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About This Book

The Inventor Mentor introduces graphics programmers and application developers to Open Inventor,

an objectÿoriented 3D toolkit. Open Inventor is a library of objects and methods used for interactive

3D graphics. Although it is written in C++, Open Inventor also includes C bindings.

For the sake of brevity, the examples included in this book are in C++. All C++ examples, as well as

equivalent examples written in C, are available onÿline. If you are new to the C++ language, see 

Appendix A, "An Introduction to ObjectÿOriented Programming for C Programmers," to help you

understand the references to classes, subclasses, and other objectÿoriented concepts used throughout

this book. If you are using the C application programming interface, also see Appendix B, "An

Introduction to the C API."

What This Book Contains

This book describes how to write applications using the Open Inventor toolkit. The Inventor

Toolmaker, a companion book for the advanced programmer, describes how to create new Inventor

classes and how to customize existing classes. 

The Inventor Mentor contains the following chapters:

 • Chapter 1, "Overview," provides a general description of Open Inventor concepts and classes and

how Inventor relates to OpenGL and the X Window System.

 • Chapter 2, "An Inventor Sampler," presents a short program that creates a simple object. This

program is then modified to show the use of important Inventor objects: engines, manipulators,

and components. 

 • Chapter 3, "Nodes and Groups," introduces the concept of a scene graph and shows how to create

nodes and combine them into different kinds of groups.

 • Chapter 4, "Cameras and Lights," describes the camera nodes used to view a scene and the light

nodes that provide illumination.

 • Chapter 5, "Shapes, Properties, and Binding," describes how to create both simple and complex

shapes and how to use property nodes, including material, draw style, and lighting model nodes.

Binding materials and surface normals to shape nodes is also explained.

 • Chapter 6, "Text," shows the use of 2D and 3D text nodes.

 • Chapter 7, "Textures," describes how to apply textures to the surfaces of objects in a scene.

 • Chapter 8, "Curves and Surfaces," explains how to use NURBS curves and surfaces.

 • Chapter 9, "Applying Actions," describes how operations are applied to an Inventor scene graph.

Actions include OpenGL rendering, picking, calculating a bounding box, calculating a

transformation matrix, writing to a file, and searching the scene graph for certain types of nodes.

 • Chapter 10, "Handling Events and Selection," explains how Inventor receives events from the

window system. It also describes how the selection node manages a selection list and performs

highlighting.

 • Chapter 11, "File Format," describes Inventor’s interchange file format, used for reading files into

Inventor, writing files out from Inventor, and data exchanges such as copy and paste.

 • Chapter 12, "Sensors," describes how Inventor sensors watch for certain types of events and
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Chapter 12, "Sensors," describes how Inventor sensors watch for certain types of events and

invoke userÿsupplied callback functions when these events occur.

 • Chapter 13, "Engines," describes how you can use Inventor engines to animate parts of a scene

graph, or to create interdependencies among the nodes in the graph.

 • Chapter 14, "Node Kits," introduces node kits, a convenient mechanism for creating groups of

related Inventor nodes. Each node kit contains a catalog of nodes from which you select the

desired nodes.

 • Chapter 15, "Draggers and Manipulators," describes how to use draggers and manipulators,

which are special objects in the scene graph that respond to user events. Manipulators are nodes

with field values that can be edited directly by the user.

 • Chapter 16, "Inventor Component Library," shows how to use Inventor’s Xt components, which

are program modules with a builtÿin user interface for changing the scene graph interactively. It

also Chapter 17, "Using Inventor with OpenGL," discusses how to use Inventor with the OpenGL

Library. 

There are three appendices:

 • Appendix A, "An Introduction to ObjectÿOriented Programming for C Programmers," describes

basic concepts of objectÿoriented programming, including data abstraction and inheritance.

 • Appendix B, "An Introduction to the C API," explains the differences between the Open Inventor

C and C++ interfaces.

 • Appendix C, "Error Handling," describes Inventor’s error handling mechanism.

How to Use This Book

It’s unrealistic to expect anyone to read a lengthy programmer’s guide from start to finish. After you

read a few basic chapters, you can skim others and skip around, depending on your particular needs

and goals. Here are a few suggested paths for making your way through this book.

For a basic understanding of how to create nodes and connect them into scene graphs, read Chapters 1

through 5. Then read Chapter 9, "Applying Actions," and Chapter 10, "Handling Events and

Selection." 

If you are mainly interested in reading files into the Inventor database, read Chapters 1 and 2 for an

overview of Inventor, and then jump to Chapter 11, "File Format."

If you are an experienced OpenGL programmer, Chapters 1, 2, 10, and 17, "Using Inventor with

OpenGL," are important chapters to begin with. Again, for a basic understanding of building a scene

graph, you also need to read Chapters 3 through 5 and Chapter 9.

Chapter 15, "Draggers and Manipulators," and Chapter 16, "Inventor Component Library," describe

the programming aspects of Inventor that have an associated user interface. The user interface for

individual components is described in the onÿline HELP cards provided for each class.

Once you understand the basic material presented in Chapters 1 through 5, you can skip to Chapter

13, "Engines," and Chapter 14, "Node Kits." Engines, like nodes, are basic building blocks in the

scene graph. They allow you to animate parts of the scene graph and to incorporate additional

behavior into scene graph objects. If you are creating scene graphs, node kits offer many shortcuts.
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What You Should Know 
Before Reading This Book

This book assumes you are familiar with basic concepts of 3D graphics programming. For example, it

assumes you have a reasonable understanding of the following terms: lighting, rendering, vertex,

polygon, light source, picking, matrix, OpenGL, pixel, surface normal. If these terms are new to you,

consult one or two of the sources listed in "Suggestions for Further Reading," later in this

introduction.

In addition, this book assumes you have some familiarity with concepts related to objectÿoriented

programming. See "Suggestions for Further Reading" as well as Appendices A and B for good

background information.

Conventions Used in This Book

This book uses boldface text font for all Inventor classes, methods, and field names: SoNode, 

SoMaterial, getValue(), setValue(), ambientColor, and center.   Parentheses  indicate  methods.

Code examples are in Courier font.

Tips

Several headings are used in paragrahs to highlight different kinds of text. Programming tips are

marked with their own heading Tip: . 

Advanced Information

Information that is considered advanced, and could be skipped during your first reading, is marked

with their own heading (Advanced). This heading can apply to a single paragraph or to an entire

section or chapter.

Key to Scene Graph Diagrams

Figure Inÿ1 shows the symbols used in the scene graph diagrams that appear throughout this guide.

Suggestions for Further Reading

For a general introduction to computer graphics, see the following:

 • Foley, J.D., A. van Dam, S. Feiner, and J.F. Hughes, Computer Graphics Principles and

Practice, 2e. Reading, Mass.: AddisonÿWesley, 1990.

 • Neider, Jackie, Tom Davis, Mason Woo, OpenGL Programming Guide. Reading, Mass.:

AddisonÿWesley, 1993.

 • Newman, W., and R. Sproull, Principles of Interactive Computer Graphics, 2e. New York:

McGrawÿHill, 1979.

For an introduction to the C++ language, see the following:

 • Lippman, Stanley B., A C++ Primer, 2e. Reading, Mass.:AddisonÿWesley, 1991.

 • Shapiro, Jonathan, A C++ Toolkit. Englewood Cliffs, N.J.: PrenticeÿHall, Inc., 1991.
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For an introduction to objectÿoriented programming, see

 • Meyer, Bertrand, ObjectÿOriented Software Construction. London: Prentice Hall International,

1988.
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Figure Inÿ1 Scene Graph Symbols
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Color Plates

This section includes all of the color plates referenced throughout the book.

Figure Inÿ2 Plate 1

A scene showing the effects of directional lights. The scene contains blue and yellow directional

lights; the building itself is white. (Images for Plates 1 through 21 by Paul Isaacs.)
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Figure Inÿ3 Plate 2

The same scene, using purple point lights.
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Figure Inÿ4 Plate 3

The same scene, using spotlights for a dramatic effect. Gray icons show the placement and orientation

of the spotlights. See Chapter 4. 
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Figure Inÿ5 Plate 4

Scene rendered with a lighting model of BASE_COLOR.
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Figure Inÿ6 Plate 5

The same scene, with the lighting model changed to PHONG. See Chapter 5.
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Figure Inÿ7 Plate 6

Scene showing the effects of an SoEnvironment node. The fog type is FOG, and the fog color is

lavender. See Chapter 5.
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Figure Inÿ8 Plate 7

An indexed face set using perÿface material binding.
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Figure Inÿ9 Plate 8

The same face set using perÿvertexÿindexed material binding.
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Figure Inÿ10 Plate 9

The same face set using perÿfaceÿindexed material binding. See Chapter 5.
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Figure Inÿ11 Plate 10

 Scene using nontextured surfaces, a white point light in the foreground, and orange point lights in the

background.

Figure Inÿ12 Plate 11

The same scene, with textures added using a MODULATE texture model.
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Figure Inÿ13 Plate 12

The same scene, using a DECAL texture model.

Figure Inÿ14 Plate 13

The same scene, using a BLEND texture model with a gold blend color to achieve a filigree effect.

See Chapter 7.
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Figure Inÿ15 Plate 14

Texture mapping using SoTextureCoordinatePlane. The textured square at left (with arrows) is

projected onto four different shapes.
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Figure Inÿ16 Plate 15

Texture mapping using SoTextureCoordinateSphere. The textured sphere at right (with arrows) is

projected onto four different shapes.
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Figure Inÿ17 Plate 16

Texture mapping using SoTextureCoordinateEnvironment.
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Figure Inÿ18 Plate 17

Scene using a variety of texture coordinate function nodes. See Chapter 7.
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Figure Inÿ19 Plate 18

Scene using BLEND transÿ parency type. The order of rendering is background, sphere, cone, black

and gold buildings.
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Figure Inÿ20 Plate 19

Scene using DELAYED_BLEND transparency type. Order of rendering is opaque objects

(background, black and gold buildings), then transparent objects (sphere, cone). 
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Figure Inÿ21 Plate 20

Scene using SORTED_OBJECT_BLEND transparency type. Order of rendering is opaque objects

(background, black and gold buildings), then transparent objects, sorted from back to front (cone,

sphere). See Chapter 9.
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Figure Inÿ22 Plate 21

Noodle, an object modeler. The user specifies a crossÿsection, spline, profile, and twist for each object.

The gold airplane is made of Inventor NURBS surfaces. The purple airplane is made of face sets using

the same data.
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Figure Inÿ23 Plate 22

Movieola®, a modeling and animation system based on Inventor. This application makes extensive

use of Inventor’s 3D manipulators, components, and node kits to provide intuitive tools for creating

complex shapes. (© 1993 Radiance Software International.) 
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Figure Inÿ24 Plate 23

Showcase, an application for creating multimedia presentations. All 3D support, including rendering,

interaction, and editing, is provided by Inventor. (Image by Rikk Carey.) 
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Figure Inÿ25 Plate 24

Textomatic, a simple Inventor application used for interactively defining profiles and materials for 3D

text. (Image by Catherine Madonia.)
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Figure Inÿ26 Plate 25

A hydrodynamics simulation created in Explorer, an application used for visualizing data. Inventor is

used for the 3D rendering module. (Data courtesy of Drew Whitehouse and Gustav Meglicki,

Australian National University Supercomputer Facility. Image by Roy Hashimoto.) 
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Figure Inÿ27 Plate 26

Five map layers showing the Mahantango Creek USDA Watershed in Pennsylvania. The layers show

direction of steepest descent, slope, rainfall, soil saturation, and soil category. (Data courtesy of

Dominique Thongs, Department of Civil Engineering; image courtesy of Interactive Computer

Graphics Laboratory, Princeton University.)
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Figure Inÿ28 Plate 27

A multimedia repair manual and inventory database. The user can move the displayed object, zoom in

on selected parts, view demonstration videos, and listen to voice annotations. (Image by Kevin

Goldsmith.)
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Figure Inÿ29 Plate 28

An application displaying radar coverage and status in 3D. Two new shape classes are used: a dome

shape representing movable antenna radars and a pie shape representing phasedÿarray radars. (Image

courtesy of DecisionÿScience Applications, Inc.)
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Figure Inÿ30 Plate 29

The Piero Project, an application for teaching art history using interactive 3D computer graphics. This

image shows a reconstruction of the Church of San Francesco in Arezzo, Italy. Clicking on the pink

box brings up the higher resolution image shown at right. Clicking on a white sphere allows the user

to view the scene from that position. White spheres can be connected to create an animated tour of the

church. (Image courtesy of Interactive Computer Graphics Laboratory, Princeton University, and The

Piero Project by Kirk Alexander, Kevin Perry, and Marilyn Aronberg Lavin.)
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Figure Inÿ31 Plate 30

An interactive art gallery tour. (Image by Gavin Bell and Kevin Goldsmith.)
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Figure Inÿ32 Plate 31

Trenchmaster, an archaeological application. The main window contains shapes representing artifacts

found in an excavation trench. Clicking on a shape brings up additional windows with text and photos.

(Data courtesy of William Childs, Dept. of Art and Archaeology; image courtesy of Interactive

Computer Graphics Laboratory, Princeton Univ.)
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Figure Inÿ33 Plate 32

A reconstruction of early Islamic Jerusalem. The user can explore the city streets and then walk

through the buildings. (Data for Plates 32 and 33 courtesy of Mohamed Alasad and Oleg Grabar,

Institute for Advanced Study, Princeton, New Jersey.) 
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Figure Inÿ34 Plate 33

View inside a mosque, one of the buildings shown in Plate 32. (Images for Plates 32 and 33 courtesy

of Interactive Computer Graphics Laboratory, Princeton Univ.)
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Figure Inÿ35 Plate 34

Cuckoo clock. An engine connected to the realÿtime global field moves the hands of the clock. (Image

by Rikk Carey.)

 The Inventor Mentor:   Programming ObjectÿOriented   3D Graphics with Open Inventor  ,  Release 2 ÿ Color

Plates ÿ 32



Figure Inÿ36 Plate 35

Tetris. A timer sensor animates the falling pieces. (Image by David Immel.)
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Figure Inÿ37 Plate 36

Moxy Moto, a computerÿgenerated character created using Alive, a realÿtime character animation

program based on Inventor. (Moxy was created by (Colossal) Pictures and by the Cartoon Network.

