ZRotatorActive

Table 15 2 Selected Parts of the SoTrackballDragger

Changing a Part after Building the Dragger

To change the part of a dragger that has already been built, setRbe() orsetPartAsPath()
method provided bgolnteractionKit. ThesetPart() method takes the root of a scene graph as a
parameter, whilsetPartAsPath()accepts aBoPath

For example, to change the "rotator" parbmyfDragger.
myDragger >setPart("rotator", myNewRotatorSceneGraph);
To change the "rotator" part of a dragger within a manipulator:

myManip >getDragger() >setPart("rotator",
myNewRotatorSceneGraph);

You can also providsetPartAsPath()with the path to a particular instance of an object in the scene
graph. The dragger then uses that object for the part. For example, if you have an arrow used as a
weather vane mounted on a post, you could provide the path to the arrow and rotate the arrow itself.
(Note the difference here between specifying a node and specifying a path. If you specify the arrow
nodeusingsetPart(), a new instance of that node is created and two copies of the same geometry
appear on the screen. If you specifyghathto the arrow usingetPartAsPath() the dragger actually

uses the existing arrow node and waits for the user to press the mouse on the same weather vane that
is sitting on the barn.)

myRotateManip >getDragger() >setPartAsPath("rotator”,
pathToMyWeatherVaneArrow);

Example 15 4 shows how to change the geometry of the draggers in Example 15 2. The "translator"
and "translatorActive" parts are now cubes instead of arrows. The setPart() method is used to replace
the default parts with the new scene graphs specified here. Figure 15 10 shows the new dragger
geometry.

Figure 15 10 Changing the Dragger Parts to Cubes

Example 15 4 Changing Parts after Building a Dragger

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
15, Draggers and Manipulators 23

/I Create myTranslator and myTranslatorActive.

/I These are custom geometry for the draggers.
SoSeparator *myTranslator = new SoSeparator;
SoSeparator *myTranslatorActive = new SoSeparator;
myTranslator >ref();

myTranslatorActive >ref();

/I Materials for the dragger in regular and active states
SoMaterial *myMtl = new SoMaterial;

SoMaterial *myActiveMtl = new SoMaterial;

myMtl >diffuseColor.setValue(1,1,1);

myActiveMtl >diffuseColor.setValue(1,1,0);
myTranslator >addChild(myMtl);

myTranslatorActive >addChild(myActiveMtl);

/I Same shape for both versions.

SoCube *myCube = new SoCube;
myCube >set("width 3 height .4 depth .4");
myTranslator >addChild(myCube);
myTranslatorActive >addChild(myCube);

/I Now, customize the draggers with the pieces we created.
xDragger >setPart("translator",myTranslator);

xDragger >setPart("translatorActive”,myTranslatorActive);
yDragger >setPart("translator",myTranslator);

yDragger >setPart("translatorActive”,myTranslatorActive);
zDragger >setPart("translator",myTranslator);

zDragger >setPart("translatorActive”,myTranslatorActive);

Changing the Default Geometry for a Part

Every class of dragger has a resource file associated with it that contains Inventor scene graphs
defining default geometry for that class. The default geometry for a given class is also compiled in, so
that if the dragger resource files are lost, the dragger will still operate.

Where a Dragger Looks for Defaults

When a dragger is constructed, it checks whether a resource file for overriding the defaults has been
created. When reading from this file (if found), if the dragger encounters a second definition of a
particular geometry, the new geometry replaces any previously defined geometry of the same name.

Inventor will look for files only if the environment variable SO_ DRAGGER_DIR has been set. If it
has, Inventor will look in that directory.

In all cases, a given dragger class will read only files of its same nanSaTrenslatelDragger
class reads only resource files named translate1Dragger.8gThackballDragger class reads only
files named trackballDragger.iv.

Changing the default geometry of a dragger part is a simple matter of creating a new file that contains
a scene graph defining the new resource. When encountered, this new definition overrides the default

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
15, Draggers and Manipulators 24

definitions of that resource. The next two sections show how to do this using the
SoTrackballDragger as a foundation.

How to Edit Your File

To change the default geometry of a part, you merely redefine the scene graph for the geometry used
by the part. When creating new resource files, it is necessary to define only the geometry that you
wish to change. Other geometry will use the default values.

Keep in mind that you should never edit the resource files in Inventor/resources. If you want your
application to use alternate resources, put your files in a convenient place and set the
SO_DRAGGER_DIR environment variable to point there.

As an example, let’s replace ttrackballRotator resource of the trackball with a cube. (For more
information on the Inventor file format, see Chapter 11.) Looking at the default geometry file for the
trackball, we see that ttackballRotator resource is defined by this scene graph:

default geometry for SoTrackballDragger's "rotator" part
(inactive)
DEF trackballRotator Separator {

DrawStyle { style INVISIBLE }

Sphere {}
}
default geometry for SoTrackballDragger’s "rotatorActive" part
DEF trackballRotatorActive Separator {

DrawStyle { style INVISIBLE }

Sphere {}

}

Note that, in the case of the trackball, the resources specify thatdtee androtatorActive parts

have the same geometry, an invisible sphere. Although this is common, some draggers may have
completely different geometry for when they are inactive and active (and most manipulators have
more complicated scene graphs than just a sphere).

To change th&ackballRotator andtrackballRotatorActive resources from an invisible sphere to a
visible cube, you simply replace the sphere with a cube in both scene graphs:

default geometry for the SoTrackballDragger’s "rotator” part
DEF trackballRotator Separator {
BaseColor {
rgb 1. 1. 1. #white

}
Cube {}

}
default geometry for the SoTrackballDragger’s "rotatorActive” part
DEF trackballRotatorActive Separator {
BaseColor {
rgb.5.5 0. #yellow

}
Cube {}

}

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
15, Draggers and Manipulators 25

Using this mechanism, you can not only change the geometry of a given part, but also remove the
functionality of that part entirely. For example, to disable the trackball’s "rotator" part but still leave
the cube visible, you can make the cube unpickable:

default geometry for the SoTrackballDragger’s "rotator" part
DEF trackballRotator Separator {

BaseColor {
rgb 1. 1. 1. #white
}
PickStyle {
style UNPICKABLE
}
Cube {}

}

default geometry for the SoTrackballDragger’s "rotatorActive” part
DEF trackballRotatorActive Separator {

BaseColor {
rgb.5.5 0. #yellow
}
PickStyle {
style UNPICKABLE
}
Cube {}

}

To remove the trackball’s rotator part altogether, leaving a trackball that can only rotate &hgut its
andzaxes, you could redefine its geometry to be an empty scene graph:

default geometry for SoTrackballDragger's "rotator" part

DEF trackballRotator Separator {

}

default geometry for SoTrackballDragger’s "rotatorActive” part
DEF trackballRotatorActive Separator {

}

You can also read the geometry from a file instead of defining it inline:

DEF trackballRotator Separator {
File { name "myCustomRotator.iv" }
}
DEF trackballRotatorActive Separator {
File { name "myCustomRotatorActive.iv" }

}

Note: Never set a dragger part to NULL. Internal methods require a node to be present, even if it's
simply an empty separator as shown in the previous example. (Often, the dragger parts are the
children of a switch node. Changing a node to NULL could result in an incorrect ordering of the
switch node’s children.)

Chapter 16
Inventor Component Library

Chapter Objectives
After reading this chapter, you'll be able to do the following:
» Construct, build, and use &vXtRenderArea

» Use the Inventor utility functions provided for initialization and window management with the Xt
Intrinsics

* Render a simple scene graph in the overlay planes

e Construct and build Inventor components and manage them as Xt widgets

» Attach a component directly to a scene graph and pass data to the application

» Use callback functions to pass data from a component to the application

» Add your own application buttons to a standard Inventor viewer

e Use the Inventor clipboard to copy and paste data
This chapter describes the Inventor Component Library, which includes utility functions, a render
area, and a set of Xt components. Components are reusable modules with a built in user interface for
changing the scene graph interactively. Designed for easy integration into your program, each
component is built from Motif style Xt widgets and can be used alone or in combination with other
widgets. Important concepts introduced in this chapter include the two types of competitonts,
andviewers and the steps faonstructingandbuilding components and for managing them as Xt

widgets. Since all components are interactive and are used to edit parts of the 3D scene, this chapter
also describes how different types of components pass data back to the application.

Introduction to Components
The Inventor Component Library consists of three major parts:
» Xt utility functions for initialization and window management
e An Xt render area for static display of a scene graph
» A set of Xt components, which include their own render area and a user interface for changing

the displayed scene

The following sections describe each part in more detail. This chapter assumes you have already read
Chapter 10, which describes the relationship between the Xt library and the Open Inventor toolkit,
which is window system-independent.

Xt Utility Functions

This section outlines the basic sequence for initializing Inventor for use with the Xt Intrinsics, a
library built on top of the X Window System library. An Xt widget contains an X window, along with
extra functions for controlling the widget behavior. Because they contain a window, widgets can
receive events from the X server.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
16, Inventor Component Library 1

The SoXt:init() routine returns an Xt widget that serves as the application’s main shell window. In
the following example, the widget is nammagiWindow. An SoXtRenderAreais later put into this
window.

The basic steps are as follows:

1. Initialize Inventor for use with the Xt IntrinsicSgXt::init()).

2. Create th&oXtRenderArea

3. Build other Inventor objects and Xt widgets.

4. Show the render area and Xt widgetyRenderArea >show(); SoXt::show().
5

Enter the event looB6Xt::mainLoop()).

Here is an example that follows this sequence:

#include <X11/Intrinsic.h>

#include <Inventor/So.h>

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/SoXtRenderArea.h>

main(int argc, char **argv)
{
[/l Initialize Inventor and Xt
Widget myWindow = SoXt::init(argv[0]);

SoXtRenderArea *myRenderArea =
new SoXtRenderArea(myWindow);

SoSeparator *root = new SoSeparator;

/I Build other Inventor objects and Xt widgets
/I and set up the root

...

myRenderArea >setSceneGraph(root);
myRenderArea >setTitle("Simple Xt");
myRenderArea >show(); // this calls XtManageChild
SoXt::show(myWindow); // this calls XtRealizeWidget

/I Realize other Xt widgets
...