Alive is a product of deGraf/Associates.)
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Figure Inÿ38 Plate 37

Scenes from the OutÿofÿBox Experience, an immersive multimedia presentation. This application adds

multimedia nodes to the toolkit and the ability to synchronize Inventor objects with them. Clicking on

one of the moving spheres sends the user to a new "room."

Figure Inÿ39 Plate 38

The Animations Room. Each animated object is surrounded by an invisible Inventor shape. When the

user clicks on an object, a movie is played.
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Figure Inÿ40 Plate 39

A live video window within the StopÿMotion Room. The control panel and background are built with

Inventor objects.

Figure Inÿ41 Plate 40

The Earth Room. The user controls the spinning of the earth within its painted galaxy. When the user

clicks on a pin on the globe, a video or audio clip for that geographical area is played. (Images by

Kevin Goldsmith and (Colossal) Pictures.)



Chapter 1

Overview

Chapter Objectives

After reading this chapter, you’ll be able to do the following:

 • Identify the key elements that constitute the Open Inventor toolkit

 • Explain the relationship of Open Inventor to OpenGL

 • Describe several ways to extend Open Inventor

This chapter describes the key elements in Open Inventor and briefly outlines how you can tailor your

use of this toolkit to a particular set of needs. It explains how Inventor relates to programming tools

you may already be familiar with, such as OpenGL and the X Window System. Most of the topics

mentioned in this chapter are covered in detail in later chapters of this book.

What Is Open Inventor?

The Inventor Mentor introduces graphics programmers and application developers to Open Inventor,

an objectÿoriented 3D toolkit. Open Inventor is a library of objects and methods used to create

interactive 3D graphics applications. Although it is written in C++, Inventor also includes C bindings.

Open Inventor is a set of building blocks that enables you to write programs that take advantage of

powerful graphics hardware features with minimal programming effort. Based on OpenGL, the toolkit

provides a library of objects that you can use, modify, and extend to meet new needs. Inventor objects

include database primitives, including shape, property, group, and engine objects; interactive 

manipulators, such as the handle box and trackball; and components, such as the material editor,

directional light editor, and examiner viewer.

Inventor offers the economy and efficiency of a complete objectÿoriented system. In addition to

simplifying application development, Inventor facilitates moving data between applications with its

3D interchange file format. End users of 3D programs can cut and paste 3D scene objects and share

them among a variety of programs on the desktop.

As shown in Figure 1ÿ1, Inventor’s foundation is supplied by OpenGL and UNIX. Inventor represents

an objectÿoriented application policy built on top of OpenGL, providing a programming model and

user interface for OpenGL programs.
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Figure 1ÿ1 Inventor Architecture

The Inventor toolkit is window system-independent. A component library is helpful for using

Inventor with specific window systems. This book describes one component library provided with the

toolkit, which facilitates programming in Inventor using Xt windows and events. A companion to this

book, The Inventor Toolmaker, provides details on how to extend Inventor to work with other window

systems.

Objects, not Drawings

Inventor focuses on creating 3D objects. All information about these objectstheir shape, size,

coloring, surface texture, location in 3D spaceis stored in a scene database. This information can be

used in a variety of ways. The most common use is to display, or render, an image of the 3D objects

on the screen.

For many 3D graphics packages, this image is the ultimate goala photorealistic representation on

the screen of a 3D scene. But what if a user wants to move one of the objects to a different location,
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and perhaps view another object from a slightly different viewpoint? What if the user wants to

experiment with a different range of colors for the objects and the background of the scene? What if a

chemist wants to rearrange how two molecules align with each other? What if an airplane designer

wants to redesign the curve of the airplane’s wing? If the image exists only as a drawing on the screen,

the programmer must write complicated code to implement these functions. Additional code is

required to animate parts of the scene. With Open Inventor, the ability to make these changes is built

into the programming model. Changing the objects in the scene, adding to the scene, and interacting

with the objects becomes a simple process because such changes are part of Inventor’s wellÿdefined

interface, and because they are anticipated by Inventor’s basic design.

Using Database Objects in a Variety of Ways

Because the Inventor database holds information about the objects as they exist in their own 3D

"world," not just as a 2D array of pixels drawn on the screen, other operations in addition to rendering

can be performed on the objects. The objects in the scene can be picked, highlighted, and manipulated

as discrete entities. Boundingÿbox calculations can be performed on them. They can be printed,

searched for, read from a file, and written to a file. Each of these builtÿin operations opens up a

flexible and powerful arena for the application programmer. In addition, this programming model is

intuitive because it is based on the physical and mechanical world we live in.

Animation

Inventor objects can also encapsulate behavior into the description stored in the scene database. 

Example 1ÿ1, an excerpt from an Inventor file, describes a windmill whose blades spin at a specified

rate. When this file is read into an Inventor program and displayed on the screen, the windmill is

drawn and the blades are animated. No additional application code is used to make the blades spin;

this description is part of the windmill object itself. Figure 1ÿ2 shows an image of this windmill.

Example 1ÿ1 File Describing a Spinning Windmill

#Inventor V2.0 ascii

Separator {

   Separator { 

      RotationXYZ { 

         axis Z

         angle 0 =

            ElapsedTime { # Engine to rotate blades

               speed 0.4

            }

            . timeOut # Engine output connected to 

                      # angle of rotation

      }

      Transform {

         translation 0 0 0.5

      }

      Separator { # Shaft for blades

         Material {
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            diffuseColor 0.05 0.05 0.05

         }

         Transform {

            rotation 1 0 0 1.5708

            scaleFactor 0.2 0.5 0.2

         }

         Cylinder {

         }

      }

      DEF Blade Separator { # Blade geometry and properties

         Transform { # Blade interior

            translation 0.45 2.9 0.2

            rotation 0 1 0 0.3

         }

         Separator {

            Transform {

               scaleFactor 0.6 2.5 0.02

            }

            Material {

               diffuseColor 0.5 0.3 0.1

               transparency 0.3

            }

            Cube {

            }

         }

         Separator {  # Blade frame

            # .... (Details omitted) 

         }

     }

     Separator {  # Second blade

        RotationXYZ {

           axis Z

           angle 1.5708

        }

        USE Blade

      }

      Separator {  # Third blade

         RotationXYZ {

            axis Z

            angle 3.14159

        }

        USE Blade

      }

      Separator {  # Fourth blade

         RotationXYZ {

            axis Z

            angle ÿ1.5708
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         }

         USE Blade

      }

   }

   Separator {  # Windmill tower

       # ... (Details omitted)

   }

}

How Does Open Inventor Relate to OpenGL?

If you are familiar with OpenGL, you are probably curious about how OpenGL relates to Open

Inventor. This section supplies an overview of how the two libraries interrelate. Chapter 17, "Using

Inventor with OpenGL," provides additional information on how to use Open Inventor and OpenGL

in a single programtaking advantage of the fast, flexible 3D rendering of OpenGL and the

highÿlevel objects and versatile scene database offered by Inventor.

Open Inventor uses OpenGL for rendering. In OpenGL, however, rendering is explicit, whereas in

Inventor, rendering, along with other operations such as picking, reading, writing, and calculating a

bounding box, is encapsulated in the objects. 

OpenGL provides immediateÿmode access to the frame buffer. It can also use a display list to record

drawing commands for objects. This display list can then be played back on demand.

Open Inventor does not provide immediate access to the frame buffer. As described previously in the

section "Objects, not Drawings", it is based on an objectÿoriented programming model that creates

highÿlevel, editable objects stored in a database. Each of these objects encapsulates a set of operations

that can be applied to it: rendering, picking, database querying and searching, and boundingÿbox

calculation. In Inventor, rendering to the frame buffer occurs when the render action is invoked. If an

Inventor program never issues this command (either directly or indirectly), no drawing will appear.

A simple analogy may help to convey a feel for how Open Inventor contrasts to OpenGL. Suppose it

is the year 2020 and you have the time, money, and skills required to build your dream house. You

can choose one of two basic approaches, or you can combine elements of both approaches. 

The first approach is to go to the Handyperson Builder’s Emporium and purchase all the required

materials separatelynails, wood, pipes, wires, switches, concrete, and so on. This approach gives

you complete flexibility, but it also requires detailed knowledge and skill on your part to determine

which parts you need and how to construct all elements of the house.

The second approach is to order a collection of prebuilt units from the Dream Home Catalog,

published by a tenÿyearÿold firm that bases its product on concepts of Japanese home building,

modular office construction, and the highly successful prefabricated window companies of the 90s.

The catalog provides a wide variety of wallÿframe units, concrete forms, siding packages, windows,

and doors.

The first approachstarting with raw materialsis analogous to using OpenGL for interactive

graphics applications. Building a house with this method, you have complete flexibility over how the

raw materials are used. You need to be familiar with the details of home construction, and you need

different skills to build each part of the home from scratchplumbing, electrical, carpentry.

The second approachselecting prebuilt units from a catalogis loosely analogous to creating an
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application with Inventor. The wall panels are prewired with the electrical, security, and plumbing

connections. This prewiring can be compared to the builtÿin event model provided by Inventor. In

addition, the complete inventory of parts, sizes, and costs is automatically computed by the catalog

firm when you place the order. In a similar way, all operations (rendering, picking, boundingÿbox

calculation, and so on) are built into Inventor objects. You do not need to add extra code (or, in the

case of the house, perform extra calculations) to obtain this information. Because the catalog company

has been buying parts from the Handyperson Builder’s Emporium for years, it knows the exact

material and sizes to use for maximum economy and minimum waste. Similarly, Open Inventor

achieves high performance from its use of OpenGL.

Although the catalog offers a collection of readyÿmade modules, you have choices about which

modules you use and how to put them together. Whenever you purchase modules from the Dream

Home Catalog, standard sizes are used to facilitate replacing, repairing, and updating different parts of

the house. With Open Inventor, applications achieve a common look and feel because Inventor

provides a set of components with a unified user interface.

If you require parts not available in the catalog, the company also allows you to design your own

custom parts and buy the pieces directly from the Handyperson Builder’s Emporium. Perhaps you

want curved corners on your wall units rather than rightÿangled corners. Inventor, too, allows you to

design your own objects (through subclassing, described in The Inventor Toolmaker). With this added

flexibility, you are not constrained to the catalog parts, but you can use them to save time and money

when they’re suitable.

If you want to save even more time, you can choose a complete house kit from the Dream Home

Catalog. It offers many different models: Aÿframe, Ranch, Victorian, Colonial. These house kits are

analogous to Inventor’s node kits, which provide packaged sets of objects commonly used together.

When each house has been completed, it takes a highly trained eye to determine which house was

constructed from raw materials and which was constructed with catalog parts. Both houses have fine

quality finishing, are made of the best materials, and exhibit sturdy construction. Both exhibit touches

of creativity and distinctive design. 

The same could be said of applications built with OpenGL and those built with Open Inventor. The

approach taken must suit the needs of the builder, and the two approaches can be combined as desired,

using a combination of prebuilt Inventor objects and components and OpenGL commands.

The Inventor Toolkit

Inventor provides programming support at a variety of levels. At the endÿuser interface level, Inventor

offers a unified look and feel for 3D graphics interfaces. At the programming level, the Inventor

toolkit (shown previously in Figure 1ÿ1) offers the following tools, which are explained in greater

detail later in this chapter:

 • A 3D scene database that includes shape, property, group, engine, and sensor objects, used to

create a hierarchical 3D scene

 • A set of node kits that provide a convenient mechanism for creating prebuilt groupings of

Inventor nodes

 • A set of manipulators, including the handle box and trackball, which are objects in a scene

database that the user can interact with directly
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 • An Inventor Component Library for Xt, including a render area (a window used for rendering),

material editor, viewers, and utility functions, used to provide some highÿlevel interactive tasks

This book explains Open Inventor from the bottom up, starting with the 3D scene database. 

The Scene Database

The node is the basic building block used to create threeÿdimensional scene databases in Inventor.

Each node holds a piece of information, such as a surface material, shape description, geometric

transformation, light, or camera. All 3D shapes, attributes, cameras, and light sources present in a

scene are represented as nodes.

An ordered collection of nodes is referred to as a scene graph. (Figure 1ÿ3 shows a simple scene

graph. Figure Inÿ1, in "About This Book," has the key to the icons used in scene graph diagrams

throughout this book.) This scene graph is stored in the Inventor database. Inventor takes care of

storing and managing the scene graph in the database. The database can contain more than one scene

graph.

After you have constructed a scene graph, you can apply a number of operations or actions to it,

including rendering, picking, searching, computing a bounding box, and writing to a file. 

Classes of database primitives include shape nodes (for example, sphere, cube, cylinder, quad mesh), 

property nodes (for example, material, lighting model, textures, environment), and group nodes (for

example, separator, levelÿofÿdetail, and switch). Other special database primitives are engines and 

sensors. Engines are objects that can be connected to other objects in the scene graph and used to

animate parts of the scene or constrain certain parts of the scene in relation to other parts (see Chapter

13, "Engines"). A sensor is an object that detects when something in the database changes and calls a

function supplied by the application. Sensors can respond to specified timing requirements (for

example, "Do this every n seconds") or to changes in the scene graph data (see Chapter 12, "Sensors"

).
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Figure 1ÿ2 Example of a Scene Graph

Node Kits

Node kits facilitate the creation of structured, consistent databases. Each node kit is a collection of

nodes with a specified arrangement. A template associated with the node kit determines which nodes

can be added when necessary and where they should be placed. For example, the SoShapeKit node kit

is used for any Inventor shape object. If you use this node kit, you don’t have to create and arrange

each node individually. By default, the template for the SoShapeKit contains an SoCube node, and it

allows a material, geometric transformation, and other properties to be inserted in the correct place

when required. 

Another use of node kits is to define applicationÿspecific objects and semantics. For example, a

 The Inventor Mentor:   Programming ObjectÿOriented   3D Graphics with Open Inventor  ,  Release 2 ÿ Chapter

1,  Overview ÿ 8



flightÿsimulation package might include a variety of objects representing airplanes. Each of these

airplanes consists of the same general scene graph structurefor example, fuselage, wings, and

landing gearas well as some airplaneÿspecific methodsfor example, bankLeft() , 

raiseLandingGear(). To an application writer using this package, each type of airplane can be dealt

with in a similar way. There is no need to know the details of the structure of the subgraph

representing the landing gear to raise it, since the general method, raiseLandingGear(), exists.

Creating these new objects and methods requires extending Open Inventor by subclassing, which is

described in The Inventor Toolmaker. It is highly recommended that you use some form of node kits

in your application to maintain order and policy.

Manipulators

A manipulator is a special kind of node that reacts to user interface events and can be edited directly

by the user. Manipulators typically have parts that render in the scene and provide a means for

translating events into changes to the database. An example of a manipulator is the handle box, which

is a bounding box of another object with handles at the corners and sides. In Figure 1ÿ4, handle boxes

surround the knights. By picking on a handle and dragging it, the user can change the scale or position

of the box and thus the object inside it. Manipulators provide an easy way for applications to

incorporate direct 3D interaction.

Figure 1ÿ3 HandleÿBox Manipulator

 The Inventor Mentor:   Programming ObjectÿOriented   3D Graphics with Open Inventor  ,  Release 2 ÿ Chapter

1,  Overview ÿ 9



Inventor Component Library

The Inventor Component Library provides windowÿsystem support and integration with the X

Window System. This library includes the following features:

 • A render area (window) object

 • Main loop and initialization convenience routines

 • An event translator utility

 • Editors

 • Viewers

The render area accepts an X event, translates it into an Inventor event, and then passes it to "smart"

objects, such as manipulators, that may handle the event.

The Inventor Component Library also contains a set of viewers and editors that fall into the general

category of components. Components are reusable modules that contain both a render area and a user

interface. They are used for editing scene graph nodes (materials, lights, transformations) as well as

for viewing scenes in different ways. Rather than solving the same problems over and over again, you

can simply select an Inventor component and plug it into your application. If you need added

functionality, you can write your own component and add it to Inventor (see The Inventor Toolmaker

). Examples of components are the material editor, directional light editor (see Figure 1ÿ5), fly viewer

("flies" through the scene), and examiner viewer (looks at a single object from any perspective).
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Figure 1ÿ4 Example of a Component: Directional Light Editor (lower right)

Inventor Class Tree

Figure 1ÿ6 summarizes the Inventor class tree. Base classes are at the left, and derived classes are at

the right. SoBase is the base class for SoFieldContainer, from which both nodes and engines are

derived. Action classes are derived from SoAction. SoXtComponent is another base class. The Xt

render area, as well as the viewers and editors, are all derived from SoXtComponent. Classes to the

right in the tree inherit the fields and methods of the classes they are derived from.

Extending the Toolkit

One of the most important aspects of Inventor is the ability to program new objects and operations as

extensions to the toolkit. One way to extend the set of objects provided by Inventor is to derive new

classes from existing ones. See The Inventor Toolmaker for specific examples of creating new classes.

Another way to include new features in Inventor is by using callback functions, which provide an

easy mechanism for introducing specialized behavior into a scene graph or prototyping new nodes

without subclassing. A callback function is a userÿwritten function that is called under certain

conditions. Callback functions provided by Inventor include the following:

 • SoCallbacka generic node in the database that provides a callback function for all database

actions (see Chapter 17, "Using Inventor with OpenGL")

 • SoCallbackActiongeneric traversal of the database with a callback function at each node (see 

Chapter 9, "Applying Actions")

 • SoEventCallbacka node in the database that calls a userÿdefined function when it receives an

event (see Chapter 10, "Handling Events and Selection")

 • SoSelectionselection callback node (see Chapter 10, "Handling Events and Selection")

 • Manipulatorsprovide callback functions for event processing 

(see Chapter 15, "Draggers and Manipulators")

 • SoXt componentssupport their own callback functions when a change occurs (see Chapter 16,

"Inventor Component Library").
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Figure 1ÿ5 Inventor Class Tree Summary (Part 1 of 3)
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Figure 1ÿ6 Inventor Class Tree Summary (Part 2 of 3)
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Figure 1ÿ7 Inventor Class Tree Summary (Part 3 of 3)



Chapter 2

An Inventor Sampler

Chapter Objectives

After reading this chapter, you’ll be able to do the following:

 • Explain the basic structure of an Inventor program

 • Describe the conventions used by Inventor

This chapter provides an overview of the 5 percent of Inventor that is part of any program. It includes

a short program that draws a red cone in a window. This program is gradually augmented to show the

use of some important Inventor objects: engines, manipulators, and components. Inventor naming

conventions and basic data types are also described.

"Hello, Cone"

This chapter begins with a set of sample programs that illustrate the key aspects of Inventor. Example

2ÿ1 creates a red cone and then renders it in a window ("A Red Cone"). This example uses an Inventor

Xt window, which is part of the Inventor Component Library. This library provides utilities for

window management and event processing and also contains a set of Inventor components (viewers

and editors). 

The code shown in Example 2ÿ1 constructs a simple scene graph composed of a camera node, a light

node, a material node, and a cone node. Later chapters go into specifics on creating nodes, setting

values in fields, structuring the database, and applying actions. The purpose of this chapter is simply to

convey a feel for the tools Inventor offers and to help you get started writing an Inventor program.

A Red Cone 

The first example program illustrates the basic steps in writing an Inventor program.

1. Create a window where the scene will be rendered. This example uses SoXtRenderArea, the

Inventor Xt window.

2. Build the scene graph by creating property and shape nodes and combining them into groups. 

Example 2ÿ1 gives the code to create the cone shown in  "A Red Cone".

This figure

(/usr/share/Insight/library/SGI_bookshelves/SGI_Developer/books/Inv_Mentor/figures/fig2_1.iv) is

an INLINE object and can not be printed.

Media  A Red Cone

Example 2ÿ1 Basic "Hello, Cone" Program

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/SoXtRenderArea.h>

#include <Inventor/nodes/SoCone.h>

#include <Inventor/nodes/SoDirectionalLight.h>
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#include <Inventor/nodes/SoMaterial.h>

#include <Inventor/nodes/SoPerspectiveCamera.h>

#include <Inventor/nodes/SoSeparator.h>

main(int , char **argv)

{

   // Initialize Inventor. This returns a main window to use.

   // If unsuccessful, exit.

   Widget myWindow = SoXt::init(argv[0]); // pass the app name

   if (myWindow == NULL) exit(1);

   // Make a scene containing a red cone

   SoSeparator *root = new SoSeparator;

   SoPerspectiveCamera *myCamera = new SoPerspectiveCamera;

   SoMaterial *myMaterial = new SoMaterial;

   rootÿ>ref();

   rootÿ>addChild(myCamera);

   rootÿ>addChild(new SoDirectionalLight);

   myMaterialÿ>diffuseColor.setValue(1.0, 0.0, 0.0);   // Red

   rootÿ>addChild(myMaterial);

   rootÿ>addChild(new SoCone);

   // Create a renderArea in which to see our scene graph.

   // The render area will appear within the main window.

   SoXtRenderArea *myRenderArea = new SoXtRenderArea(myWindow);

   // Make myCamera see everything.

   myCameraÿ>viewAll(root, myRenderAreaÿ>getViewportRegion());

   // Put our scene in myRenderArea, change the title

   myRenderAreaÿ>setSceneGraph(root);

   myRenderAreaÿ>setTitle("Hello Cone");

   myRenderAreaÿ>show();

   SoXt::show(myWindow);  // Display main window

   SoXt::mainLoop();      // Main Inventor event loop

}

Using Engines to Make the Cone Spin

Example 2ÿ2 illustrates how to use engines to make the cone spin. An engine is attached to the angle

field of an SoRotationXYZ node in the scene graph. The engine changes the angle value in the

rotationXYZ node in response to changes in the realÿtime clock, which in turn causes the cone to

rotate. After each change, the scene is automatically rendered again by the render area. Successive

rotations give the desired effect of a spinning cone.

Example 2ÿ2 "Hello, Cone" Using Engines

#include <Inventor/Xt/SoXt.h>
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#include <Inventor/Xt/SoXtRenderArea.h>

#include <Inventor/engines/SoElapsedTime.h>

#include <Inventor/nodes/SoCone.h>

#include <Inventor/nodes/SoDirectionalLight.h>

#include <Inventor/nodes/SoMaterial.h>

#include <Inventor/nodes/SoPerspectiveCamera.h>

#include <Inventor/nodes/SoRotationXYZ.h>

#include <Inventor/nodes/SoSeparator.h>

main(int , char **argv)

{

   // Initialize Inventor and Xt

   Widget myWindow = SoXt::init(argv[0]);  

   if (myWindow == NULL) exit(1);     

   SoSeparator *root = new SoSeparator;

   rootÿ>ref();

   SoPerspectiveCamera *myCamera = new SoPerspectiveCamera;

   rootÿ>addChild(myCamera);

   rootÿ>addChild(new SoDirectionalLight);

   // This transformation is modified to rotate the cone

   SoRotationXYZ *myRotXYZ = new SoRotationXYZ;

   rootÿ>addChild(myRotXYZ);

   SoMaterial *myMaterial = new SoMaterial;

   myMaterialÿ>diffuseColor.setValue(1.0, 0.0, 0.0);   // Red

   rootÿ>addChild(myMaterial);

   rootÿ>addChild(new SoCone);

   // An engine rotates the object. The output of myCounter 

   // is the time in seconds since the program started.

   // Connect this output to the angle field of myRotXYZ

   myRotXYZÿ>axis = SoRotationXYZ::X;     // rotate about X axis

   SoElapsedTime *myCounter = new SoElapsedTime;

   myRotXYZÿ>angle.connectFrom(&myCounterÿ>timeOut);

   SoXtRenderArea *myRenderArea = new SoXtRenderArea(myWindow);

   myCameraÿ>viewAll(root, myRenderAreaÿ>getViewportRegion());

   myRenderAreaÿ>setSceneGraph(root);

   myRenderAreaÿ>setTitle("Engine Spin");

   myRenderAreaÿ>show();

   SoXt::show(myWindow);

   SoXt::mainLoop();

}
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Adding a Trackball Manipulator

The next two examples show additional methods for editing a node in the scene graph. Example 2ÿ3

adds a manipulator (a trackball) to the first example (see "Cone with Trackball Manipulator"). The

trackball itself appears as three rings around the cone. When the left mouse button is pressed on the

trackball, it highlights itself in a different color to show it is active. While it is active, the mouse can be

used to rotate the trackball and the object (here, the cone) inside it. In this example, a trackball is

constructed instead of the SoRotationXYZ node in Example 2ÿ2. Each time the user rotates the

trackball, its values change and the cone rotates as well. Because the render area has a sensor attached

to the scene graph, the scene is automatically rendered again after each edit, and the cone appears to

move.

This figure

(/usr/share/Insight/library/SGI_bookshelves/SGI_Developer/books/Inv_Mentor/figures/fig2_2.iv) is

an INLINE object and can not be printed.

Media  Cone with Trackball Manipulator

Example 2ÿ3 "Hello, Cone" with a Trackball Manipulator

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/SoXtRenderArea.h>

#include <Inventor/manips/SoTrackballManip.h>

#include <Inventor/nodes/SoCone.h>

#include <Inventor/nodes/SoDirectionalLight.h>

#include <Inventor/nodes/SoMaterial.h>

#include <Inventor/nodes/SoPerspectiveCamera.h>

#include <Inventor/nodes/SoSeparator.h>

main(int , char **argv)

{

   // Initialize Inventor and Xt

   Widget myWindow = SoXt::init(argv[0]);

   if (myWindow == NULL) exit(1);

   SoSeparator *root = new SoSeparator;

   rootÿ>ref();

   SoPerspectiveCamera *myCamera = new SoPerspectiveCamera;

   rootÿ>addChild(myCamera);               // child 0

   rootÿ>addChild(new SoDirectionalLight); // child 1

   rootÿ>addChild(new SoTrackballManip);        // child 2

   SoMaterial *myMaterial = new SoMaterial;

   myMaterialÿ>diffuseColor.setValue(1.0, 0.0, 0.0);

   rootÿ>addChild(myMaterial);

   rootÿ>addChild(new SoCone);
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   SoXtRenderArea *myRenderArea = new SoXtRenderArea(myWindow);

   myCameraÿ>viewAll(root, myRenderAreaÿ>getViewportRegion());

   myRenderAreaÿ>setSceneGraph(root);

   myRenderAreaÿ>setTitle("Trackball");

   myRenderAreaÿ>show();

   SoXt::show(myWindow);

   SoXt::mainLoop();

}

Adding the Examiner Viewer

Example 2ÿ4 replaces the render area in the first example with the examiner viewer, a component.

This viewer, shown in ,"Cone with Examiner Viewer" modifies the camera node, which lets you view

the cone from different positions. It provides a user interface that allows use of the mouse to modify

camera placement in the scene. (Note that this example looks similar to the trackball in Example 2ÿ3.

Here, however, the camera is moving, not the cone itself.) This program does not need to set up a

camera and call viewAll() because the viewer does this automatically.

This figure

(/usr/share/Insight/library/SGI_bookshelves/SGI_Developer/books/Inv_Mentor/figures/fig2_3.iv) is

an INLINE object and can not be printed.

Media  Cone with Examiner Viewer

Example 2ÿ4 "Hello, Cone" Using the Examiner Viewer

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>

#include <Inventor/nodes/SoCone.h>

#include <Inventor/nodes/SoDirectionalLight.h>

#include <Inventor/nodes/SoMaterial.h>

#include <Inventor/nodes/SoPerspectiveCamera.h>

#include <Inventor/nodes/SoSeparator.h>

main(int , char **argv)

{

   Widget myWindow = SoXt::init(argv[0]);

   if (myWindow == NULL) exit(1);

   SoSeparator *root = new SoSeparator;

   rootÿ>ref();

   SoMaterial *myMaterial = new SoMaterial;

   myMaterialÿ>diffuseColor.setValue(1.0, 0.0, 0.0);

   rootÿ>addChild(myMaterial);

   rootÿ>addChild(new SoCone);
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   // Set up viewer:

   SoXtExaminerViewer *myViewer = 

            new SoXtExaminerViewer(myWindow);

   myViewerÿ>setSceneGraph(root);

   myViewerÿ>setTitle("Examiner Viewer");

   myViewerÿ>show();

   SoXt::show(myWindow);

   SoXt::mainLoop();

}

Naming Conventions

Basic types in Inventor begin with the letters Sb (for scene basic; see the next section, "Scene Basic

Types"). For example:

 • SbColor

 • SbViewVolume

All other classes in Inventor are prefixed with the letters So (for scene object). For example:

 • SoCone

 • SoPerspectiveCamera

 • SoMaterial

 • SoTransform

Methods and variables begin with a lowercase letter. Each word within a class, method, or variable

name begins with an uppercase letter. For example:

 • getNormal()

 • setSceneGraph()

 • myCube

Enumerated type values are in UPPERCASE. For example:

 • FILLED

 • PER_PART

Scene Basic Types

This section discusses Inventor’s Sb classes, a set of basic types that are used in many Inventor

objects. Inventor includes useful methods for converting between different types and performing

specific 3D operations on them.