/I Go into main event loop
SoXt::mainLoop();

}

Tip: Be sure your program calisow()for the child widgets before it cabsiow()for the shell
widget. If you try to show the shell widget first, you receive this error: "Shell widget x has zero width
and/or height.”

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
16, Inventor Component Library 2

Render Area

The SoXtRenderAreais an Xt widget that performs OpenGL rendering. When it receives X events, it
translates them intdoEvents which are then passed to the scene manager for handling.

Methods

The scene graph to be rendered is set into the render area ve#tiSbeneGraph()nethod. (This
method increments the root’s reference count.)get8ceneGraph(method returns the root node of
this scene graph.

Other useful methods @oXtRenderAreainclude the following:

setTransparencyType()
specifies how transparent objects are rendered (see the section on the render
action in Chapter 9 for details).

setAntialiasing() specifies the antialiasing methods.
setBorder() shows or hides the window border.

setBackgroundColor()
specifies the window background color.

The render area attaches a node sensor to the root of the scene graph and automatically redraws the
scene whenever the scene graph changes. Use the following method to change the priority of the
redraw sensor:

setRedrawPriority()
specifies the priority of the redraw sensor (default priority is 10000)

Use the following two methods if you wish to disable automatic redrawing:
setAutoRedraw() enables or disables the redraw sensor on the render area.

render() redraws the scene immediately. If AutoRedraw is TRUE, you don’t need to make
this call.

See th@pen Inventor C++ Reference Manuai SoXtRenderAreafor more information on these
methods.

Xt Devices

If you use the default values when you creat8@xtRenderAreg mouse and keyboard events are
handled automatically. The constructor 8mXtRenderAreais

SoXtRenderArea(Widgetarent= NULL,
const char hame= NULL,
SbBoolbuildinsideParent TRUE,
SbBoolgetMouselnput TRUE,
SbBoolgetKeyboardinput TRUE);

To disable input from either the mouse or the keyboard, specify FALSE fgeti®uselnpubr
getKeyboardIinputariable. For example, to disable mouse input:

SoXtRenderArea *renderArea = new SoXtRenderArea(parent,
"myRenderArea”, TRUE, FALSE, TRUE);

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
16, Inventor Component Library 3

Inventor defines three Xt devices:
* SoXtKeyboard
e SoXtMouse

* SoXtSpaceball

Use theaegisterDevice()method to register additional devices, such as the spaceball, with the render
area. When this method is called, the render area registers interest in events generated by that device.
When it receives those events, it translates thenBimventsand passes them to the scene manager

for handling. For information on creating your own device,deelnventor Toolmaker

Using the Overlay Planes (Advanced)

The overlay planes are a separate set of bitplanes that can be used for special purposes in Inventor.
(Check your release notes for the number of overlay planes, which is implementation dependent.)

The overlay planes are typically used for objects in the scene that appear on top of the main image and
are redrawn independently. Although you are limited with respect to color and complexity of the

scene graph placed in the overlay planes, using them enables you to quickly redraw a simple scene
graph without having to redraw the "complete” scene graph. The overlay planes provide a useful
mechanism for providing user feedb@ador example, for rapidly drawing geometry that follows the

cursor.

Use the following methods to place a scene graph in the overlay planes:

setOverlaySceneGraph()
sets the scene graph to render in the overlay planes

setOverlayColorMap()
sets the colors to use for the overlay bit planes; the overlay planes usually use
color index mode

setOverlayBackgroundindex()
sets the index of the background color for the overlay image (the default is 0, the
clear color)

The overlay scene graph has its own redraw sensor and is similar to the "regular" scene graph, with
these restrictions:

» If you have a small number of overlay planes (for example, two), specify BASE_COLOR for the
modelfield of SoLightModel. (If your implementation has more than two overlay planes, you
may be able to obtain crude lighting effects by usingsthdaterialindex node; otherwise, use
theSoColorindexnode to specify color indices.)

» Keep the scene graph simple. Use line draw style, rectangles, and 2D text that draws quickly. Do
not use textures. Because the overlay planes are single buffered, the redraw will flash if the scene
is too complex.

* Be sure to load the color map. There is no default color map for the overlay planes.
The color map for the overlay planes contains a limited number of colors. Colde&risnd cannot

be changed. With two bitplanes, you can use indices 1 through 3 for colors. The syntax for
setOverlayColorMap() is as follows:

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
16, Inventor Component Library 4

setOverlayColorMap(int startindex int num const ShColorcolors);

To render a shape with a particular color, us8@@olorindexnode to set the current color index.
Do not use aBoMaterial node oiSoBaseColomode to set colors when you are in color index mode
(they are ignored).

Example 16 1 illustrates use of the overlay planes with a viewer component. By default, color 0 is
used for the overlay plane’s background color {lear color), so this example uses color 1 for the
object.

Example 16 1 Using the Overlay Planes

#include <Inventor/SoDB.h>

#include <Inventor/Solnput.h>

#include <Inventor/nodes/SoNode.h>

#include <Inventor/nodes/SoCone.h>

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>

static char *overlayScene ="\
#lnventor V2.0 ascii\n\
\
Separator {\
OrthographicCamera {\
position 0 0 5\
nearDistance 1.0\
farDistance 10.0 \
height 10\
ja
LightModel { model BASE_COLOR }\
Colorindex {index 1 }\
Coordinate3 {point[1 10, 110,110,1 10]}\
FaceSet {} \

I

main(int , char **argv)
{
/l Initialize Inventor and Xt
Widget myWindow = SoXt::init(argv[0]);

/I Read the scene graph in

Solnput in;

SoNode *scene;

in.setBuffer((void *)overlayScene, (size_t)

strlen(overlayScene));

if (! SoDB::read(&in, scene) || scene == NULL) {
printf("Couldn’t read scene\n");
exit(1);

}

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
16, Inventor Component Library 5

/I Allocate the viewer, set the overlay scene and

/I load the overlay color map with the wanted color.

SbColor color(.5, 1, .5);

SoXtExaminerViewer *myViewer = new
SoXtExaminerViewer(myWindow);

myViewer >setSceneGraph(new SoCone);

myViewer >setOverlaySceneGraph(scene);

myViewer >setOverlayColorMap(1, 1, &color);

myViewer >setTitle("Overlay Plane");

/I Show the viewer and loop forever
myViewer >show();
XtRealizeWidget(myWindow);
SoXt::mainLoop();

Xt Components

Components are widgets that provide some 3D related editing function. All components in the
Inventor Component Library return an Xt widget handle for standard Motif style layout and control.
The render area is an example of a simple component. Viewer components are derived from
SoXtRenderArea

Each component contains a user interface with such things as buttons, menus, and sliders that allow
the user to change the scene graph interactively. One example of a component is the material editor,
used in Examples 16 2, 16 3, and 16 4. With this editor, the user can customize objects shown in the
Inventor window by interactively changing values for ambient, diffuse, specular, transparent,

emissive, and shininess elements and immediately see the effects of those changes. Another example
is the examiner viewer, which enables the user to move the camera through the scene, providing

real time changes in how the scene is viewed. Figure 16 1 shows the component class tree.

An SoXtComponentis an Inventor C++ wrapper around a Motif compliant widget. This means that
you can layer components in a window with other Motif widgets using standard layout schemes such
as bulletin boards, form widgets, and row/column widgets. The material editor itself is an
SoXtComponentmade up of other components and Motif style widgets. (Its color sliders are derived
from SoXtComponent and the radio buttons, toggle buttons, and menu are Motif style widgets.) You
can pass in a widget name to each component, which can then be used in resource files as the Motif
name of the widget.

Components fall into two general classes, viewers and editors, depending on which part of the scene
graph they affecWiewersaffect the camera node in the scene,atibrsaffect other nodes and
fields in the scene, such @eMaterial nodes an&oDirectionalLight nodes.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
16, Inventor Component Library 6

SoXtComponent

F—=_acKiDirectionallightEdior

3ot GLWidget SoxtRenderaies —— SaxtViewar SoXtFullViewear

—Sckthiateral Editcr

| corthiatenalList F—SoXtConstrainediewear

—SeXtPrintDiakg SoitF W iewmer
Sortfialkvizwer

— S 5liderSetBase — SoXtSliderSet
F—ScatExaminery izwer

SoitlightEliderzet L SetPlaneViomer
SoktinatenalsliderSet
EeXiTrnsformaliderdet

Figure 16 1 Component Classes

General Model

Follow these general steps to use any component in your program. (Additional considerations for
specific components are outlined in the following sections.)

1. Create the component using its constructor. Pass in the parent widget, the widget name, and
whether it should build itself inside the parent widget.

2. Show or hide the component.

3. Pass data from the component to the application.

Construct the Component
Create the component using its constructor. The constructor has the form:

SoXtComponent(Widggtarent= NULL,
const char hame= NULL,
SbBoolbuildinsideParent TRUE,
SbBoolgetMouselnput TRUE,
SbBoolgetKeyboardinput TRUE);

For example:

SoXtMaterialEditor *editor = new
SoXtMaterialEditor(parentWidget);

This step initializes local variables and structures and builds the component. You supply the parent
widget you want the component to appear in. If you do not supply a parent widget, or if you pass
FALSE for thebuildIinsideParenparameter, the component is created inside its own shell. An
important side effect is that if the component is put in its own window, it can resize itself when
necessary. If the component is built into the widget tree, it cannot resize itself. If you do not supply a
name, the name is the class nani8oXtMaterialEditor," in this case.

If you specify FALSE for theuildinsideParenparameter, the component is built inside its own shell,
but it uses the passed parent as part of the widget hierarchy for X resource lookup.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
16, Inventor Component Library 7

Show and Hide the Component

Theshow()andhide() methods are routines that allow you to manage the component widget. In
summary, thehow() method is used to make the component visible hide() method is used to

make the component invisible. However, in Motif compliant applications, the topmost parent of the
widget tree must beealizedbefore its children are displayed. Additionally, only the children that are
managedare displayed.