Inventor defines the following types:

SbBool Boolean value (TRUE or FALSE)

SbBoxnx 2D or 3D box that has planes parallel to the major axes and is specified by two
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points on a diagonal (includes SbBox3f, SbBox2f, SbBox2s); n is the number of

values in the type (2 or 3), and x is the value type (f for float, s for short)

SbColor RGB (red/green/blue) color value with  conversion routines to other color spaces

SbCylinder cylinder

SbLine directed 3D line

SbMatrix 4×4 matrix

SbName character string stored in a special table for fast and easy comparison, typically

for identifiers

SbPList list of generic (void *) pointers

SbPlane oriented 3D plane

SbRotation representation of a 3D rotation about an arbitrary axis

SbSphere sphere

SbString "smart" character strings that have many convenience methods for easy string

manipulation

SbTime representation of timein seconds; seconds and microseconds; or using the 

timeval structure

SbVecnx 2D or 3D vector, used to represent points or directions (includes SbVec2f, 

SbVec3f, SbVec2s); n is the number of values in the type (2, 3, or 4), and x is the

value type (f for float; s for short)

SbViewportRegion

active viewport region within a display window

SbViewVolume

view volume (for example, see SoCamera’s getViewVolume() method in the 

Open Inventor C++ Reference Manual)

Methods

Each Sb class has useful operators associated with it. For example, you can negate a variable of type

SbVec3f, multiply it by a matrix, or normalize it to unit length. The following code creates a

unitÿlength vector, based on the specified direction:

SbVec3f v(1.0, 2.0, 3.0); // declares and initializes the vector

v.normalize(); // normalizes the vector to unit length

Similarly, SbMatrix  has useful methods including multVecMatrix() , which multiplies a row vector

by the matrix and returns the result, and rotate(), which sets the matrix to rotate by a given amount.

See the Open Inventor C++ Reference Manual for a complete description of the available methods

for each Sb class.

Types versus Fields

Chapter 3, "Nodes and Groups," contains a complete discussion of fields, which are the structures that

store parameters for nodes. A field contains a value of a certain type. Fields are always contained

within Inventor nodes. Many fields contain a corresponding Sb type. For example:
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 • A field of type SoSFVec3f contains an SbVec3f

 • A field of type SoSFRotation contains an SbRotation

 • A field of type SoSFName contains an SbName

Coordinate Systems in Inventor

Inventor uses a rightÿhanded coordinate system for 3D data, with +z coming out of the screen. All

angles are specified in radians. Objects are described in their own local coordinate space, known as

object coordinate space. After all transformations have been applied to the objects in the scene graph,

they are said to be in world coordinate space. This world coordinate space includes the camera and

lights.

Include Files

Inventor contains include files for every class. You need to include the appropriate file for each class

used in your program. For example, SoSphere and SoTransform nodes require you to include the

files SoSphere.h and SoTransform.h. Most include files are found in a subdirectoryfor example, 

nodes/SoSphere.h and sensors/SoNodeSensor.h.

In addition, you need to include the SoXt.h file if you are writing an interactive program that uses the

Inventor Component Library.

If you are programming using the C application programming interface, use the Inventor_c directory

instead of the Inventor directory. 



Chapter 3

Nodes and Groups

Chapter Objectives

After reading this chapter, you’ll be able to do the following:

 • Build scene graphs using shape, property, and group nodes

 • Explain how nodes inherit values in the scene graph

 • Describe why separator nodes are useful

 • Explain the advantages of shared instancing of nodes in the scene graph

 • Define the term path and explain why paths are needed

 • Set and query field values

 • Ignore specified fields in a node

 • Explain how nodes are deleted in Open Inventor

 • Use Inventor’s runtime typeÿchecking mechanism

This chapter illustrates how to construct scene graphs from shape, property, and group nodes. It

explains general rules for traversing a scene graph, focusing on GL rendering traversal. The concepts

of database actions and traversal state are introduced.

The Scene Database

The Inventor scene database consists of information representing one or more 3D scenes. This

database, SoDB, can contain several scene graphs, as shown in Figure 3ÿ1. Each scene graph consists

of a related set of 3D objects and attributes. In Figure 3ÿ1, for example, the scene graphs might

represent a car, a small house, another car, a large house, and a person. 
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Figure 3ÿ1 An Inventor Database

You can perform two basic operations, or methods, directly on the scene database. First, you initialize

it:

SoDB::init()   

This must be the first Inventor call you make. If you use the Inventor Component Library, the

database is initialized automatically when you call SoXt::init()  (see Chapter 16, "Inventor

Component Library"). If you are not using components, but you are using interaction or node kits, or

both, call SoInteraction::init() , which initializes the database, interaction, and node kits.

Second, you can read from a file into the scene database, which adds new scene graphs to it:

SoSeparator  readAll (SoInput *in )

or

SbBool read (SoInput * in , SoNode *& rootNode ) const

or

SbBool read (SoInput * in , SoPath *& path ) const

Using the first syntax, Inventor reads all graphs from a file specified by in and returns a pointer to a

separator that contains the root nodes of all the scene graphs in the file. Using the second syntax,

Inventor reads from a file specified by in and returns a pointer to the resulting root node (rootNode).

Using the third syntax, Inventor reads a file specified by in and returns a pointer to the resulting path (

path). (See "Paths".) If an error occurs, the methods return FALSE. (Also see Chapter 11, "File
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Format" for more information on SoInput.)

Scene Graphs

A scene graph consists of one or more nodes, each of which represents a geometry, property, or

grouping object. Hierarchical scenes are created by adding nodes as children of grouping nodes,

resulting in a directed acyclic graph.

Note:  Although Inventor nodes are organized into graphs, Inventor has no enforced policy on how

the scene database is organized. You could, for example, create your own nodes that are organized

into structures that are not graphs. (See The Inventor Toolmaker for more information on extending

the Open Inventor toolkit.) 

Figure 3ÿ1 shows a simple database containing five scene graphs. The top node of a scene graph is

called a root node (nodes A through E). Notice how node H is connected to two different parent

nodes. This is called shared instancing. Also note that node E is not connected to any other node in

the database. Usually this is a temporary state, and the node is attached to other nodes as you build the

scene graph. 

Types of Nodes

A node is the fundamental element of a scene graph. It contains data and methods that define some

specific 3D shape, property, or grouping. When a node is created, it is automatically inserted into the

database as a root node. Usually, you connect the node to other nodes in the database to construct a

hierarchy.

Nodes are divided into three basic categories:

 • Shape nodes, which represent 3D geometric objects

 • Property nodes, which represent appearance and other qualitative characteristics of the scene

 • Group nodes, which are containers that collect nodes into graphs

These categories are not strict and are used only to help you learn about Inventor classes.

Creating Nodes

Use the new operator to create nodes. For example:

SoSphere *headSphere = new SoSphere;

Do not allocate nodes in arrays. (See "How Nodes Are Deleted".)

Note:  Although you create nodes using the new operator, you cannot delete them using delete. See 

"How Nodes Are Deleted" for a description of how and when nodes are deleted in Inventor. An

understanding of reference counting is vital to your use of Inventor, since you must be aware of the

conditions under which a node is automatically deleted.  

What’s in a Node?

Each node is composed of a set of data elements, known as fields, that describe the parameters of the

node. For example, a point lightÿsource node (of class SoPointLight) contains four fields: intensity, 

color, location, and on. The intensity field contains a value from 0.0 (no illumination) to 1.0
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(maximum illumination). The color field specifies a Red/Green/Blue illumination color for the light

source. The location field specifies the position of the light. The on field specifies whether the light is

on.

Inventor defines a number of field types. Each field type has unique methods to get and set its values.

Within each node, the fields are named according to their usage. For example, here are a few nodes

and their fields:

Node  Fields

SoCoordinate3  point

SoNormal  vector

SoMaterial  ambientColor

 diffuseColor

 specularColor

 emissiveColor

 shininess

 transparency

SoPerspectiveCamera

viewportMapping

position

orientation

aspectRatio

nearDistance

farDistance

focalDistance

heightAngle

Note that fields that contain multiple values, such as the point field in SoCoordinate3, have singular

names.

What Happens When You Apply an Action to a Node? (Advanced)

Each node implements its own action behavior. When you want to perform a particular action on a

scene, you create an instance of the action class (for example, SoGLRenderAction or 

SoGetBoundingBoxAction) and then apply it to the root node of the scene graph. For each action, the

database manages a traversal state, which is a collection of elements or parameters in the action at a

given time. Typically, executing an action involves traversing the graph from top to bottom and left to

right. During this traversal, nodes can modify the traversal state, depending on their particular

behavior for that action. 

This chapter focuses on the OpenGL rendering action, since one of the primary reasons for

constructing a 3D database is to view and manipulate 

objects. The rendering traversal state consists of a set of elements, each of which can be altered by a

given class of nodes. When a rendering action is applied, each element is used and interpreted in a

specified manner. A few of the elements in the traversal state include the following:

 • Current geometric transformation

 • Current material components
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 • Current lighting model

 • Current drawing style

 • Current text font

 • Current coordinates

 • Current normals

 • Current lights 

 • Current viewing specification

An SoMaterial node, for example, sets the current values in the various material elements of the

traversal state. An SoDrawStyle node sets the current value in the drawingÿstyle element of the

traversal state. Shape nodes, such as SoSphere, are especially important in rendering traversal, since

they cause their shape to be drawn, using the current values in the traversal state.

Shape Nodes

Shape nodes represent 3D geometric objects. They are unique because they describe physical matter

that is affected by property and group nodes, and during a rendering action, they actually cause their

shape to be drawn on the screen. Classes of shape nodes include SoSphere, SoIndexedFaceSet, and 

SoText3. Figure 3ÿ2 shows the portion of the class tree that contains the shapeÿnode classes.

Figure 3ÿ2 ShapeÿNode Classes

Property Nodes
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Property nodes represent appearance and qualitative characteristics of the scene, such as surface

material, drawing style, or geometric transformation. Figure 3ÿ3 shows the portion of the class tree

that contains the propertyÿnode classes. Since property nodes fall naturally into several subgroupings,

the scene graph diagrams use three different icons for property nodes:

 • The transform icon is used for nodes that perform transformations, such as SoTransform, 

SoRotation, SoScale, SoTranslation, SoRotationXYZ, and SoResetTransform. These nodes

are all derived from SoTransformation.

 • The appearance icon is used forodes that modify an object’s appearance, such as SoMaterial, 

SoMaterialBinding, SoBaseColor, SoComplexity, SoDrawStyle, SoLightModel, and SoFont.

 • The metrics icon is used for nodes that contain coordinate, normal, and other geometric

information, such as SoCoordinate3, SoCoordinate4, SoProfileCoordinate2, 

SoProfileCoordinate3, SoNormal, and  SoNormalBinding.

In general, a property node replaces the values in a corresponding element of the traversal state with

its own new values. Geometric transformations are one exception to this rule. They concatenate with

the current transformation.

Let’s take the material node as an example. This node represents the surface and spectral (color)

properties of an object. To create a bronze material, first create the material node and then set the field

values appropriately:

SoMaterial *bronze = new SoMaterial;

// set field values

bronzeÿ>ambientColor.setValue(.33, .22, .27);

bronzeÿ>diffuseColor.setValue(.78, .57, .11);

bronzeÿ>specularColor.setValue(.99, .94, .81);

bronzeÿ>shininess = .28;

If you do not explicitly set the field values for a particular node, Inventor uses the default values for

those fields (see the Open Inventor C++ Reference Manual for individual nodes). For example, in the

preceding example, transparency remains 0.0.

SoTransform nodes, which produce geometric transformations, include fields for scaling, rotating,

and translating. The following code defines a transform node that translates ÿ1 in the y direction: 

SoTransform *myXform = new SoTransform;

// set field value

myXformÿ>translation.setValue(0.0, ÿ1.0, 0.0);

In order for this translation to take effect, it must be inserted appropriately into a scene graph (that is, 

before the shape node to translate).
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Figure 3ÿ3 PropertyÿNode Classes

Groups

A group node is a container for collecting child objects. Groups collect property, shape, and other

group nodes into graphs. Figure 3ÿ4 shows the portion of the class tree that contains the groupÿnode
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classes. There are a variety of different groupÿnode classes, each with a specialized grouping

characteristic.

When a group node is created, it has no children. The base class for all group nodes is SoGroup, and

all nodes derived from it have an addChild() method.

Figure 3ÿ4 GroupÿNode Classes

Creating Groups

Suppose you want to combine the transform node, the material node, and the sphere node created

earlier into a single group, the "head" group for a robot object. First, create the SoGroup. Then use the

addChild() method for each child node, as follows:

SoGroup *head = new SoGroup;

headÿ>addChild(myXform); 

headÿ>addChild(bronze); 

headÿ>addChild(headSphere); 

Figure 3ÿ5 shows a diagram of this group. All scene graph diagrams use the icons shown in Figure

Inÿ1. By convention, all figures show the first child in the group on the left, and ordering of children is

from left to right.

 The Inventor Mentor:   Programming ObjectÿOriented   3D Graphics with Open Inventor  ,  Release 2 ÿ Chapter

3,  Nodes and Groups ÿ 8



Figure 3ÿ5 Simple Group

Ordering of Children

The addChild() method adds the specified node to the end of the list of children in the group, as

shown in the preceding code. Each child added to the group has an associated index. The first child in

a group has an index of 0, the second child in a group has an index of 1, and so on.

The insertChild() method

void     insertChild ( SoNode * child , int newChildIndex );

inserts a child node into a group at the location specified by newChildIndex. For example,

SoDrawStyle *wireStyle;

wireStyle = new SoDrawStyle;

wireStyleÿ>style = SoDrawStyle::LINES;

// Insert as child 1 (the node right after the first child,

// which is child 0.

bodyÿ>insertChild(wireStyle, 1);

inserts a wireframe drawingÿstyle node as the second child of the body group.

Other group methods allow you to find out how many children are in a group, to find the index of a

particular child, to access the child with a given index, and to remove children.

Why Is Order Important?

Each node class has its own way of responding to a given database action. For  this discussion,

assume you are dealing only with the GL rendering action (here called simply rendering).

 • If the node to be rendered is a groupnode, it invokes the rendering action on each of its children in

order, typically from left to right in the scene graph. 

 • Each child node in turn executes its own rendering method, which then affects the traversal state

in some way (see Chapter 9, "Applying Actions"). If the child node is a property node, it

modifies one or more elements in the traversal state, such as the value used for diffuse color, the

value used for scaling an object, or the value used for line width. Most property nodes simply 

replace the values for an element in the traversal state. 

(A bronze material node replaces values in the material element with its own new values.)

Geometric transformations are exceptions because they combine with each other to make

composite transformations.

 • If the child node is a shape node, it draws itself using the current traversal state. 

During rendering, the scene graph is traversed, starting from the root node, from left to right and from

top to bottom. Nodes to the right (and down) in the graph inherit the traversal state set by nodes to the

left (and above).

Figure 3ÿ6 shows how nodes inherit state. When the waterMolecule node is rendered, it visits its first

child, oxygen. The oxygen group then visits each of its children, as follows:

1. The material node (redPlastic) changes the material element to a shiny red surface.
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2. The sphere node (sphere1) causes a sphere to be rendered using the current traversal state. A

shiny red sphere is drawn at the origin.

The graph traversal continues to the next group on the right, hydrogen1, which in turn visits each of its

children in order from left to right:

1. The transform node (hydrogenXform1) modifies the transformation matrix (let’s say it scales by a

factor of 0.75 in x, y, and z). It also modifies the transformation matrix by adding a translation of

0.0, ÿ1.2, 0.0 (in x, y, and z).

2. The material node (whitePlastic) changes the material element to a shiny white surface.

3. The sphere node (sphere2) causes another sphere to be rendered using the modified traversal

state. This sphere is white. Additionally, sphere2 appears in a new location and is scaled down in

size, the result of the SoTransform node in its group.

Next, the hydrogen2 group visits its children, from left to right:

1. The transform node (hydrogenXform2) modifies the transformation matrix, translating in the +x

and +y directions.

2. The sphere node (sphere3) causes the third sphere to be rendered using the modified traversal

state. This sphere is still white and scaled by 0.75 because it inherits these attributes from the 

hydrogen1 group.  

Figure 3ÿ6 Combining Groups

Example 3ÿ1 shows the code to create this molecule.

Example 3ÿ1 Molecule.c++

// Construct all parts

SoGroup *waterMolecule = new SoGroup;      // water molecule

SoGroup *oxygen = new SoGroup;             // oxygen atom

SoMaterial *redPlastic = new SoMaterial;

SoSphere *sphere1 = new SoSphere;
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SoGroup *hydrogen1 = new SoGroup;          // hydrogen atoms

SoGroup *hydrogen2 = new SoGroup;

SoTransform *hydrogenXform1 = new SoTransform;

SoTransform *hydrogenXform2 = new SoTransform;

SoMaterial *whitePlastic = new SoMaterial;

SoSphere *sphere2 = new SoSphere;

SoSphere *sphere3 = new SoSphere;

// Set all field values for the oxygen atom

redPlasticÿ>ambientColor.setValue(1.0, 0.0, 0.0);  

redPlasticÿ>diffuseColor.setValue(1.0, 0.0, 0.0); 

redPlasticÿ>specularColor.setValue(0.5, 0.5, 0.5);

redPlasticÿ>shininess = 0.5;

// Set all field values for the hydrogen atoms

hydrogenXform1ÿ>scaleFactor.setValue(0.75, 0.75, 0.75);  

hydrogenXform1ÿ>translation.setValue(0.0, ÿ1.2, 0.0);  

hydrogenXform2ÿ>translation.setValue(1.1852, 1.3877, 0.0);

whitePlasticÿ>ambientColor.setValue(1.0, 1.0, 1.0);  

whitePlasticÿ>diffuseColor.setValue(1.0, 1.0, 1.0); 

whitePlasticÿ>specularColor.setValue(0.5, 0.5, 0.5);

whitePlasticÿ>shininess = 0.5;

// Create a hierarchy

waterMoleculeÿ>addChild(oxygen);   

waterMoleculeÿ>addChild(hydrogen1);   

waterMoleculeÿ>addChild(hydrogen2);

oxygenÿ>addChild(redPlastic);

oxygenÿ>addChild(sphere1);

hydrogen1ÿ>addChild(hydrogenXform1);

hydrogen1ÿ>addChild(whitePlastic);

hydrogen1ÿ>addChild(sphere2);

hydrogen2ÿ>addChild(hydrogenXform2);

hydrogen2ÿ>addChild(sphere3);

Separators

To isolate the effects of nodes in a group, use an SoSeparator node, which is a subclass of SoGroup.

Before traversing its children, an SoSeparator saves the current traversal state. When it has finished

traversing its children, the SoSeparator restores the previous traversal state. Nodes within an 

SoSeparator thus do not affect anything above or to the right in the graph.

Figure 3ÿ7, for example, shows the body and head for a robot. The body group, a separator, contains 

SoTransform and SoMaterial nodes that affect the traversal state used by the cylinder in that group.

These values are restored when all children in the body group have been visited, so the head group is

unaffected by the bodyÿgroup nodes. Because the head group is also a separator group, the traversal
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state is again saved when group traversal begins and restored when group traversal finishes.

Separators are inexpensive to use and help to structure scene graphs. You will probably use them

frequently.

Tip:  The root node of a scene graph should be a separator if you want the state to be reset between

successive renderings.

Figure 3ÿ7 Separator Groups

Code for the robot body and head groups is shown below:

// create body parts

SoTransform *xf1 = new SoTransform;        

xf1ÿ>translation.setValue(0.0, 3.0, 0.0);

SoMaterial *bronze = new SoMaterial;

bronzeÿ>ambientColor.setValue(.33, .22, .27);

bronzeÿ>diffuseColor.setValue(.78, .57, .11);

bronzeÿ>specularColor.setValue(.99, .94, .81);

bronzeÿ>shininess = .28;

SoCylinder *myCylinder = new SoCylinder;

myCylinderÿ>radius = 2.5;

myCylinderÿ>height = 6;

// construct body out of parts

SoSeparator *body = new SoSeparator;  

bodyÿ>addChild(xf1);       

bodyÿ>addChild(bronze);
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bodyÿ>addChild(myCylinder);

// create head parts

SoTransform *xf2 = new SoTransform;   

xf2ÿ>translation.setValue(0, 7.5, 0);

xf2ÿ>scaleFactor.setValue(1.5, 1.5, 1.5);

SoMaterial *silver = new SoMaterial;

silverÿ>ambientColor.setValue(.2, .2, .2);

silverÿ>diffuseColor.setValue(.6, .6, .6);

silverÿ>specularColor.setValue(.5, .5, .5);

silverÿ>shininess = .5;

SoSphere *mySphere = new SoSphere;

// construct head out of parts

SoSeparator *head = new SoSeparator;  

headÿ>addChild(xf2);       

headÿ>addChild(silver);

headÿ>addChild(mySphere);

// add head and body

SoSeparator *robot = new SoSeparator;  

robotÿ>addChild(body);               

robotÿ>addChild(head);

Other Subclasses of SoGroup

In addition to SoSeparator, other subclasses of SoGroup include the following:

 • SoSwitch

 • SoLevelOfDetail

 • SoSelection (see Chapter 10, "Handling Events and Selection")

In the robot example, SoSeparator nodes are used to contain the effects of nodes within a particular

group in the scene graph; you do not want the head to inherit the transformation or material attributes

from the body group. Conversely, the molecule example uses SoGroup nodes to accumulate a set of

properties to apply to other nodes later in the graph.

SoSwitch

An SoSwitch node is exactly like an SoGroup except that it visits only one of its children. It  contains

one field, whichChild, which specifies the index of the child to traverse. For example, the following

code specifies to visit node c of switch s:

SoSwitch *s = new SoSwitch;

sÿ>addChild(a);       // this child has an index of 0

sÿ>addChild(b);       // this child has an index of 1
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sÿ>addChild(c);       // this child has an index of 2

sÿ>addChild(d);       // this child has an index of 3

sÿ>whichChild = 2;       // specifies to visit child(c)

The default setting of whichChild is SO_SWITCH_NONE, which specifies to traverse none of the

group’s children.

You can use an SoSwitch node to switch between several different camera nodes for viewing a scene.

You can also use an SoSwitch node for rudimentary animation. By cycling through a series of groups,

you can, for example, make the wings on a duck flap up and down or make a robot walk across the

screen. SoBlinker, derived from SoSwitch, cycles among its children (see Chapter 13, "Engines") and

provides some additional controls useful for animation.

SoLevelOfDetail

The SoLevelOfDetail node allows you to specify the same object with varying levels of detail. The

children of this node are arranged from highest to lowest level of detail. The size of the objects when

projected into the viewport determines which child to use. This node is very useful for applications

requiring the fastest rendering possible. It has one field:

screenArea (SoMFFloat)

areas on the screen to use for comparison with the bounding box of the

levelÿofÿdetail group. By default, this value is 0.0, so the first child in the group is

traversed.

To determine which child to traverse, Inventor computes the 3D bounding box of all children in the

levelÿofÿdetail group.  It projects that bounding box onto the viewport and then computes the area of

the screenÿaligned rectangle that surrounds the bounding box. This area is then compared to the areas

stored in the screenArea field. For example, Figure 3ÿ8 shows a levelÿofÿdetail node with three

children. Suppose the screenArea field contains the values [400.0, 100.0].  If the boundingÿbox

projection of the group is 390.0 square pixels (that is, less than 400.0 but greater than 100.0), then 

childB is traversed.  If the boundingÿbox projection of the group is 450.0 pixels (that is, greater than

400.0, then childA is traversed. If the boundingÿbox projection is less than 100.0, childC is traversed.

The SoComplexity node, discussed in Chapter 5, "Shapes, Properties, and Binding", also affects the

child selection for the levelÿofÿdetail node. If complexity is 0.0 or is of type BOUNDING_BOX, the

last child in SoLevelOfDetail is always traversed. If complexity is 1.0, the first child is always used.

If the complexity value is greater than 0.0 and less than 0.5, the computed size of the bounding

rectangle is scaled down appropriately to use a less detailed representation. If the complexity value is

greater than 0.5, the size of the bounding rectangle is scaled up appropriately. If the complexity is 0.5,

Inventor uses the computed size of the bounding rectangle as is.

Figure 3ÿ9 shows an object modeled with different levels of detail. Each group of candlesticks is

arranged with the most detailed model at the left, a medium level of detail in the middle, and the least

detailed model at the right. When the candlestick is close to the camera (as in the first group at the left

of Figure 3ÿ9), the most detailed model would be used.  This model uses a texture on the base of the

candlestick and has a detailed candle with a wick. When the object is farthest away, the least detailed

model can be used since the details are not visible anyway. When the object is midÿrange (the center

group of Figure 3ÿ9), the middle model would be used.
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Figure 3ÿ8 Scene Graph with LevelÿofÿDetail Node

Figure 3ÿ9 Different Levels of Detail for an Object

Shared Instancing of Nodes

You can add any node to more than one group. A bicycle, for example, might use the same basic

wheel group for both the front and rear wheels, with slight modifications for size and location of the

two wheels. The term shared instancing refers to such cases, where a single node has more than one

parent.
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The robot example can instance the leg group twice to form a left and right leg, as shown in Figure

3ÿ10. The basic leg group contains nodes for a cylinder (the thigh), a transformed cylinder (the calf),

and a transformed cube (the foot). The left and right leg groups (the parents: rightLeg and leftLeg)

each contain an additional SoTransform node to position the complete legs correctly onto the robot’s

body.

Any change made within the leg group is reflected in all instances of it. Here, for example, if the

height of the cube in the foot node is doubled, both the left and right feet double in height.

Shared instancing offers database and program economy, since objects can be reused without

duplicating them. You save both time and space by reusing nodes (and groups) when possible.

Do not, however, create cycles within a given scene graph. A node can connect to multiple parents but

should not be a child of itself or any of its descendants.

Figure 3ÿ10 Scene Graph Showing Shared Instancing of the Leg Group

Example 3ÿ2 shows the code for the robot as described up to this point. The rendered image is shown

in Figure 3ÿ11.