If the Inventor component is a top level shell widget (that is, no parent widget was passed to the
constructor), thehow() method causes the component to XtiRealizeWidget() on itself, and
XtManageChild() on its children.

If the component is not a top level shell widget, shew() method causes
the component to caltManageChild() on itself and all its children. These widgets won't be visible,
though, untilXtRealizeWidget()is called on the top level widget.

Theshow()andhide() methods oisoXtComponentdo some additional work that the component
relies on. When you use a component, be sure to csafidgig() method, noKtManage() or
XtRealize(), andhide(), notXtUnmanage() andXtUnrealize(). For instance:

SoXtRenderArea *ra = new SoXtRenderArea();
ra >show();

Each component also has a series of specialized methods for changing its behavior while the program
is running. (Se&oXtComponentin theOpen Inventor C++ Reference Manyalrhese methods
include the following:

setTitle() places a title in the title bar of a component that is a top level shell widget
setSize() sizes the component (usé&sSetValue()

getSize() returns the size of the component (Us&setValue())

isVisible() returns TRUE if the component is currently mapped and realized on the display

Passing Data to the Application
There are two ways for a component to pass data back to the application:

» Use a callback list to inform the application when certain changes occur in the component (see
Example 16 2). Callbacks are useful when you want to affect more than one node (you can attach
a component to only one node at a time).

« Attach the component to a node (or field) in the scene graph (see Example 16 3). For viewers,
this is theonly way to pass data back to the application; viewers are attached to an entire scene
graph.

Using Callbacks

Editor components such as the material editor can also use callback functions to pass data back to the
application. Example 16 2 illustrates the use of a callback procedure with the material editor.

A list of callback functions and associated d&@aCallbackList, is automatically created when a
component is constructed. You can add functions to and remove functions from this list and pass a
pointer to the callback data.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
16, Inventor Component Library 8

Some widgets, such as viewers, use lists of callback functions:
» Start callbackd called when interaction starts (for example, on a mouse down event)

» Finish callbacksl called when interaction finishes (for example, on a mouse up event)

The following methods add functions to and remove functions from these callback lists:

addStartCallback(functionName, userData
removeStartCallbackfunctionName, userData

addFinishCallback(functionName, userDa}a
removeFinishCallbackfunctionName, userData

The material editor invokes its callbacks or updates the nodes it is attached to according to a
programmable update frequency. UsesttidpdateFrequency(method to specify this frequency.
Choices are as follows:

CONTINUOUS continuously update the field as the value changes (the default)
AFTER_ACCEPT update the field only when the user hits the accept button

Example 16 2 builds a render area in a window supplied by the application and a material editor in its
own window. It uses callbacks for the component to report new values.

Example 16 2 Using a Callback Function

#include <Inventor/SoDB.h>

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/SoXtMaterialEditor.h>
#include <Inventor/Xt/SoXtRenderArea.h>

#include <Inventor/nodes/SoDirectionalLight.h>
#include <Inventor/nodes/SoMaterial.h>

#include <Inventor/nodes/SoPerspectiveCamera.h>
#include <Inventor/nodes/SoSeparator.h>

I/l This is called by the Material Editor when a value changes
void
myMaterialEditorCB(void *userData, const SoMaterial *newMtl)

{

SoMaterial *myMtl = (SoMaterial *) userData;

myMtl >copyFieldValues(newMtl);
}

main(int , char **argv)
{
// Initialize Inventor and Xt
Widget myWindow = SoXt::init(argv[0]);

// Build the render area in the applications main window
SoXtRenderArea *myRenderArea = new SoXtRenderArea(myWindow);
myRenderArea >setSize(SbVec2s(200, 200));

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
16, Inventor Component Library 9

// Build the Material Editor in its own window
SoXtMaterialEditor *myEditor = new SoXtMaterialEditor;

/I Create a scene graph

SoSeparator *root = new SoSeparator;

SoPerspectiveCamera *myCamera = new SoPerspectiveCamera;
SoMaterial *myMaterial = new SoMaterial;

root >ref();

myCamera >position.setValue(0.212482, 0.881014, 2.5);
myCamera >heightAngle = M_Pl/4;

root >addChild(myCamera);

root >addChild(new SoDirectionallLight);

root >addChild(myMaterial);

/I Read the geometry from a file and add to the scene
Solnput mylnput;
if (!'mylnput.openFile("dogDish.iv"))

exit (1);
SoSeparator *geomObject = SoDB::readAll(&mylnput);
if (geomObject == NULL)

exit (1);
root >addChild(geomObiject);

/I Add a callback for when the material changes
myEditor >addMaterialChangedCallback(
myMaterialEditorCB, myMaterial);

/I Set the scene graph
myRenderArea >setSceneGraph(root);

/I Show the main window and the Material Editor
myRenderArea >setTitle("Editor Callback™);
myRenderArea >show();
SoXt::show(myWindow);

myEditor >show();

I/l Loop forever
SoXt::mainLoop();

Attaching a Component to a Scene Graph

One way to affect a scene graph directly iattachan editor component to a node in the scene graph.
Example 16 3 shows using tattach() method to attach the material editor to a material node:

myEditor >attach(myMaterial);

The syntax for attach() here is

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
16, Inventor Component Library 10

attach(SoMaterial tnaterial intindex= 0);

material the node to edit

index for multiple value materials, the index within the node of the material to edit

In the same way, viewers are "attached" to the scene graph whose camera they edit. For example:

SoXtFlyViewer *spaceShip = new SoXtFlyViewer;
spaceShip >setSceneGraph(root);

See "Viewers" for a detailed description of what happens when a viewer is attached to a scene graph.

Example 16 3 builds a render area in a window supplied by the application and a material editor in its
own window. It attaches the editor to the material of an object. Figure 16 2 shows the image created
by this example.

Example 16 3 Attaching a Material Editor

#include <Inventor/SoDB.h>

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/SoXtMaterialEditor.h>
#include <Inventor/Xt/SoXtRenderArea.h>

#include <Inventor/nodes/SoDirectionalLight.h>
#include <Inventor/nodes/SoMaterial.h>

#include <Inventor/nodes/SoPerspectiveCamera.h>
#include <Inventor/nodes/SoSeparator.h>

main(int , char **argv)
{
/I Initialize Inventor and Xt
Widget myWindow = SoXt::init(argv[0]);

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
16, Inventor Component Library 11

Figure 16 2 Material Editor and Render Area Created in Separate Windows

/[Build the render area in the applications main window
SoXtRenderArea *myRenderArea = new SoXtRenderArea(myWindow);
myRenderArea >setSize(SbVec2s(200, 200));

/I Build the material editor in its own window
SoXtMaterialEditor *myEditor = new SoXtMaterialEditor;

/I Create a scene graph

SoSeparator *root = new SoSeparator;

SoPerspectiveCamera *myCamera = new SoPerspectiveCamera,
SoMaterial *myMaterial = new SoMaterial;

root >ref();

myCamera >position.setValue(0.212482, 0.881014, 2.5);
myCamera >heightAngle = M_Pl/4;

root >addChild(myCamera);

root >addChild(new SoDirectionalLight);

root >addChild(myMaterial);

/I Read the geometry from a file and add to the scene
Solnput mylnput;
if (!mylnput.openFile("dogDish.iv"))

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
16, Inventor Component Library 12

exit (1);
SoSeparator *geomObject = SoDB::readAll(&myInput);
if (geomObject == NULL)

exit (1);
root >addChild(geomObiject);

/I Set the scene graph
myRenderArea >setSceneGraph(root);

/I Attach material editor to the material
myEditor >attach(myMaterial);

/I Show the application window and the material editor
myRenderArea >setTitle("Attach Editor");
myRenderArea >show();

SoXt::show(myWindow);

myEditor >show();

/I Loop forever
SoXt::mainLoop();

}

Example 16 4 builds a render area and a material editor in a window supplied by the application. It
uses a Motif compliant form widget to lay both components inside the same window. The editor is
attached to the material of an object. Figure 16 3 shows how this example initially looks on the screen.

Example 16 4 Placing Two Components in the Same Window

#include <Xm/Form.h>

#include <Inventor/SoDB.h>

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/SoXtMaterialEditor.h>
#include <Inventor/Xt/SoXtRenderArea.h>

#include <Inventor/nodes/SoDirectionalLight.h>
#include <Inventor/nodes/SoMaterial.h>

#include <Inventor/nodes/SoPerspectiveCamera.h>
#include <Inventor/nodes/SoSeparator.h>

main(int , char **argv)
{
/I Initialize Inventor and Xt
Widget myWindow = SoXt::init(argv[0]);
// Build the form to hold both components
Widget myForm = XtCreateWidget("Form",
xmFormWidgetClass, myWindow, NULL, 0);

// Build the render area and Material Editor
SoXtRenderArea *myRenderArea = new SoXtRenderArea(myForm);

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
16, Inventor Component Library 13

myRenderArea >setSize(SbVec2s(200, 200));
SoXtMaterialEditor *myEditor =
new SoXtMaterialEditor(myForm);

/I Lay out the components within the form

Arg argsl8];

XtSetArg(args[0], XmNtopAttachment, XmATTACH_FORM);
XtSetArg(args[1], XmNbottomAttachment, XmATTACH_FORM);
XtSetArg(args[2], XmNleftAttachment, XmATTACH_FORM);
XtSetArg(args[3], XmNrightAttachment, XmATTACH_POSITION);
XtSetArg(args[4], XmNrightPosition, 40);
XtSetValues(myRenderArea >getWidget(), args, 5);
XtSetArg(args[2], XmNrightAttachment, XmATTACH_FORM);
XtSetArg(args[3], XmNleftAttachment, XmATTACH_POSITION);
XtSetArg(args[4], XmNleftPosition, 41);

XtSetValues(myEditor >getWidget(), args, 5);

/I Create a scene graph

SoSeparator *root = new SoSeparator;

SoPerspectiveCamera *myCamera = new SoPerspectiveCamera;
SoMaterial *myMaterial = new SoMaterial;

root >ref();
myCamera >position.setValue(0.212482, 0.881014, 2.5);
myCamera >heightAngle = M_Pl/4;

| Edit Color

v o hmb: |EFEET 1 |B.20
- . Diff: [EEEET— 1 |8.68
w2 Spen: ﬁﬁ
w | Emis: W1 |1.00
Shinéness: I_: B.z8

Transp: [N (.80

Figure 16 3 Using the Material Editor Component to Edit a Scene

root >addChild(myCamera);
root >addChild(new SoDirectionalLight);
root >addChild(myMaterial);

/I Read the geometry from a file and add to the scene
Solnput mylnput;
if (!mylnput.openFile("dogDish.iv"))

exit (1);

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
16, Inventor Component Library 14

SoSeparator *geomObject = SoDB::readAll(&mylnput);
if (geomObject == NULL)

exit (1);
root >addChild(geomObiject);

/l Make the scene graph visible
myRenderArea >setSceneGraph(root);

/! Attach the material editor to the material in the scene
myEditor >attach(myMaterial);

/I Show the main window

myRenderArea >show();

myEditor >show();

SoXt::show(myForm); // this calls XtManageChild
SoXt::show(myWindow); // this calls XtRealizeWidget

I/l Loop forever
SoXt::mainLoop();

}

Viewers

Viewers, such as the examiner viewer and the fly viewer, change the camera position and thus affect
how a scene is viewed. The examiner viewer uses a virtual trackball to rotate the scene graph around a
point of interest. With the fly viewer, mouse movements have the effect of tilting the viewer’s head

up, down, to the left, and to the right, as well as moving in the direction the viewer is facing.