Example 3ÿ2 Robot.c++

// Robot with legs
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// Construct parts for legs (thigh, calf and foot)

SoCube *thigh = new SoCube;     

thighÿ>width = 1.2;

thighÿ>height = 2.2;

thighÿ>depth = 1.1;

SoTransform *calfTransform = new SoTransform;

calfTransformÿ>translation.setValue(0, ÿ2.25, 0.0);

SoCube *calf = new SoCube;

calfÿ>width = 1;

calfÿ>height = 2.2;

calfÿ>depth = 1;

SoTransform *footTransform = new SoTransform;

footTransformÿ>translation.setValue(0, ÿ2, .5);

SoCube *foot = new SoCube;

footÿ>width = 0.8;

footÿ>height = 0.8;

footÿ>depth = 2;

// Put leg parts together

SoGroup *leg = new SoGroup;      

legÿ>addChild(thigh);

legÿ>addChild(calfTransform);

legÿ>addChild(calf);

legÿ>addChild(footTransform);

legÿ>addChild(foot);

SoTransform *leftTransform = new SoTransform;

leftTransformÿ>translation = SbVec3f(1, ÿ4.25, 0);

// Left leg

SoSeparator *leftLeg = new SoSeparator;   

leftLegÿ>addChild(leftTransform);

leftLegÿ>addChild(leg);

SoTransform *rightTransform = new SoTransform;

rightTransformÿ>translation.setValue(ÿ1, ÿ4.25, 0);

// Right leg

SoSeparator *rightLeg = new SoSeparator;   

rightLegÿ>addChild(rightTransform);

rightLegÿ>addChild(leg);
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// Parts for body

SoTransform *bodyTransform = new SoTransform;    

bodyTransformÿ>translation.setValue(0.0, 3.0, 0.0);

SoMaterial *bronze = new SoMaterial;

bronzeÿ>ambientColor.setValue(.33, .22, .27);

bronzeÿ>diffuseColor.setValue(.78, .57, .11);

bronzeÿ>specularColor.setValue(.99, .94, .81);

bronzeÿ>shininess = .28;

SoCylinder *bodyCylinder = new SoCylinder;

bodyCylinderÿ>radius = 2.5;

bodyCylinderÿ>height = 6;

// Construct body out of parts 

SoSeparator *body = new SoSeparator;  

bodyÿ>addChild(bodyTransform);      

bodyÿ>addChild(bronze);

bodyÿ>addChild(bodyCylinder);

bodyÿ>addChild(leftLeg);

bodyÿ>addChild(rightLeg);

// Head parts

SoTransform *headTransform = new SoTransform;   

headTransformÿ>translation.setValue(0, 7.5, 0);

headTransformÿ>scaleFactor.setValue(1.5, 1.5, 1.5);

SoMaterial *silver = new SoMaterial;

silverÿ>ambientColor.setValue(.2, .2, .2);

silverÿ>diffuseColor.setValue(.6, .6, .6);

silverÿ>specularColor.setValue(.5, .5, .5);

silverÿ>shininess = .5;

SoSphere *headSphere = new SoSphere;

// Construct head

SoSeparator *head = new SoSeparator;      

headÿ>addChild(headTransform);

headÿ>addChild(silver);

headÿ>addChild(headSphere);

// Robot is just head and body

SoSeparator *robot = new SoSeparator;  

robotÿ>addChild(body);               

robotÿ>addChild(head);

Tip:  When constructing a complicated scene graph, you may want to define the graph using the
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Inventor file format (see Chapter 11, "File Format") and read the graph from a file or from a string in

memory.  This approach can be easier and less errorÿprone than constructing the scene graph

programmatically.

Figure 3ÿ11   Rendered Image of the Robot

Paths

Paths are used to isolate particular objects in the scene graph. Suppose you want to refer to the left

foot of the robot. Which node in Figure 3ÿ10 represents the left foot? You can’t refer simply to the foot

node, since that node is used for both the left and right feet. The answer is that the left foot is

represented by the path, or chain, starting at the robot node (the root), and leading all the way down

the graph to the foot node. Figure 3ÿ12 indicates the path for the left foot node.

A path contains references to a chain of nodes, each of which is a child of the previous node. A path

represents a scene graph or subgraph (part of a scene graph). In scene graph diagrams in this book, a

path is represented by a heavy line that connects the chain of nodes.
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Figure 3ÿ12 Path Representing the Left Foot

Where Do Paths Come From?

Paths are returned by a picking or search action, and you can construct your own path. (See Chapter 9,

"Applying Actions," for a detailed description of interactive picking.) The user of an interactive

application might click the mouse over an object on the screen, causing the object to be picked, and

then perform an operation on that objectfor example, moving it, changing its color, or deleting it.

The selection node manages a list of paths as the currently selected objects.

What Are Paths Used For?

All actions that can be performed on a node can also be performed on a path. These actions include

calculating a bounding box and origin for the path, accumulating a transformation matrix for it, and

writing the path to a file.

How you use the information included in a path depends on your application. You may use the whole

path, or only part of the path. If your user clicks the mouse on the robot’s left foot, is the user

selecting the whole robot, the left leg, or just the left foot? (Perhaps one click selects the whole robot,

and subsequent clicks select parts of the robot that are lower in the graph, such as the left leg and foot.)
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Fields within a Node

When you create a node, its fields are already set to predefined values. Afterward, you can change the

values in its fields directly. The syntax for setting the value of a field depends on the type of the field

and whether it is a singleÿvalue or multipleÿvalue field. The following example creates a drawingÿstyle

node and sets its fields:

SoDrawStyle *d = new SoDrawStyle;

dÿ>style.setValue(SoDrawStyle::LINES) ; 

dÿ>lineWidth.setValue(3) ;

dÿ>linePattern.setValue(0xf0f0);

The current drawing style is now nonfilled, dashed outlines, with a line width of 3 pixels. If you do not

set the field values explicitly, Inventor uses the default values for that node. Default values for 

SoDrawStyle nodes are as follows:

Field Default Values

style SoDrawStyle::FILLED

lineWidth 1

linePattern 0xffff (solid)

pointSize 1

The following sections discuss setting and getting values for different types of fields.  See also 

Chapter 13, "Engines,", which discusses fieldÿtoÿfield connections as well as several special types of

fieldsglobal fields and trigger fields.

Why Fields? (Advanced)

You may be wondering why Inventor nodes have fields instead of simple member variables.  This

section outlines a few of the mechanisms provided by fields. The Inventor Toolmaker provides

additional background on these topics.

First, fields provide consistent methods for setting and inquiring values, as described in the following

sections and in the Open Inventor C++ Reference Manual. Second, fields provide a mechanism for

Inventor to detect changes to the database. Third, you can connect fields in one node to fields in

another node, as described in Chapter 13, "Engines,". Finally, fields provide a consistent and

automatic way to read and write node values.

Singleÿ versus MultipleÿValue Fields

A singleÿvalue field has one value of a given type. Singleÿvalue fields include the letters SF in their

class name. For example:

SoSFBool contains an SbBool

SoSFFloat contains a single float

SoSFRotation

contains an SbRotation

SoSFName contains an SbName
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SoSFColor contains a single SbColor

Singleÿvalue fields are used for nodes that have no use for arrays of values, such as a line pattern, a

translation value, a rotation value, or a camera aspect ratio.

A multipleÿvalue field contains an array of values. Multipleÿvalue fields include the letters MF in their

class namefor example, SoMFBool, SoMFFloat, SoMFVec3f, and SoMFColor. Multipleÿvalue

fields are used for coordinate points and normal vectors. They are also used for materials, so that you

can assign different colors to different vertices. Most fields have both SF and MF forms. See the Open

Inventor C++ Reference Manual for descriptions of fields within each node class.

SingleÿValue Fields: Setting and Getting Values

The examples earlier in this chapter show how to declare and create nodes. This section provides

additional examples of the syntax for setting and getting values for singleÿvalue fields within the

nodes. (Most fields have a setValue() and getValue() method and can also use the = operator to set

values.)

Floats, Longs, and Shorts

This first example sets the value in the height field of an SoOrthographicCamera node through use

of the setValue() method. This field is of type SoSFFloat:

SoOrthographicCamera *cam = new SoOrthographicCamera;

camÿ>height.setValue(1.);

or

camÿ>height = 1.; // = operator has been defined for this field

To get the value for this field, use the getValue() method:

float result = camÿ>height.getValue();

Vectors

You can specify an SoSFVec3f field in several different formats.  Each defines a 3D vector:

 • You can set it from a vector (an SbVec3f).

 • You can set it from three floats (either a vector or three separate values).

 • You can set it from an array of three floats.

The following examples show how to set values for SoSFVec3f fields.

An SoTransform node has a field, translation, which is an SoSFVec3f field that contains one value

of type SbVec3f. The variable xform is a transformÿnode instance.

SoTransform *xform = new SoTransform;

//(1) Setting the field from a vector

 SbVec3f vector;

 vector.setValue(2.5, 3.5, 0.0);

xformÿ>translation.setValue(vector);
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 // or: xformÿ>translation = vector;

//(2a) Setting the field from a vector of three floats

 xformÿ>translation.setValue(SbVec3f(2.5, 3.5, 0.0));

 // or: xformÿ>translation = SbVec3f(2.5, 3.5, 0.0);

//(2b) Setting the field from three floats

 float x = 2.5, y = 3.5, z = 0.0;

xformÿ>translation.setValue(x, y, z);

 //(3) Setting the field from an array of three floats

 float floatArray[3];

floatArray[0] = 2.5;

floatArray[1] = 3.5;

floatArray[2] = 0.0;

xformÿ>translation.setValue(floatArray);

Use the getValue() method to get values for a field. This example copies the vector, changes it, and

copies it back:

SbVec3f t = xformÿ>translation.getValue();

t[0] += 1.0;

xformÿ>translation.setValue(t);

// or: xformÿ>translation = t;

Rotations

A rotation field specifies a rotation in 3D space. Since an SbRotation represents rotation around an

axis by an angle, you can set its value by specifying the axis and angle:

SbRotation r;

SbVec3f axis(0., 1., 0.);

float angle = M_PI; //from math.h

r.setvalue(axis, angle);

// or SbRotation r(SbVec3f(0., 1., 1.), M_PI);

You can also define a rotation to rotate one direction vector into another, as follows:

SbRotation r(SbVec3f(0.0, 0.0, 1.0), SbVec3f(0.0, 1.0, 0.0));

To set the value of the rotation field of an SoTransform node:

SoTransform *xform = new SoTransform;

xform ÿ>rotation = r;
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You can also use setValue() to set the value of a rotation field and supply an axis and angle, a

quaternion, or two vectors.

The = (assignment) operator can be used to set a field’s value from another field of the same type. As

with vectors, getValue() returns the value of the field. 

Tip:  If you want to specify a rotation as an axis/angle, you must pass an SbVec3f and a float.

Passing four floats specifies a quaternion.

MultipleÿValue Fields: Setting and Getting Values

The SoMaterial node contains the following fields:

Field Name Class

ambientColor SoMFColor

diffuseColor SoMFColor

specularColor SoMFColor

emissiveColor SoMFColor

shininess SoMFFloat

transparency SoMFFloat

These examples show different styles for setting the fields of an SoMaterial node. The transparency

field is of type SoMFFloat, so it contains one or more values of type float. The diffuseColor field is

of type SoMFColor, so it contains one or more values of type SbColor. The syntax for setting

multiple values in an SoMFFloat field is as follows:

nodeNameÿ> fieldName .setValues ( starting index, number of values,

 pointer            to array of values );

For example:

SoMaterial *mtl;

float vals[3];

vals[0] = 0.2;

vals[1] = 0.5;

vals[2] = 0.9;

mtlÿ>transparency.setValues(0, 3, vals);

Space for the array is reallocated when necessary. The values are copied in from the array. An

example of setting a multipleÿvalue field that uses an Sb type is as follows:

SoMaterial *mtl;

SbVec3f vals[3];

vals[0].setValue(1.0, 0.0, 0.0);

vals[1].setValue(0.0, 1.0, 0.0);

vals[2].setValue(0.0, 0.0, 1.0);

mtlÿ>diffuseColor.setValues(0, 3, vals);

If you want to set only one value in an SoMFFloat field, you can use the following shorthand

method:
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nodeNameÿ> fieldName . setValue ( value1 );

For example:

mtlÿ>transparency.setValue(.25); 

//or mtlÿ>transparency = .25;

This short method sets the number of values equal to 1 and sets the field to the specified value.

However, it also throws away any subsequent values that were previously set in the array, so you

should use it only to set the field to have one value. Use the longer method (setValues) or the  

set1Value() method if you want to change one value in the array and preserve the rest of the values.

You can use the [ ] operator to get a particular value within a multipleÿvalue field as follows:

f = myMtlÿ>transparency[13]; // get 14th value of array

You can also create loops to access all values in the field:

for (i = 0; i < myMtlÿ>transparency.getNum(); i++) {

      printf("transparency value %d is %g\n", i, 

               myMtlÿ>transparency[i]);

}

To insert values in the middle of a field:

float newValues[2];

newValues[0] = 0.1;

newValues[1] = 0.2;

// First, make space; after this, myMtlÿ>transparency[10] 

// and myMtlÿ>transparency[11] will have arbitrary values:

myMtlÿ>transparency.insertSpace(10, 2);

// Set the space created to the right values:

myMtlÿ>transparency.setValues(10, 2, newValues);

To delete values from a field:

// Delete myMtlÿ>transparency[8] and myMtlÿ>transparency[9];

// the values in myMtlÿ>transparency[10] on up will be moved

// down to fill in the missing space, and the transparency

// array will have two fewer values.

myMtlÿ>transparency.deleteValues(8, 2);

See the Open Inventor C++ Reference Manual for additional methods used to edit MF fields.

Ignore Flag (Advanced)

Every field has an Ignore flag associated with it. Use the setIgnored() method to set or reset the

Ignore flag. When this flag is set, the field is disregarded. This flag enables you to ignore certain

fields in a node and to use others. For example, to ignore the specular color field in a material node so
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the value is inherited from the previous material:

SoMaterial *bronze = new SoMaterial;

bronzeÿ>ambientColor.setValue(.33, .22, .27);

bronzeÿ>diffuseColor.setValue(.78, .57, .11);

bronzeÿ>specularColor.setIgnored(TRUE);

bronzeÿ>shininess = .28;

To turn the Ignore flag off:

bronzeÿ>specularColor.setIgnored(FALSE);

The isIgnored() method returns TRUE if the Ignore flag for this field is set:

if (bronzeÿ>specularColor.isIgnored()) {

   printf("Yes, specular is ignored\n");

}

Some fields are not inherited and are thus not affected by the Ignore flag.  Examples of fields that are 

not inherited are the fields of shape nodes, lightÿsource nodes, some groups, and cameras, as well as

the fields in the SoEnvironment node. If you set the Ignore flag for a field whose values are not

inherited, Inventor simply uses the field’s default values.

Override Flag (Advanced)
Every node has an Override flag associated with it. The Override flag is a powerful mechanism

typically used (sparingly) near the top of a scene graph. When this flag is set, any nodes of the same

type encountered later in the graph are ignored even if they also have their Override flag set. For

example, you might insert a lineÿstyle SoDrawStyle node at the top of a graph to ensure that the

whole scene is drawn as wireframe objects, regardless of drawing styles specified lower in the scene

graph. Use the setOverride() method to set and reset the Override flag. The isOverride() method

returns the state of the Override flag. 

For example: 

// This function toggles the given drawÿstyle node between 

// overriding any other drawÿstyle nodes below it in the scene 

// graph, and not having any effect at all on the scene graph.

//

void

toggleWireframe(SoDrawStyle *myDrawStyle)

{

   if (myDrawStyleÿ>isOverride()) {

      myDrawStyleÿ>style.setIgnored(TRUE);

      myDrawStyleÿ>setOverride(FALSE);

   } else {

      myDrawStyleÿ>style = SoDrawStyle::LINES;

      myDrawStyleÿ>style.setIgnored(FALSE);

      myDrawStyleÿ>setOverride(TRUE);

   }

}
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Normally, the Override flag is not used within a scene graph for modeling. Use it in applications

where you need to specify a temporary change to the whole graph. 