All viewers have the following elements built into them:

» Arender area in which the scene is being displayed

e Thumbwheel and slider trim at the sides, which function differently for each viewer

* A pop up menu controlled by the right mouse button

e Viewer icons in the upper right corner that are shortcuts for some of the pop up menu operations

» Optional application icons in the upper left corner

Figure 16 4 shows an example of the examiner viewer.

Constructing a Viewer

When you construct a viewer, you can specify whether the viewer is a browser viewer (BROWSER,;
the default) or an editor viewer (EDITOR). If the browser creates a camera node (see the following
section), this camera node is removed from the scene graph when the viewer is detached. If an editor
viewer creates a camera node, the camera node is retained when the viewer is detached.

The constructor for each viewer takes an additional parameter that specifies what to build. By default,
the decoration and pop up menu are created. For example, the constructor for the examiner viewer is
as follows:

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
16, Inventor Component Library 15

SoXtExaminerViewer(Widggtarent= NULL,

const char hame= NULL,
SbBoolbuildinsideParent TRUE,
SoXtFullViewer::BuildFlaghuildFlag= BUILD_ALL,
SoXtViewer:: Typeype = BROWSER);

ThebuildFlag can be one of the following values:
BUILD_NONE the decoration and pop up menu are not created

BUILD_DECORATION
only the decoration is created

BUILD_POPUP only the pop up menu is created
BUILD_ALL the decoration and pop up menu are created

Tip: If the user doesn’t need the viewer decoration, you can disable the creation of the decoration at
construction time using tHauildFlag this will improve performance.

Specifying the Scene Graph for the Viewer

When you calsetSceneGraph(for a viewer, several things happen automatically. First, the viewer
searches the scene graph for a camera. If it finds one, it uses that camera. If it doesn't find a camera, it
adds one. Second, it adds headlight, draw style, and lighting model nodes to the scene graph. (The
following paragraphs describe these steps in detail.)

Call setSceneGraph(NULL)}to disconnect the scene graph from the viewer component. If the viewer
created a camera and the viewer is a browser, it removes the camera. If the viewer is an editor, it
leaves the camera, since the view is saved along with the scene graph. For both types of viewers, the
headlight group is removed when the scene graph is removed.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
16, Inventor Component Library 16

i
=.i Examiner Viewer .

< 263 > |~ 2w |

Rotx Roty [IIiiiriirirmm|

Zoom [y | 458

Dolly |

Figure 16 4 Examiner Viewer

Cameras

All viewers search from the scene graph root downward for the first camera. If the viewer finds a
camera, it uses it. If it doesn’t find one, it creates a camera (ofSi&srspectiveCameréy

default). If the viewer is an editor, it inserts the camera under the scene graph root, as Sigoman in

16 5. When you save the scene graph, this new camera is saved with it. If the viewer is a browser, it
inserts the camera above the scene graph, as shown in Figure 16 6. This camera is not saved with the
scene graph and is removed when the viewer is detached.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
16, Inventor Component Library 17

render area

scene graph
set by setSceneGraph
. (ret.by getSceneGraph)

camera

Figure 16 5 Inserting a Camera for an Editor Viewer

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor

16, Inventor Component Library 18

Release 2 Chapter

render area

scene graph
i@l sel by setSceneGraph

camera s, (rel.by getSceneGraph)

Figure 16 6 Inserting a Camera for a Browser Viewer

Lights

Viewer components by default also add a directional light source to the scene. The viewer
continuously changes the position of this light so that it tracks the camera and functions as a headlight
shining on the camera’s field of view. This headlight group is added just after the camera in the scene
graph. To write the scene graph to a file without the headlight, you can either detach the viewer or turn
off the headlight (see tlsetHeadlight()method forSoXtViewer in theOpen Inventor C++

Reference Manupl

Viewer Draw Style

All viewers include a pop up menu that allows you to change the draw style of the entire scene.
Sometimes, when the viewer changes the draw style, it also changes the lighting model (for example,
wireframe draw style uses base color lighting). When a viewer is attached, it inserts draw style and
lighting model nodes above the scene graph, as shown in Figure 16 7. The following list describes the
choices for draw style and the accompanying changes in lighting model:

VIEW_AS IS ignores viewer’s draw style and lighting model nodes (the default).

VIEW_HIDDEN_LINE

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
16, Inventor Component Library 19

forces all shapes to be wireframe and changes lighting to BASE_COLOR. This
style displays only the edges of front facing polygons (back lines are hidden).

VIEW_NO_TEXTURE
forces all shapes to be rendered without textures.

VIEW_LOW_COMPLEXITY
forces all shapes to be rendered with a low complexity and no textures.

VIEW_LINE forces all shapes to be wireframe and changes the lighting model to
BASE_COLOR.

VIEW_POINT forces all shapes to be points and changes the lighting model to BASE_COLOR
and the point size to 3.0.

VIEW_BBOX forces all shapes to be rendered as bounding boxes.

render area
i@] scene graph
N Lo LY
EAR camera RN S
/ . N ., I \\
iz ______ B N S n '\ if ______ N N
draw-style headligh
and light-model group

group

Figure 16 7 Inserting Drawing Style and Lighting Model Nodes

Viewer Draw Type

The draw styles above can affect the scene while the camera is still, or while the user is interactively
moving the camera. When the draw style is set, you can choose between two settings, STILL and
INTERACTIVE, to show which state should be affected. UsesétierawStyle()method for

SoXtViewer to specify the draw style and draw type:

setDrawStylgSoXtViewer::DrawTypdype
SoXtViewer::DrawStylestyld

For example:

setDrawStyle(SoXtViewer::INTERACTIVE,
SoXtViewer::VIEW_LINE);

The viewer pop up menu, shown in Figure 16 8, lists the draw style choices for STILL, the choices
for INTERACTIVE, and the choices for buffering type.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
16, Inventor Component Library 20

Examiner Viewer

Functions -
Draw Siyle ™ o e
I Viewing

~ fidden fine
™ Decoration

~ 1o fexture
™ Headficht :
~ fow resolution
Preferences... -
~ Wireframe
~ POIEs
~ bounding box

4 move same as stilf
~ move hidden fine

w move no ltextire

v move fow res

v move wireframe

~ OVE Poits

~ move bounding box
4 single buffer

~ doubie buffer

~ inferactive butfer

Figure 16 8 Viewer Pop up Menu

Methods for SoXtViewer

Use thesetBufferingType() method forSoXtViewer to specify whether the viewer should use single
buffering, double buffering, or a combination. The default buffering type is double buffering. Double
buffering provides smoother redraws, but offers fewer colors. Buffering types are as follows:

SoXtViewer::BUFFER_SINGLE
uses only one buffer; the image flickers between redraws

SoXtViewer::BUFFER_DOUBLE
redraws in the back buffer and then swaps buffers

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
16, Inventor Component Library 21

SoXtViewer::BUFFER_INTERACTIVE
uses double buffering only when the user is doing interactive work; otherwise,
uses single buffering

Other useful methods f&@oXtViewer include the following:
setHeadlight() turns the headlight on and off. The headlight is ON by default.

setViewing() allows you to turn the viewer on and off. When the viewer is turned off, events
over the render area are sent to the scene graph.

viewAll() automatically views the entire scene graph.

setAutoClipping() turns autoclipping on and off. When ON, the near and far camera clipping planes
are continuously adjusted around the scene’s bounding box to minimize clipping.
Autoclipping is ON by default.

saveHomePosition()
saves the current camera values so that the camera can quickly be reset to this
position later.

resetToHomePosition()
sets the camera position to the previously saved home position.

setStereoViewing()
renders the scene twice, offsetting the camera in between. Stereo glasses must be
used when this scene is viewed. (This feature is hardware dependent. See your
release notice for information on whether this feature is supported.)

setSteroOffset() sets the spacing between the eyes for stereo viewing.

SeeSoXtViewerin theOpen Inventor C++ Reference Mandal further details.

Methods for SoXtFullViewer

The SoXtFullViewer class, derived frorBoXtViewer, is the abstract base class for all viewers that
include decoration around the render area. This decoration is made up of thumbwheels, sliders, and
push buttons. TheetDecoration()method allows you to show or hide the component trims. The
setPopupMenuEnabled() method allows you to enable or disable the viewer pop up menu.

You can add optional application icons to the upper left corner of the component. Use the following
methods to add these icons:

addAppPushButton()
adds a push button for the application to the end of the button list

insertAppPushButton()
places a push button at the specified index in the button list

removeAppPushButton()
removes a push button from the button list

SeeSoXtFullViewer in theOpen Inventor C++ Reference Mandal further details.

Example 16 5 creates a simple scene graph with a material and a dish. It then creates a browser
examiner viewer and attaches it to the scene graph. The camera and light in the scene are
automatically created by the viewer.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
16, Inventor Component Library 22

Example 16 5 Using a Browser Examiner Viewer

#include <Inventor/SoDB.h>

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>
#include <Inventor/nodes/SoSeparator.h>

main(int , char **argv)
{
// Initialize Inventor and Xt
Widget myWindow = SoXt::init(argv[0]);

// Build the viewer in the application’s main window
SoXtExaminerViewer *myViewer =
new SoXtExaminerViewer(myWindow);

/I Read the geometry from a file and add to the scene
Solnput mylnput;
if (!mylnput.openFile("dogDish.iv"))

exit (1);
SoSeparator *geomObject = SoDB::readAll(&myInput);
if (geomObject == NULL)

exit (1);

/I Attach the viewer to the scene graph
myViewer >setSceneGraph(geomObject);

/I Show the main window
myViewer >show();
SoXt::show(myWindow);

I/l Loop forever
SoXt::mainLoop();

Using the 3D Clipboard

This section describes the convenience routines provided by Inventor for exchanging Inventor data
between applications. Inventor's copy and paste methods conform to the X ConsadntieinCéient
Communication Conventions Man#CCCM), July 1989, which presents guidelines on how
processes communicate with each other when exchanging data.

Inventor currently supports two data types, Inventor and string. If you need to copy and paste
additional data types, or if you need more control over copy and paste functions than is provided by
Inventor’s convenience routines, you can use the Motif or Xt data exchange routines directly. For
more information, see thé Toolkit Intrinsics Programming Manubly Adrian Nye and Tim

O'Reilly (Sebastopol, Ca.: O'Reilly & Associates, 1990).

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
16, Inventor Component Library 23

The SoXtClipboard class handles the details of exchanging data according to the ICCCM guidelines.
This class includes a constructor, as wett@sy() andpaste()methods.

Creating an Instance of SoXtClipboard
The constructor foBoXtClipboard has the following syntax:
SoXtClipboard (Widgetw, AtomselectionAtorr XA CLIPBOARD);

The clipboard is associated with a particular widget, such as a render area widget or a top level
widget. For example, you could pass in

renderArea >getWidget()
as the first parameter of this constructor.

The X Toolkit supports several types of selections (primary, secondary, and clipboard; these are also
referred to aselection atomsBy default, Inventor supports the clipboard selection
(_XA_CLIPBOARD.). If you need to perform data transfers from the primary or secondary
selections, you can specify the selection type in the construc®oXaClipboard. In most cases,
however, you use the default selection type.

Copying Data onto the Clipboard

Use one of Inventor’s thre@py() methods to copy data onto tBeXtClipboard. You can specify a
node, a path, or a path list to copy:

copy(SoNode*node TimeeventTimg
copy(SoPathrpath, TimeeventTim);
copy(SoPathLis&pathList TimeeventTimg

Thecopy() andpaste()methods require an event time, which is the time stamp from the user event
that triggered the copy or paste request. This event could be a keyboard press event or a menu pick
event, for example, and is used by the X server to synchronize copy and paste requests. Behind the
scenes, the data is copied into a bytestream and made available to any X client that requests it.

Pasting Data from the Clipboard

Thepaste()method also requires a callback function that is invoked with
the paste data. The paste data is always a path list, regardless of what was copied originally:

pastgTimeeventTimeSoXtClipboardPasteCpasteDoneFunc
voiduserData= NULL);

Thepaste()method requests data from the X server and callsasieDoneFunwhen the data is

ready. A paste is asynchronous. It simply makes a request to the X server for data to paste and then
returns. When the data is delivered, plasteDoneFunts called and passed the user data along with a
list of paths that were pasted. If no data is deliveredpalseeDoneFunis never called. It is up to the
application to delete the path list for the paste data when the application is finished with it.

Tip: SoXtClipboard can easily be used along wbSelectionYou can obtain a path list from the
selection node and then tell the clipboard to copy that path list.

Chapter 17
Using Inventor with OpenGL

Chapter Objectives
After reading this chapter, you'll be able to do the following:
» Create Inventor callback nodes that include calls to the OpenGL Library
» Explain how Inventor uses and affects OpenGL state variables
e Write a program that combines use of Inventor and OpenGL and ussGh&enderAction

* Use color index mode

(Advanced)

This chapter describes how to combine calls to the Inventor and OpenGL libraries in the same
window. It includes several examples of programs that combine use of Inventor and OpenGL in
different ways. Table 17 1 through Table 17 9 show how Inventor affects and is affected by OpenGL
state. This entire chapter can be considered advanced material.

Introduction

This chapter is for the experienced OpenGL programmer and is not intended as an introduction to
OpenGL. Before you read this chapter, be sure toatk@dstChapters 1 through 5 and Chapter 9 of

this programming guide. You'll need a basic understanding of the Inventor database (Chapter 1
through Chapter 4), Inventor actions (Chapter 9), and Inventor event handling (Chapter 10) before you
begin combining features of OpenGL with Inventor.

The preferred way to combine use of OpenGL and Inventor is by subclassing. When you subclass,
you create a new node that makes calls to OpenGL. This process, which is beyond the scope of this
chapter and is described in detailline Inventor Toolmakeallows you to build on an existing node.
Another advantage of subclassing is that your new class has access to Inventor reading and writing
(callback nodes, described in this chapter, do not read and write detailed information to a file).

It is important to note that Inventor inherits state from OpenGtefatering only Additional

Inventor features, such as picking, computing bounding boxes, and writing to a file, do not use
OpenGL and are unaware of changes made directly to the OpenGL state variables. For example, it is
possible to send a viewing matrix directly to OpenGL and then use Inventor to draw a scene without a
camera. However, if you then try to pick an object, Inventor will not know what viewing

transformation to use for picking, since it doesn’t use OpenGL for picking.

You can combine Inventor with OpenGL in several ways. An easy way to add custom OpenGL
rendering to a scene database is to add a callback 8o@al{back see Example 17 2). This node

allows you to set a callback function that is invoked for each of the various actions that nodes perform
(rendering, picking, bounding box calculation). T®eCallbacknode differs from the event callback

node in that it provides callbacks for all scene operations rather than just for event handling.

A second way to combine Inventor with OpenGL is to create a GLX window, make OpenGL and
Inventor calls, and then apply &oGLRenderAction, as shown in Example 17 3. For instance, you

could create a GLX window, clear the background, do some initial rendering into the window, set up
the viewing matrix, and then use Inventor to draw a scene by applying a GL render action to the scene

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
17, Using Inventor with OpenGL 1

graph. Or, you could use Inventor to set up the camera, lights, and materials, and then use OpenGL
code to draw the scene. As long as you follow the general rules described in the following section on
OpenGL state usage, you can mix OpenGL and Inventor rendering as you wish. (Note that this is an
advanced feature, not for the faint of heart.)

OpenGL State Variables and Inventor

If you need to combine Inventor and OpenGL calls, Table 17 1 through Table 17 9 list the OpenGL
state variables and describe which Inventor nodes (or actions) change those variables. If Inventor uses
the current value of an OpenGL state variable and never changes it, the variable is omitted from this
set of tables. See ti@penGL Programming Guider a complete list of all OpenGL state variables

and their default values. The recommended value for these variables is the default value, with two
exceptions: turn on z buffering and use RGB color mode.

Remember, the constructor oGLRenderAction takes a parameter that specifies whether to
inherit the current OpenGL values. If you specify TRUE, Inventor inherits values from OpenGL. If
you specify FALSE (the default), Inventor sets up its own reasonable default values (see Chapter 9).

To save and restore OpenGL state, use the Oppn&hAttributes() andpopAttributes()

commands. For example, if you change variables in the OpenGL state in a callback node, you need to
restore the state when the callback node is finished. Note that if your callback node begins with a
pushAttributes() and ends with popAttributes(), but a render abort occurs in between,

popAttributes() is never called and the state is not restored.

OpenGL State Variable Inventor Nodes That Change This
Variable
GL_CURRENT_COLOR Shapes, Material, Base Color
GL_CURRENT_INDEX Color Index node, Shapes
GL_CURRENT_TEXTURE_COORDS Shapes, TextureCoordinate2
GL_CURRENT_NORMAL Shapes, Normal
GL_CURRENT_RASTER_POSITION Text2
GL_CURRENT_RASTER_COLOR Text2
GL_CURRENT_RASTER_INDEX Text2
GL_CURRENT_RASTER_POSITION_ Text2
VALID

Table 17 1 OpenGL State Variables: Current Values and Associated Data

OpenGL State Variable Inventor Nodes That Change This
Variable
GL_MODELVIEW_MATRIX Transformation nodes, Cameras
GL_PROJECTION_MATRIX Cameras
GL_TEXTURE_MATRIX Texture2Transform
GL_VIEWPORT Cameras
GL_DEPTH_RANGE Cameras
GL_MODELVIEW_STACK_DEPTH Transformation nodes
GL_TEXTURE_STACK_ DEPTH Texture2Transform
GL_MATRIX_MODE Cameras, Texture2Transform

Table 17 2 OpenGL State Variables: Transformation State

OpenGL State Variable Inventor Nodes That Change This Variable

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
17, Using Inventor with OpenGL 2

GL_FOG_COLOR
GL_FOG_INDEX
GL_FOG_DENSITY
GL_FOG_START
GL_FOG_END
GL_FOG_MODE
GL_FOG
GL_SHADE_MODEL

Environment node
Environment node
Environment node
Environment node
Environment node
Environment node
Environment node
Light Model, if in color index mode

Table 17 3 OpenGL State Variables: Coloring

OpenGL State Variable

Inventor Nodes That Change This Variable

GL_LIGHTING
GL_COLOR_MATERIAL

GL_MATERIAL_PARAMETER

GL_MATERIAL_FACE
GL_AMBIENT
GL_DIFFUSE
GL_SPECULAR
GL_EMISSION
GL_SHININESS

GL_LIGHT_MODEL_AMBIENT
GL_LIGHT MODEL_LOCAL_VIEWER
GL_LIGHT_MODEL_TWO_SIDE

GL_AMBIENT
GL_DIFFUSE
GL_SPECULAR
GL_POSITION

GL_CONSTANT_ATTENUATION
GL_LINEAR_ATTENUATION
GL_QUADRATIC_ATTENUATION

Light Model
Shapes

Shapes

Shapes

Shapes, Material
Shapes, Material
Shapes, Material
Shapes, Material
Shapes, Material
Shapes, Material
Shapes, Material
Shape Hints
Lights