Note:  The Override flag is not written to a file (see Chapter 11, "File Format,").

Setting the Override flag on a node whose field values are not inherited (for example, on a sphere with

a radius of 7) has no effect on other nodes in the graph of that type.

References and Deletion

Although nodes are created in the usual C++ fashion, the procedure for deleting nodes differs from the

C++ style. The following discussion explains how a node counts references to itself and when these

references are incremented and decremented. It outlines the proper procedure for unreferencing a

node, which results in the node’s deletion.

Reference Counting

Each node stores the number of references made to that node within the database. There are several

different types of references for nodes:

 • Parentÿchild link

 • Pathÿnode link

Engines also store a reference count (see Chapter 13, "Engines,").  This count is incremented when

the output of an engine is connected to a field. You can also increment or decrement the reference

count manually, by calling ref() or unref().

Figure 3ÿ13 shows the reference counts for nodes in a small subgraph. Whenever you create a

reference to a node, you increment its count. The action

Aÿ>addChild(B)

adds node B to node A and also increments the reference count for node B by 1. In Figure 3ÿ13 node

C has a reference count of 2 because it has been added to two different parent groups. At this point,

nodes A and D contain 0 references.
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Figure 3ÿ13 Reference Counts

Referencing a node in a path also increments the node’s reference count, as shown in Figure 3ÿ14. The

reference count for node A now becomes 1, and the reference count for node B becomes 2.

Figure 3ÿ14 Incrementing the Reference Count

Tip:  Be sure to reference the root of the scene graph:  rootÿ>ref(). This node is not referenced by

being a child of anything else.

How Nodes Are Deleted

Inventor uses a referenceÿcounting mechanism to delete nodes and subgraphs of nodes. To understand

how nodes are deleted, you need to know how a node’s reference count is incremented and

decremented, as detailed in this section. 

When you remove a reference to a node, its reference count is decremented. Removing a child

decrements the reference count. When a node’s count returns to 0, it is deleted from the database.

Consider the following cases, however, where deleting a node causes problems (refer to Figure 3ÿ13

for this discussion):

Problem 1: If you remove node B from node A, the reference count for node B goes to 0 and

the node is deleted. But what if you still want to use node B?

Problem 2: How do you delete node A? Its reference count has always been 0.

Problem 3: What if someone applies an action to a node that has a reference count of 0? The

action creates a path, which references the node.  When the action finishes, the

path is removed, and the node is deleted.

The solution to these problems is that when you want to prevent a node from being deleted, you

reference it:
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Bÿ>ref();

Referencing a node increments its count by 1 and ensures that the node is not accidentally deleted.

After you have explicitly referenced node B, you can safely remove it as a child of A without fear of

deleting node B

(Problem 1).

Similarly, to prevent node A from being deleted (Problem 3), you 

reference it:

Aÿ>ref();

If you want to delete A (Problem 2), you can unreference it, which decrements the reference count.

Node A is now deleted, since you were the only one with a reference to it:

Aÿ>unref();

When a group is deleted, all of its children are removed and their reference counts are decremented by

1. In Figure 3ÿ15, for example, if you specify 

Pÿ>unref(); // reference count for P goes to 0

the reference counts for the child nodes are decremented as follows:

1.  Q goes to 0

                                        2. S goes to 1

3. R goes to 0

                                        4. S goes to 0

Since all reference counts now equal 0, all nodes are deleted.
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Figure 3ÿ15 Decrementing the Reference Count

Tip:  Do not allocate nodes, paths, or engines in arrays.  This creates problems when one reference

count goes to 0 and Inventor tries to free the space allocated for one object in the array.

When you apply an action to a node, the action automatically creates a path that references the node.

When the action finishes, it automatically removes the path, and thus decrements the node’s reference

count. Here again, if the node originally has a reference count of 0, it is deleted when the action

finishes.

Tip:  Random memory errors are often caused by unreferenced nodes that have been deleted. If such

errors occur, check your program to be sure that it is not trying to use nodes that have been deleted.

The debugging version of the Inventor library catches many common referenceÿ

counting mistakes.

Nodes with Zero References

A node, path, or engine should be created only with new and never declared on the stack. These

objects should be freed only when their reference count goes to 0, not when they go out of scope.

A newly created node has a reference count of 0. This does not mean that it immediately disappears,

since a node is deleted only when the reference count is decremented to 0. Sometimes it is important

to be able to restore a 

node to its original state (that is, reference count equals 0, but it still exists). For example:

// Create a sphere of a certain radius and returns its bounding

// box. NOTE: BUGGY VERSION; provided for discussion only!

SoSphere *makeSphere(float radius, SbBox3f &box)

{
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   sphere = new SoSphere; // reference count of 0

   sphereÿ>radius.setValue(radius);

   ba = new SoGetBoundingBoxAction;

   baÿ>apply(sphere); // does a ref/unref

   box = baÿ>getBoundingBox();

   return  sphere;  // ERROR! returning node that

        // was deleted when ref count

        // went back to zero!

}

In this example, the sphere node is referenced and unreferenced by SoGetBoundingBoxAction.

When unreferenced, the sphere’s reference count goes to 0, and it is deleted. The sphere needs to be

referenced before the action is applied.

You can use the unrefNoDelete() method in cases such as this one, where you want to return the

sphere to its original "fresh" state, with a reference count of 0 (but not deleted). Here is an example of

using unrefNoDelete():

// Create a sphere of a certain radius and returns its bounding

// box. NOTE: CORRECT VERSION

SoSphere *makeSphere(float radius, SbBox3f &box)

{

   sphere = new SoSphere; // reference count of 0

   sphereÿ>ref(); // we want it to stay around

   sphereÿ>radius.setValue(radius);

   ba = new SoGetBoundingBoxAction;

   baÿ>apply(sphere); // does a ref/unref

   box = baÿ>getBoundingBox();

   sphereÿ>unrefNoDelete(); // ref count goes to zero,

 // but sphere stays around

   return  sphere; // returns sphere with ref

 // count of zero

}

Summary of References and Deletion

Table 3ÿ1 summarizes the occurrences that increment and decrement reference counts of nodes and

engines.  Note that connecting an engine to a field in a node does not increment the node’s reference

count.  (Engines are discussed in Chapter 13.)

Increments Reference Count by 1    Decrements Reference Count by 1

Adding a node as a child of another node
increments child’s reference count

Removing a node as a child of another  node

Adding a node to a path Removing a node from a path

Applying an action to a node or path When traversal for the action
finishes, all nodes that were
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increments reference count of all nodes  that
are traversed traversed are unreferenced

Adding a node to an SoNodeList node Removing a node from an SoNodeList

Setting an SoSFNode or SoMFNode value  to
point to a node

Changing an SoSFNode or SoMFNode
value to point to a different node or to
NULL, or deleting the value

Connecting an output of an engine to a  field
in a node or engine increments the  engine’s
reference count

Disconnecting an engine’s output from the
field decrements the engine’s reference
count

Table 3ÿ1 References and Deletion

Node Types

Inventor provides runtime typeÿchecking through the SoType class. Use the getTypeId() method on

an instance to obtain the SoType for that instance. Runtime typeÿchecking is available for most

Inventor classes, including nodes, engines, actions, details, and events.

The SoType class has methods that enable you to find the parent class of a type (getParent()), to

create an instance of a particular type  (createInstance()), and to obtain an SbName for the class type

(getName()). For example, the following code returns a name, such as

Material or Group, which you could then use to print some information about the node:

nodeÿ>getTypeId().getName();

The following two statements both return the SoType for an SoMaterial node (the first is more

efficient):

// (1)

SoMaterial::getClassTypeId();

// (2)

SoType::fromName("Material");

To determine whether an instance is of a particular type, use the == operator, as follows:

if (myNodeÿ>getTypeId() == SoGroup::getClassTypeId())

      // Is this an SoGroup?

To determine whether an instance is of the same type or derived from a particular class, use the 

isOfType() method or the SoType::derivedFrom() method (the two methods have the same effects):

// (1)

if (myNodeÿ>isOfType(SoGroup::getClassTypeId()))

   // Is this an SoGroup, SoSeparator, SoSwitch, and so on

// (2)

if (myNodeÿ>getTypeId().isDerivedFrom(

      SoGroup::getClassTypeId()))

Also see the description in Chapter 9 of the SoSearchAction, which allows you to search the scene

graph for nodes of a particular type, or derived from a type.

Naming Nodes
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You can assign a name to a node, path, or engine and then search for the object by name. Because the

names are preserved when the objects are written to or read from files, they are also a useful way of

identifying objects. The base class SoBase provides the setName() method, which allows you to

specify a name for a node, path, or engine. It also provides the getName() method, which returns the

name for the given object. 

Any node, path, or engine has one name, which does not have to be unique. Names can be any 

SbName. An SbName can start with any uppercase or lowercase letter (AÿZ) or an underscore (_).

All characters in an SbName must be digits 0ÿ9, upper/lowercase AÿZ, or underscores. The default

name for an object is the empty string ("").

Use the SoNode method getByName() to find a node or nodes with a given name. (SoPath and 

SoEngine provide similar getByName() methods.) The search action also allows you to search for an

object or objects with a given name (see Chapter 9). 

An example of how names might be used is a slotÿcar racer program that allows users to create their

own slot cars, following simple conventions for how big the cars are, which direction is up, and how

the standard nodes or engines in the slot cars are named.  For example, the guidelines might specify

that the SoTransform node that is the steering wheel’s rotation is always named 

SteeringWheelRotation.  The slotÿcar program could then read in the scene graph for a given car,

search for the SteeringWheelRotation node, and then animate the steering wheel using that node.

Example 3ÿ3 shows naming several nodes with setName(), then using getByName() to return specific

nodes. The child node named MyCube is removed from the parent named Root.

Example 3ÿ3 Naming Nodes

#include <Inventor/SoDB.h>

#include <Inventor/nodes/SoCube.h>

#include <Inventor/nodes/SoSeparator.h>

#include <Inventor/nodes/SoSphere.h>

#include <Inventor/sensors/SoNodeSensor.h>

void RemoveCube();  // Defined later...

main( int , char ** )

{

   SoDB::init();

   // Create some objects and give them names:

   SoSeparator *root = new SoSeparator;

   rootÿ>ref();

   rootÿ>setName("Root");

   SoCube *myCube = new SoCube;

   rootÿ>addChild(myCube);

   myCubeÿ>setName("MyCube");

   SoSphere *mySphere = new SoSphere;

   rootÿ>addChild(mySphere);

   mySphereÿ>setName("MySphere");
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   RemoveCube();

}

void

RemoveCube()

{

   // Remove the cube named ’MyCube’ from the separator named

   // ’Root’.  In a real application, isOfType() would probably

   // be used to make sure the nodes are of the correct type

   // before doing the cast.

   SoSeparator *myRoot;

   myRoot = (SoSeparator *)SoNode::getByName("Root");

   SoCube *myCube;

   myCube = (SoCube *)SoNode::getByName("MyCube");

   myRootÿ>removeChild(myCube);

}



Chapter 4

Cameras and Lights

Chapter Objectives

After reading this chapter, you’ll be able to do the following:

 • Add different types of cameras to a scene, experimenting with a variety of camera positions,

orientations, and viewport mappings

 • Add different types of lights to a scene, experimenting with a variety of light types, intensities,

and colors

Chapters 4 through 8 focus on several different classes of nodes. Cameras and lights are discussed

first because the objects you create are not visible without them. Then, in the following chapters, you

learn more about other kinds of nodes in the scene database, including shapes, properties, bindings,

text, textures, and NURBS curves and surfaces. Feel free to read selectively in this group of chapters,

according to your interests and requirements.

Using Lights and Cameras

The previous chapters introduced you to group, property, and shape nodes and showed you how to

create a scene graph using these nodes. Now you’ll move on to two classes of nodes that affect how

the 3D scene appears: lights and cameras. In Inventor, as in the real world, lights provide illumination

so that you can view objects. If a scene graph does not contain any lights and you’re using the default

lighting model (Phong lighting), the objects are in darkness and cannot be seen. Just as the real world

provides a variety of illumination typeslight bulbs, the sun, theatrical spotlightsInventor provides

different classes of lights for you to use in your scene.

Cameras are our "eyes" for viewing the scene. Inventor provides a class of camera with a lens that

functions just as the lens of a human eye does, and it also provides additional cameras that create a 2D

"snapshot" of the scene with other kinds of lenses. This chapter discusses cameras first and assumes

that the scene has at least one light at the top of the scene graph.

Tip:  Viewer components create their own camera and light automatically. See Chapter 16 for more

information on viewers.

Cameras

A camera node generates a picture of everything after it in the scene graph. Typically, you put the

camera near the top left of the scene graph, since it must precede the objects you want to view. A

scene graph should contain only one active camera, and its position in space is affected by the current

geometric transformation.

Tip:  A switch node can be used to make one of several cameras active.

SoCamera

Camera nodes are derived from the abstract base class SoCamera 

(see Figure 4ÿ1).
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Figure 4ÿ1 CameraÿNode Classes

SoCamera has the following fields:

viewportMapping (SoSFEnum)

treatment when the camera’s aspect ratio is different from the viewport’s aspect

ratio. (See "Mapping the Camera Aspect Ratio to the Viewport".)

position (SoSFVec3f)

location of the camera viewpoint. This location is modified by the current

geometric transformation.

orientation (SoSFRotation)

orientation of the camera’s viewing direction. This field describes how the camera

is rotated with respect to the default. The default camera looks from (0.0, 0.0, 1.0)

toward the origin, and the up direction is (0.0, 1.0, 0.0). This field, along with the

current geometric transformation, specifies the orientation of the camera in world

space.

aspectRatio (SoSFFloat)

ratio of the camera viewing width to height. The value must be greater than 0.0. A

few of the predefined camera aspect ratios included in SoCamera.h are

SO_ASPECT_SQUARE (1/1)

SO_ASPECT_VIDEO (4/3)

SO_ASPECT_HDTV (16/9)

nearDistance (SoSFFloat)

distance from the camera viewpoint to the near clipping plane.

farDistance (SoSFFloat)

distance from the camera viewpoint to the far clipping plane.

focalDistance (SoSFFloat)

distance from the camera viewpoint to the point of focus (used by the examiner

viewer).