Lights

Lights

Lights
Environment
Environment

Environment

GL_SPOT_DIRECTION Lights
GL_SPOT_EXPONENT Lights
GL_SPOT_CUTOFF Lights
GL_LIGHTi Lights
GL_COLOR_INDEXES Lights
Table 17 4 OpenGL State Variables: Lighting

OpenGL State Variable

Inventor Nodes That Change This
Variable

GL_POINT_SIZE
GL_POINT_SMOOTH
GL_LINE_WIDTH
GL_LINE_SMOOTH

GL_LINE_STIPPLE_PATTERN

GL_LINE_STIPPLE
GL_CULL_FACE
GL_CULL_FACE_MODE

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter

17, Using Inventor with OpenGL 3

Draw Style
Render action
Draw Style
Render Action
Draw Style
Draw Style
Shape Hints
Shape Hints

GL_POLYGON_MODE
GL_POLYGON_STIPPLE

Draw Style
Shapes if SCREEN_DOOR transparency

Table 175 OpenGL State Variables: Rasterization

OpenGL State Variable

Inventor Nodes That Change This
Variable

GL_TEXTURE X
GL_TEXTURE
GL_TEXTURE_WIDTH
GL_TEXTURE_HEIGHT
GL_TEXTURE_COMPONENTS
GL_TEXTURE_MIN_FILTER
GL_TEXTURE_MAG_FILTER
GL_TEXTURE_WRAPX
GL_TEXTURE_ENV_MODE
GL_TEXTURE_ENV_COLOR
GL_TEXTURE_GENXx
GL_EYE_LINEAR
GL_OBJECT_LINEAR
GL_TEXTURE_GEN_MODE

Texture2 node
Texture2 node
Texture2 node
Texture2 node
Texture2 node
Complexity node
Complexity node
Texture2 node
Texture2 node
Texture2 node
Texture Coordinate Function nodes
Texture Coordinate Function nodes
Texture Coordinate Function nodes
Texture Coordinate Function nodes

Table 17 6 OpenGL State Variables: Texturing

GL_BLEND
GL_BLEND_SRC
GL_BLEND_DST

Render action, Texture2 node
Render action, Texture2 node

Render action, Texture2 node

Table 17 7 OpenGL State Variables: Pixel Operations

OpenGL State Variable

Inventor Nodes That Change This

Variable

GL_UNPACK_ALIGNMENT

GL_* SCALE
(* = RED; GREEN; BLUE; ALPHA)

GL_* BIAS
(* = RED; GREEN; BLUE; ALPHA)

Texture2 node
Texture2 node

Texture2 node

Table 17 8 OpenGL State Variables: Pixels

OpenGL State Variable Inventor Nodes That Change This
Variable
GL_LIST_BASE Text2, Text3 nodes

GL_LIST_INDEX
GL_LIST_MODE

Separator, Text2, Text3 nodes
Separator, Text2, Text3 nodes

Table 17 9 OpenGL State Variables: Miscellaneous

Color Index Mode

You can open an X window that supports OpenGL rendering in either RGB mode or color index (also
referred to asolor map mode. If you use color
index mode, be sure to load the color map. Example 17 1 shows how to set the color map for the

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
17, Using Inventor with OpenGL 4

SoXtRenderArea See also th®pen Inventor C++ Reference Manual
SoXtRenderArea::setColorMap().

If you are using BASE_COLOR lighting, use tBeColorindex node to specify the index into the
color map.

If you are using PHONG lighting, use tBeMateriallndex node to specify indices into the color

map for the ambient, diffuse, and specular colors. This node also includes fields for specifying the
shininess and transparency values (but not the emissive value). It expects the color map to contain a
ramp from ambient to diffuse to specular colors.

Tip: You can design a scene graph that can be used in RGB or color index windows by putting both
SoMateriallndex andSoMaterial nodes in it.

Example 17 1 Using Color Index Mode

#include <Inventor/SoDB.h>

#include <Inventor/Solnput.h>

#include <Inventor/nodes/SoNode.h>

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>
#include <GL/gIx.h>

/I Window attribute list to create a color index visual.
I/l This will create a double buffered color index window
[/l with the maximum number of bits and a zbuffer.
int attribList[] = {
GLX_DOUBLEBUFFER,
GLX_BUFFER_SIZE, 1,
GLX_DEPTH_SIZE, 1,
None };

/I List of colors to load in the color map
static float colors[3][3] = {{.2, .2, .2}, {.5, 1, .5},
{5, .5, 1}};

static char *sceneBuffer = "\
#lnventor V2.0 ascii\n\
\
Separator {\
LightModel { model BASE_COLOR }\
Colorindex {index 1 }\
Coordinate3{point[1 11, 11 1,111,1 11]}\
FaceSet {} \
Colorindex {index 2 }\
Coordinate3 {point[1 11, 111,11 1,1 1 1]}\
FaceSet {} \

Y

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
17, Using Inventor with OpenGL 5

void
main(int , char **argv)
{
/ Initialize Inventor and Xt
Widget myWindow = SoXt::init(argv[0]);

/l Read the scene graph in

Solnput in;

SoNode *scene;

in.setBuffer((void *)sceneBuffer, (size_t)

strlen(sceneBuffer));

if (! SoDB::read(&in, scene) || scene == NULL) {
printf("Couldn’t read scene\n");
exit(1);

}

/I Create the color index visual
XVisuallnfo *vis = gIXChooseVisual(XtDisplay(myWindow),
XScreenNumberOfScreen(XtScreen(myWindow)), attribList);
if (! vis) {
printf("Couldn’t create visual\n");
exit(1);
}

/I Allocate the viewer, set the scene, the visual and

/l'load the color map with the wanted colors.

1

/I Color 0 will be used for the background (default) while

/l color 1 and 2 are used by the objects.

1

SoXtExaminerViewer *myViewer = new
SoXtExaminerViewer(myWindow);

myViewer >setNormalVisual(vis);

myViewer >setColorMap(0, 3, (SbColor *) colors);

myViewer >setSceneGraph(scene);

myViewer >setTitle("Color Index Mode");

/I Show the viewer and loop forever...
myViewer >show();
XtRealizeWidget(myWindow);
SoXt::mainLoop();

Using an SoCallback Node

A typical use of arsoCallbacknode is to make calls to OpenGL. At the beginning of the callback
function, you need to check the action type and then proceed based on the type of action that has been

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
17, Using Inventor with OpenGL 6

applied to the node. Typically, you are interested in the render action:

if(action >isOfType(SoGLRenderAction::getClassTypeld())){

...execute rendering code ..

Caching

The effects of a callback node may not be cacheable, depending on what it does. For example, if the
callback node contains shapes whose geometry is changing, it should not be cached. InExample 17 2
, the callback node creates a checked background, which can be cached because it is not changing.

If a callback node relies on any information outside of Inventor that may change (such as a global
variable), it should not be cached. To prevent Inventor from automatically creating a cache, use the
SoCacheElement::

invalidate() method from within a callback. For example:

void
myCallback(void *myData, SoAction *action)
{
if (action >isOfType(SoGLRenderAction::getClassTypeld())){
SoCacheElement::invalidate(action >getState());
/Imakes sure this isn’t cached
/...make OpenGL calls that depend on a global variable...//
}
}

Be careful when opening an OpenGL display list insidB@Dallbacknode. Recall from Chapter 9

that the Inventor render cache contains an OpenGL display list. Only one OpenGL display list can be
open at a time, and a separator node above the callback node may have already opened a display list
for caching. If your callback node opens a second display list, an error occurs. Use the
SoCacheElement::anyOpen(inethod to check whether a cache is open.

Using a Callback Node

Example 17 2 creates an Inventor render area. It uses Inventor to create a red cube and a blue sphere
and then uses @bCallbacknode containing GL calls to draw a checked "floor.” The floor is cached
automatically by Inventor. Note that tBeXtRenderAreaautomatically redraws the scene when the
window is resized. Example 17 3, which uses a GLX window, does not redraw automatically.

Both Examples 17 2 and 17 3 produce the same image, shown in Figure 17 1.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
17, Using Inventor with OpenGL 7

Figure 17 1 Combining Use of Inventor and OpenGL

Example 17 2 Using a Callback Node

#include <GL/gl.h>

#include <Inventor/SbLinear.h>

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/SoXtRenderArea.h>
#include <Inventor/nodes/SoCallback.h>
#include <Inventor/nodes/SoCube.h>

#include <Inventor/nodes/SoDirectionalLight.h>
#include <Inventor/nodes/SoLightModel.h>
#include <Inventor/nodes/SoMaterial.h>
#include <Inventor/nodes/SoPerspectiveCamera.h>
#include <Inventor/nodes/SoSphere.h>
#include <Inventor/nodes/SoSeparator.h>
#include <Inventor/nodes/SoTransform.h>

float floorObj[81][3];

// Build a scene with two objects and some light
void

buildScene(SoGroup *root)

{

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
17, Using Inventor with OpenGL 8

/I Some light
root >addChild(new SoLightModel);
root >addChild(new SoDirectionalLight);

/I A red cube translated to the left and down
SoTransform *myTrans = new SoTransform;
myTrans >translation.setValue(2.0, 2.0, 0.0);
root >addChild(myTrans);

SoMaterial *myMtl = new SoMaterial,
myMtl >diffuseColor.setValue(1.0, 0.0, 0.0);
root >addChild(myMtl);

root >addChild(new SoCube);

/I A blue sphere translated right

myTrans = new SoTransform;

myTrans >translation.setValue(4.0, 0.0, 0.0);
root >addChild(myTrans);

myMtl = new SoMaterial,
myMtl >diffuseColor.setValue(0.0, 0.0, 1.0);
root >addChild(myMtl);

root >addChild(new SoSphere);

// Build the floor that will be rendered using OpenGL.
void

buildFloor()

{

inta=0;

for (floati= 5.0;i<=5.0;i+=1.25){
for (floatj= 5.0; j<=5.0; j += 1.25, a++) {

floorObj[a][0] = j;
floorObj[a][1] = 0.0;
floorObj[a][2] = i;
}
}
}
// Draw the lines that make up the floor, using OpenGL
void
drawFloor()
{
inti;

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
17, Using Inventor with OpenGL 9

giBegin(GL_LINES);

for (i=0; i<4; i++) {
glVertex3fv(floorObj[i*18]);
glVertex3fv(floorObj[(i*18)+8]);
glVertex3fv(floorObj[(i*18)+17]);
glVertex3fv(floorObj[(i*18)+9]);

}

glVertex3fv(floorObj[i*18]);
glVertex3fv(floorObj[(i*18)+8]);
glEnd();

giBegin(GL_LINES);

for (i=0; i<4; i++) {
glVertex3fv(floorObj[i*2]);
glVertex3fv(floorObj[(i*2)+72]);
glVertex3fv(floorObj[(i*2)+73]);
glVertex3fv(floorObj[(i*2)+1]);

}

glVertex3fv(floorObj[i*2]);

glVertex3fv(floorObj[(i*2)+72]);

glEnd();

/I Callback routine to render the floor using OpenGL
void
myCallbackRoutine(void *, SoAction *)
{
glPushMatrix();
glTranslatef(0.0, 3.0, 0.0);
glColor3f(0.0, 0.7, 0.0);
glLineWidth(2);
glDisable(GL_LIGHTING); // so we don't have to set normals
drawFloor();
glEnable(GL_LIGHTING);
glLineWidth(1);
glPopMatrix();

main(int, char **)

{

/I Initialize Inventor utilities
Widget myWindow = SoXt::init("Example 17.1");

buildFloor();

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
17, Using Inventor with OpenGL 10

/I Build a simple scene graph, including a camera and

/I a SoCallback node for performing some GL rendering.
SoSeparator *root = new SoSeparator;

root >ref();

SoPerspectiveCamera *myCamera = new SoPerspectiveCamera;
myCamera >position.setValue(0.0, 0.0, 5.0);

myCamera >heightAngle = M_PI1/2.0; // 90 degrees

myCamera >nearDistance = 2.0;

myCamera >farDistance = 12.0;

root >addChild(myCamera);

SoCallback *myCallback = new SoCallback;
myCallback >setCallback(myCallbackRoutine);
root >addChild(myCallback);

buildScene(root);

/I Initialize an Inventor Xt RenderArea and draw the scene.
SoXtRenderArea *myRenderArea = new SoXtRenderArea(myWindow);
myRenderArea >setSceneGraph(root);

myRenderArea >setTitle("OpenGL Callback");

myRenderArea >setBackgroundColor(SbColor(.8, .8, .8));
myRenderArea >show();

SoXt::show(myWindow);
SoXt::mainLoop();

Applying a Render Action Inside a GLX Window

Example 17 3 creates a GLX window, makes Inventor and OpenGL calls, and then applies a GL
render action. It uses OpenGL to render a checked "floor" and Inventor to render a red cube and a blue
sphere, in the same window.

Example 17 3 Using a GLX Window

#include <GL/gIx.h>
#include <GL/gl.h>
#include <GL/glu.h>
#include <stdio.h>
#include <unistd.h>

#include <Inventor/SoDB.h>

#include <Inventor/actions/SoGLRenderAction.h>
#include <Inventor/nodes/SoCube.h>

#include <Inventor/nodes/SoDirectionalLight.h>

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
17, Using Inventor with OpenGL 11

#include <Inventor/nodes/SoLightModel.h>
#include <Inventor/nodes/SoMaterial.h>
#include <Inventor/nodes/SoTransform.h>
#include <Inventor/nodes/SoSeparator.h>
#include <Inventor/nodes/SoSphere.h>

#define WINWIDTH 400
#define WINHEIGHT 400

float floorObj[81][3];

// Build an Inventor scene with two objects and some light
void
buildScene(SoGroup *root)
{
/I Some light
root >addChild(new SoLightModel);
root >addChild(new SoDirectionalLight);

/I A red cube translated to the left and down
SoTransform *myTrans = new SoTransform;
myTrans >translation.setValue(2.0, 2.0, 0.0);
root >addChild(myTrans);

SoMaterial *myMtl = new SoMaterial,
myMtl >diffuseColor.setValue(1.0, 0.0, 0.0);
root >addChild(myMtl);

root >addChild(new SoCube);

/I A blue sphere translated right

myTrans = new SoTransform;

myTrans >translation.setValue(4.0, 0.0, 0.0);
root >addChild(myTrans);

myMtl = new SoMaterial,
myMtl >diffuseColor.setValue(0.0, 0.0, 1.0);
root >addChild(myMtl);

root >addChild(new SoSphere);
}

// Build a floor that will be rendered using OpenGL.
void

buildFloor()

{

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
17, Using Inventor with OpenGL 12

inta=0;

for (floati= 5.0;i<=5.0;i+=1.25) {
for (floatj = 5.0; j<=5.0; j += 1.25, a++) {
floorObj[a][0] = j;
floorObj[a][1] = 0.0;
floorObj[a][2] = i;
}
}
}

/I Callback used by GLX window
static Bool
waitForNotify(Display *, XEvent *e, char *arg)
{
return (e >type == MapNotify) &&
(e >xmap.window == (Window) arg);

/I Create and initialize GLX window.
void
openWindow(Display *&display, Window &window)
{
XVisuallnfo *vi;
Colormap cmap;
XSetWindowAttributes swa,;
GLXContext cx;
XEvent event;
static int attributeList[] = {
GLX_RGBA,
GLX_RED_SIZE, 1,
GLX_GREEN_SIZE, 1,
GLX_BLUE_SIZE, 1,
GLX_DEPTH_SIZE, 1,
GLX_DOUBLEBUFFER,
None,

display = XOpenDisplay(0);

vi = gIXChooseVisual(display,
DefaultScreen(display), attributeList);

cx = gIXCreateContext(display, vi, 0, GL_TRUE);

cmap = XCreateColormap(display,
RootWindow(display, vi >screen),
vi >visual, AllocNone);

swa.colormap = cmap;

swa.border_pixel = 0;

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
17, Using Inventor with OpenGL 13

swa.event_mask = StructureNotifyMask;
window = XCreateWindow(display,
RootWindow(display, vi >screen), 100, 100,
WINWIDTH, WINHEIGHT, 0, vi >depth, InputOutput,
vi >visual,
(CWBorderPixel | CWColormap | CWEventMask), &swa);

XMapWindow(display, window);
XIfEvent(display, &event, waitForNotify, (char *) window);
glXMakeCurrent(display, window, cx);

}

// Draw the lines that make up the floor, using OpenGL
void
drawFloor()

{

inti;

glBegin(GL_LINES);

for (i=0; i<4; i++) {
glVertex3fv(floorObj[i*18]);
glVertex3fv(floorObj[(i*18)+8]);
glVertex3fv(floorObj[(i*18)+17]);
glVertex3fv(floorObj[(i*18)+9]);

}

glVertex3fv(floorObj[i*18]);
glVertex3fv(floorObj[(i*18)+8]);
glEnd();

glBegin(GL_LINES);

for (i=0; i<4; i++) {
glVertex3fv(floorObj[i*2]);
glVertex3fv(floorObj[(i*2)+72]);
glVertex3fv(floorObj[(i*2)+73]);
glVertex3fv(floorObj[(i*2)+1]);

}

glVertex3fv(floorObj[i*2]);

glVertex3fv(floorObj[(i*2)+72]);

glEnd();

main(int, char **)

{

/I Initialize Inventor

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2 Chapter
17, Using Inventor with OpenGL 14

SoDB::init();

// Build a simple scene graph
SoSeparator *root = new SoSeparator;
root >ref();

buildScene(root);

// Build the floor geometry
buildFloor();

/I Create and initialize window

Display *display;

Window window;

openWindow(display, window);

glEnable(GL_DEPTH_TEST);

glClearColor(0.8, 0.8, 0.8, 1.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

/I Set up the camera using OpenGL.
glMatrixMode(GL_PROJECTION);
glLoadldentity();
gluPerspective(90.0, 1.0, 2.0, 12.0);

gIMatrixMode(GL_MODELVIEW);
glLoadldentity();
glTranslatef(0.0, 0.0, 5.0);

/I Render the floor using OpenGL
glPushMatrix();

glTranslatef(0.0, 3.0, 0.0);
glColor3f(0.0, 0.7, 0.0);
glLineWidth(2.0);
glDisable(GL_LIGHTING);
drawFloor();
glEnable(GL_LIGHTING);
glPopMatrix();

/l Render the scene

ShViewportRegion myViewport(WINWIDTH, WINHEIGHT);
SoGLRenderAction myRenderAction(myViewport);
myRenderAction.apply(root);

gIXSwapBuffers(display, window);

sleep (10);
root >unref();
return O;

Appendix A

An Introduction to Object Oriented Programming for C
Programmers

Open Inventor is an object oriented toolkit for developing 3D programs. It is written in C++, but it
includes a C programming interface. This book is full of references to classes, subclasses, and other
concepts from object oriented programming. All examples are in C++. You will get the most from this
book if you have a reasonable understanding of classes and objected oriented programming before
you begin reading it.

This appendix provides an informal introduction to object oriented programming for C programmers
and an overview of the concepts behind the C interface. If you are comfortable with object oriented
programming, you can skip the first section and just skim the example in this appendix. For the
specifics of Inventor’'s C programming interface, see Appendix B.

This chapter contains the following sections:

* "What Is Object Oriented Programming?" introduces you to the two fundamental concepts of
object oriented programming: data abstraction and inheritance.

» "An Example of a Class: Sphere" develops a substantial example of a C++ class that illustrates
the concepts of object oriented programming.

» "Suggested Reading" points you to further information on C++.

What Is Object Oriented Programming?

Many successful programmers use object oriented techniques without knowing it. You have probably
heard programmers complimenting an implementation by describingiddsar Modular code has

a well defined interface that works without requiring its users to know how it was written. Modular
code can be reused by many applications, cuts down on programmer learning time, and allows the
implementation internals to change without affecting the programs that use it. It protects the
programmer from the implementation details. The programming interface defines the functionality.

Data Abstraction

For an example, look at the file 1/O functions provided in the standard C libraag(), open()

read(), write(), andclose() These routines clearly define the 1/O functionality without revealing the

file system details or implementation. Each function uses a file descriptor to identify the data
representing the file, device, or socket. The data structures that represent these objects are different for
each file type, yet they are completely hidden from you as a programmer. The open/close/read/write
semantics apply consistently to each object.

This technique of hiding internal data structures is knowfatsabstractionl the first fundamental
concept of object oriented programming. It's good programming practice to confine access to data
structures to the code that is intended to modify the structures. Revealing private data allows the
programmer using the structure to modify things that perhaps he shouldn’t modify. The programmer
is then relying on details of the internal implementation, so the implementor can’'t make changes to
that internal representation.

Objectsrepresent the building blocks from which programs are constructed. They consist of data

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2
Appendix A, An Introduction to Object Oriented Programming for C Programmers 1

structures and some associated functions that operate on those data structures. Objects perform
functions on themselves rather than allowing applications to have access to their internal
implementation. In our example, the C file I/O routines define a generic file (the object) that is
accessed through the open/close/read/write functions.

Inheritance

So far, we've described good, modular code, but not specifically object oriented programming.
Inheritanceis the concept that sets object oriented code apart from well written modular code.
Inheritance allows you to create new objects from existing objects. It makes it easy to customize and
specialize your programs. Inheritance is the second fundamental concept of object oriented
programming.

You've probably often wanted to reuse some existing code, but you couldn’t because you needed to
make minor changes. So you copied the code with the changes into an independent implementation.
This reinvention is tedious, error prone, and a waste of your time. Inheritance provides you with a
mechanism for reusing your existing code and adding small changes, without starting over.

The C file I/0O routine example actually defines three object types: files, devices, and sockets. These
objects are created from the generic file object, which defines the open/close/read/write semantics.
Writing the 1/O routines is just a matter of implementing those functions for each type of file object.
The implementation differences stay hidden from the programmer.

Implementing Data Abstraction and Inheritance: Classes

Object oriented programming languages use the techniques we’ve described in a formal manner. C++
provides a few extra constructs on top of C that enforce these techniques. The most basic of these
constructs is thelassYou can think of a class either as a data structure with relevant functions
attached, or as a group of related functions with some data attached. It doesn’t matter which model
you prefer. The important concept to understand is that objects encapsulate related data and functions
into a single package, calledlass

Functions within a class are usually calieember function®r more genericallymethodsThe data
structures within a class are referred ton@snber variablesSo a class is composed of member
functions and variables.

Note that we're using the terohassto represent the abstract notion of an object, much like a structure
in C. The ternobjectusually refers to an instance of a class. You create an object from a given class
when you instantiate the class. The C parallel would be allocating memory to make a copy of a
structure. You can refer to that copy of the structure asstanceof the structure, or as abject

with the same type as the structure.

When new classes are defined, they can be derived from an existing class. The existing class is called
abaseor parentclass, and the new class is calleddbeved clas®rsubclassNew classes created
this way typically inherit all of the methods and variables that were defined in the base class.

Class Hierarchies

Open Inventor is composed of a large set of related classes that implement many aspects of 3D
programming. These classes are implemented in C++. The Open Inventor C programming interface
allows you to use these classes from C programs. So you can write C programs that reap the benefits
of C++ inheritance without needing to learn C++ first. But the C interface does not hide the fact that

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2
Appendix A, An Introduction to Object Oriented Programming for C Programmers 2

there are classes. Your programming tasks will be easier if you understand the Inventor classes and
how they relate to each other. For example, you need to know which class each class is derived from
to know which functions apply.

Class relationships in object oriented systems are often illustrated thetasghhierarchy diagrams

orclass treesFigure A 1 is an example. It illustrates a fictitious class hierarchy. Note that this

example is not based on Inventor. It is used to convey key concepts in a simple manner, but its sphere,
cone and quad mesh are for example only and are not the same as the Inventor classes with similar

names.
— MURBES
— Surfaces
— BeZier
_ — Sphera Helloaw Sphere
Giecmetny——— Cuadrics
— Sone
— Triangkeiezh
— Pohigonilesh—F
— Cad lesh

Figure A1 Sample Class Hierarchy Diagram

Functions and variables defined in the claesmetryalso exist for every subclass. SGdometry
has a variablBbox and a functiometBbox() all the subclasses Gfeometryalso havd8box and
getBbox()

See Chapter 1 for a summary of the Open Inventor class tree.

An Example of a Class: Sphere

This section discusses an example of a C++ class and its member functions. The class we’ll consider
is one from the fictional class tree shown in Figure Sghere which represents and operates on a
sphere. Th&phereclass is defined below with several member functions and some member
variables:

class Sphere {

public:
Sphere(); /I creates a sphere with default values
~Sphere(); /I destructor, which deletes a sphere
void render() /I renders the sphere

Boolean pick(int x, int y); // picks the sphere

float radius; /I radius of the sphere
float center[3]; /I center of the sphere

h
Sphereis a class that creates, manages, and operates on a geometric sphere object. The internal
implementation details of the sphere are not exposed to you.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2
Appendix A, An Introduction to Object Oriented Programming for C Programmers 3

Notice that the functions &pheredo not have a sphere argument. When

you invoke these functions from C++, you invoke them from the class itself. Each function has an
implied sphere argument. For example, this is how you would create a sphere, set its radius, and then
render it in C++:

Sphere *mySphere; /I pointer to a sphere object
mySphere = new Sphere(); /I creates and initializes sphere
mySphere >radius = 3.0; /I sets the radius

mySphere >render(); I/l renders it

Thesphere >syntax accesses a member variable or invokes a member function in the same way that
C accesses structure members. For exampl8phere >render()invokes theender() function on
mySphere Thenew Sphere()syntax creates a sphere, allocating memory for the object and

initializing it.

This is how the sphere class would look in the corresponding C interface:

Sphere *SphereCreate();

void SphereDelete(Sphere *sphere);

void SphereRender(Sphere *sphere);

Boolean SpherePick(Sphere *sphere, int X, int y);

(This example follows the naming conventions for Inventor C functions. For details on those
conventions, see Appendix B.)

The C interface would also define a structure for the sphere:

struct Sphere {

char pad[48]; [* padding generated by Inventor
*/

float radius;

float center[3];
h
Thepad[48]is generated automatically from the C++ code. Thaskstatements are a by product of
the generation of the C interface from the C++ classes. They protect private data that you as a
programmer shouldn’t need to access.

To create a sphere, set its radius, and render it from C, you would write code like this:

Sphere *mySphere; /* my sphere object */

mySphere = SphereCreate();
mySphere >radius = 3.0;
SphereRender(mySphere);

Notice how similar this code is to the C++ example. The main difference is syntax. (Again, note that
this is a hypothetical example; this is not exactly how the radius for a sphere is specified in Inventor
programs.)

An Example of Inheritance: HollowSphere

Recall that inheritance is the ability to build specialized classes from existing classes. In C++, you can
createsubclassesf a class, which are identical to the parent class with exceptions you can select.

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2
Appendix A, An Introduction to Object Oriented Programming for C Programmers 4

These exceptions can be different implementations of functions on the parent class, or extra added
functions. Subclasses are said tadbeaved fronor subclassed frorthe parent class.

For example, we can build a subclasSpherecalledHollowSphere HollowSphereis identical to
Sphereg except that it has a thickness value and a new function that tells it whether to render
translucentlyHollowSphereis derived fronSphere Since it's a subclass 8phere all member
functions ofSpherealso apply tdHollowSphere Our definition ofHollowSpheredoes not have to
definedelete() render(), orpick() functions HollowSphereinherits these functions from t8phere
class. The same is true$pherés member variablesadius andcenter. HollowSphereinherits
those as well.

Here is the C++ class definition fdollowSphere

class HollowSphere : public Sphere { /I subclass
of Sphere

void showEquator(); I/l show equator during
render

float thickness; /I stores thickness
value
}

The following C++ code fragment creates a hollow sphere, sets its radius and thickness, turns on the
equator options, and renders it:

HollowSphere *mySphere;
mySphere = new HollowSphere();
mySphere >radius = 3.0;
mySphere >thickness = 0.25;
mySphere >showEquator();
mySphere >render();

To do the same using the C interface:

HollowSphere *mySphere;

mySphere = HollowSphereCreate();

mySphere >radius = 3.0;

mySphere >thickness = 0.25;
HollowSphereShowEquator(mySphere);
HollowSphereRender(mySphere); /* inherited from parent class */

Note that when you invoke a method from the parent class, the method name is prefixed by the name
of the subclass. See Appendix B for a fuller explanation of how the Inventor C interface names
inheritance methods.

Suggested Reading

If you want to learn more about C++ and object oriented programming, the following books are good
starting points:

» Dewhurst, Stephen C., and Kathy T. Stétggramming in C++ Englewood Cliffs, N.J.:
Prentice Hall, Inc., 1989.

» Ellis, Margaret A., and Bjarne Stroustrie Annotated C++ Reference Manuaeading,

The Inventor Mentor: Programming Object Oriented 3D Graphics with Open Inventor , Release 2
Appendix A, An Introduction to Object Oriented Programming for C Programmers 5

	Table of Contents
	About This Book
	Color Plates
	1. Overview
	2. An Inventor Sampler
	3. Nodes and Groups
	4. Cameras and Lights
	5. Shapes, Properties, and Binding
	6. Text
	7. Textures
	8. Curves and Surfaces
	9. Applying Actions
	10. Handling Events and Selection
	11. File Format
	12. Sensors
	13. Engines
	14. Node Kits
	15. Draggers and Manipulators
	16. Iventor Component Library
	17. Using Inventor with OpenGL
	Appendix A - An Introduction to Object Oriented Programming for C Programmers