Figure 4ÿ2 and Figure 4ÿ3, later in this chapter, show the relationship between the camera position,

orientation, near and far clipping planes, and aspect ratio. 

When a camera node is encountered during rendering traversal, Inventor performs the following

steps:

1. During a rendering action, the camera is positioned in the scene (based on its specified position

and orientation, which are modified by the current transformation). 

2. The camera creates a view volume, based on the near and far clipping planes, the aspect ratio, and

the height or height angle (depending on the camera type). A view volume, also referred to as a 

viewing frustum, is a sixÿsided volume that contains the geometry to be seen (refer to sections on

each camera type, later in this chapter, for diagrams showing how the view volume is created).

Objects outside of the view volume are clipped, or thrown away.

3. The next step is to compress this 3D view volume into a 2D image, similar to the photographic

snapshot a camera makes from a realÿworld scene. This 2D "projection" is now easily mapped to

a 2D window on the screen. (See "Mapping the Camera Aspect Ratio to the Viewport".)
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4. Next, the rest of the scene graph is rendered using the projection created by the camera.

You can also use the pointAt()  method to replace the value in a camera’s orientation field. This

method sets the camera’s orientation to point toward the specified target point. If possible, it keeps the

up direction of the camera parallel to the positive yÿaxis. Otherwise, it makes the up direction of the

camera parallel to the positive zÿaxis.

The syntax for the pointAt()  method is as follows:

void       pointAt (const  SbVec3f  &targetPoint )

Two additional methods for SoCamera are viewAll() and getViewVolume(). The viewAll() method is

an easy way to set the camera to view an entire scene graph using the current orientation of the

camera. You provide the root node of the scene to be viewed (which usually contains the camera) and

a reference to the viewport region used by the render action. The slack parameter is used to position

the near and far clipping planes.  A slack value of 1.0 (the default) positions the planes for the

"tightest fit" around the scene. The syntax for viewAll() is as follows:

void viewAll (SoNode *sceneRoot , const SbViewportRegion &vpRegion , 

 float slack  = 1.0)

The viewAll() method modifies the camera position, nearDistance, and farDistance fields. It does

not affect the camera orientation. An example showing the use of viewAll() appears in "Viewing a

Scene with Different Cameras".

The getViewVolume() method returns the camera’s view volume and is usually used in relation to

picking.

Subclasses of SoCamera

The SoCamera class contains two subclasses, as shown in Figure 4ÿ1:

 • SoPerspectiveCamera

 • SoOrthographicCamera

SoPerspectiveCamera

A camera of class SoPerspectiveCamera emulates the human eye: objects farther away appear

smaller in size. Perspective camera projections are natural in situations where you want to imitate how

objects appear to a human observer.

An SoPerspectiveCamera node has one field in addition to those defined in SoCamera:

heightAngle (SoSFFloat)

specifies the vertical angle in radians of the camera view volume.

The view volume formed by an SoPerspectiveCamera node is a truncated pyramid, as shown in 

Figure 4ÿ2. The height angle and the aspect ratio determine the width angle as follows:

widthAngle = heightAngle * aspectRatio

SoOrthographicCamera

In contrast to perspective cameras, cameras of class SoOrthographicÿ

Camera produce parallel projections, with no distortions for distance.  Orthographic cameras are
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Camera produce parallel projections, with no distortions for distance.  Orthographic cameras are

useful for precise design work, where visual distortions would interfere with exact measurement.

An SoOrthographicCamera node has one field in addition to those defined in SoCamera:

height (SoSFFloat) specifies the height of the camera view volume.

The view volume formed by an SoOrthographicCamera node is a rectangular box, as shown in 

Figure 4ÿ3. The height and aspect ratio determine the width of the rectangle:

width = height * aspectRatio

Figure 4ÿ2 View Volume and Viewing Projection for an SoPerspectiveCamera Node
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Figure 4ÿ3 View Volume and Viewing Projection for an SoOrthographicCamera Node

Mapping the Camera Aspect Ratio to the Viewport

A viewport is the rectangular area where a scene is rendered. By default, the viewport has the same

dimensions as the window (SoXtRenderArea). The viewport is specified when the 

SoGLRenderAction is constructed (see Chapter 9).

The viewportMapping field of SoCamera allows you to specify how to map the camera projection

into the viewport when the aspect ratios of the camera and viewport differ. The first three choices

crop the viewport to fit the camera projection. The advantage to these settings is that the camera

aspect ratio remains unchanged. (The disadvantage is that there is dead space in the viewport.)

 • CROP_VIEWPORT_FILL_FRAME adjusts the viewport to fit the camera (see Figure 4ÿ4). It

draws the viewport with the appropriate aspect ratio and fills in the unused space with gray.

 • CROP_VIEWPORT_LINE_FRAME adjusts the viewport to fit the camera. It draws the border

of the viewport as a line.

 • CROP_VIEWPORT_NO_FRAME adjusts the viewport to fit the camera. It does not indicate the

viewport boundaries.

These two choices adjust the camera projection to fit the viewport:

 • ADJUST_CAMERA adjusts the camera to fit the viewport (see Figure 4ÿ4). The projected image
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is not distorted. (The actual values stored in the aspectRatio and height/heightAngle fields are

not changed. These values are temporarily overridden if required by the viewport mapping.) This

is the default setting.

 • LEAVE_ALONE does not modify anything. The camera image is resized 

to fit the viewport. A distorted image is produced (see Figure 4ÿ4).

Figure 4ÿ4 shows the different types of viewport mapping. In this example, the camera aspect ratio is 3

to 1 and the viewport aspect ratio is 1.5 to 1. The top camera uses

CROP_VIEWPORT_FILL_FRAME viewport mapping. The center camera uses

ADJUST_CAMERA. The bottom camera uses LEAVE_ALONE. Figure 4ÿ4 also shows three stages

of mapping. At the left is the initial viewport mapping. The center column of drawings shows how the

mapping changes if the viewport is compressed horizontally. The rightÿhand column shows how the

mapping changes if the viewport is compressed vertically.

Viewing a Scene with Different Cameras

Example 4ÿ1 shows a scene viewed by an orthographic camera and two perspective cameras in

different positions. It uses a blinker node  (described in Chapter 13) to switch among the three

cameras. The scene (a park bench) is read from a file. Figure 4ÿ5 shows the scene graph created by this

example. Figure 4ÿ6 shows the image created by this example.
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Figure 4ÿ4 Mapping the Camera Aspect Ratio to the Viewport

Figure 4ÿ5 Scene Graph for Camera Example

Example 4ÿ1 Switching among Multiple Cameras

#include <Inventor/SbLinear.h>

#include <Inventor/SoDB.h>

#include <Inventor/SoInput.h>

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/SoXtRenderArea.h>

#include <Inventor/nodes/SoBlinker.h>

#include <Inventor/nodes/SoDirectionalLight.h>

#include <Inventor/nodes/SoMaterial.h>

#include <Inventor/nodes/SoOrthographicCamera.h>

#include <Inventor/nodes/SoPerspectiveCamera.h>

#include <Inventor/nodes/SoSeparator.h>

#include <Inventor/nodes/SoTransform.h>

main(int, char **argv)

{

   // Initialize Inventor and Xt

   Widget myWindow = SoXt::init(argv[0]);

   if (myWindow == NULL) 

      exit(1);

   SoSeparator *root = new SoSeparator;

   rootÿ>ref();
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Figure 4ÿ6 Camera Example

   // Create a blinker node and put it in the scene. A blinker

   // switches between its children at timed intervals.

   SoBlinker *myBlinker = new SoBlinker;

   rootÿ>addChild(myBlinker);

   // Create three cameras. Their positions will be set later.

   // This is because the viewAll method depends on the size

   // of the render area, which has not been created yet.

   SoOrthographicCamera *orthoViewAll = new SoOrthographicCamera;

   SoPerspectiveCamera *perspViewAll = new SoPerspectiveCamera;

   SoPerspectiveCamera *perspOffCenter = new SoPerspectiveCamera;

   myBlinkerÿ>addChild(orthoViewAll);

   myBlinkerÿ>addChild(perspViewAll);

   myBlinkerÿ>addChild(perspOffCenter);

   // Create a light

   rootÿ>addChild(new SoDirectionalLight);

   // Read the object from a file and add to the scene

   SoInput myInput;

   if (! myInput.openFile("parkbench.iv")) 

      return 1;

   SoSeparator *fileContents = SoDB::readAll(&myInput);

   if (fileContents == NULL) 

      return 1;

   SoMaterial *myMaterial = new SoMaterial;

   myMaterialÿ>diffuseColor.setValue(0.8, 0.23, 0.03); 

   rootÿ>addChild(myMaterial);

   rootÿ>addChild(fileContents);

   SoXtRenderArea *myRenderArea = new SoXtRenderArea(myWindow);

   // Establish camera positions. 

   // First do a viewAll() on all three cameras.  

   // Then modify the position of the offÿcenter camera.

   SbViewportRegion myRegion(myRenderAreaÿ>getSize());

   orthoViewAllÿ>viewAll(root, myRegion);

   perspViewAllÿ>viewAll(root, myRegion);

   perspOffCenterÿ>viewAll(root, myRegion);

   SbVec3f initialPos; 

   initialPos = perspOffCenterÿ>position.getValue();
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   float x, y, z;

   initialPos.getValue(x,y,z);

   perspOffCenterÿ>position.setValue(x+x/2., y+y/2., z+z/4.);

   myRenderAreaÿ>setSceneGraph(root);

   myRenderAreaÿ>setTitle("Cameras");

   myRenderAreaÿ>show();

   SoXt::show(myWindow);

   SoXt::mainLoop();

}

After you view this example, experiment by modifying the fields in each camera node to see how

changes in camera position, orientation, aspect ratio, location of clipping planes, and camera height

(or height angle) affect the images on your screen. Then try using the pointAt()  method to modify the

orientation of the camera node. Remember that a scene graph includes only one active camera at a

time, and it must be placed before the objects to be viewed.

Lights

With the default lighting model (Phong), a scene graph also needs at least one light before you can

view its objects. During a rendering action, traversing a light node in the scene graph turns that light

on. The position of the light node in the scene graph determines two things:

 • What the light illuminatesa light illuminates everything that follows it in the scene graph. (The

light is part of the traversal state, described in Chapter 3. Use an SoSeparator node to isolate the

effects of a particular light from the rest of the scene graph.)

 • Where the light is located in 3D spacecertain lightÿsource nodes (for example, SoPointLight)

have a location field. This light location is affected by the current geometric transformation.

Other lightÿsource nodes have a specified direction (for example, SoDirectionalLight), which is

also affected by the current geometric transformation.

Another important fact about all lightÿsource nodes is that lights accumulate. Each time you add a light

to the scene graph, the scene appears brighter. The maximum number of active lights is dependent on

the OpenGL implementation.

(Advanced)

In some cases, you may want to separate the position of the light in the scene graph from what it

illuminates.  Example 4ÿ2 uses the SoTransformSeparator node to move only the position of the

light. Sensors and engines are also a useful way to affect a light’s behavior. For example, you can

attach a sensor to a sphere object; when the sphere position changes, the sensor can change the light

position as well.  Or, you can use an engine that finds the path to a given object to affect the location

of the light that illuminates that object (see SoComputeBoundingBox in the Open Inventor C++

Reference Manual).

SoLight

All lights are derived from the abstract base class SoLight. This class adds no new methods to 

SoNode. Its fields are as follows:
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on (SoSFBool) whether the light is on.

intensity (SoSFFloat)

brightness of the light. Values range from 0.0 (no illumination) to 1.0 (maximum

illumination).

color (SoSFColor) color of the light.

Subclasses of SoLight

The SoLight class contains three subclasses, as shown in Figure 4ÿ7:

 • SoPointLight

 • SoDirectionalLight

 • SoSpotLight

Figure 4ÿ7 LightÿNode Classes

Figure 4ÿ8 shows the effects of each of these light types. The left side of the figure shows the direction

of the light rays, and the right side shows the same scene rendered with each light type. Figure Inÿ2, 

Figure Inÿ3 and Figure Inÿ4 show additional use of these light types.

Tip:  Directional lights are typically faster than point lights for rendering.  Both are typically faster

than spotlights.  To increase rendering speed, use fewer and simpler lights.

SoPointLight

A light of class SoPointLight, like a star, radiates light equally in all directions from a given location

in 3D space. An SoPointLight node has one additional field:

location (SoSFVec3f)

3D location of a point light source. (This location is affected by the current

geometric transformation.)

SoDirectionalLight

A light of class SoDirectionalLight illuminates uniformly along a particular direction. Since it is

infinitely far away, it has no location in 3D space. An SoDirectionalLight node has one additional

field:

direction (SoSFVec3f)

specifies the direction of the rays from a directional light source. (This direction is

affected by the current geometric transformation.)
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Figure 4ÿ8 Light Types

Tip: A surface composed of a single polygon (such as a large rectangle) with one normal at each

corner will not show the effects of a point light source, since lighting is computed (by OpenGL) only

at vertices. Use a more complex surface to show this effect. 

With an SoDirectionalLight source node, all rays of incident light are parallel. They are reflected

equally from all points on a flat polygon, resulting in flat lighting of equal intensity, as shown in 

Figure 4ÿ8. In contrast, the intensity of light from an SoPointLight source on a flat surface would
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vary, because the angle between the surface normal and the incident ray of light is different at

different points of the surface.

SoSpotLight

A light of class SoSpotLight illuminates from a point in space along a primary direction. Like a

theatrical spotlight, its illumination is a cone of light diverging from the light’s position. An 

SoSpotLight node has four additional fields (see Figure 4ÿ9):

location (SoSFVec3f)

3D location of a spotlight source. (This location is affected by the current

geometric transformation.)

direction (SoSFVec3f)

primary direction of the illumination.

dropOffRate (SoSFFloat)

rate at which the light intensity drops off from the primary direction (0.0 =

constant intensity, 

1.0 = sharpest dropÿoff).

cutOffAngle (SoSFFloat)

angle, in radians, outside of which the light intensity is 0.0. This angle is

measured from one edge of the cone to the other.

Using Multiple Lights

You can now experiment by adding different lights to a scene. Example 4ÿ2 contains two light

sources: a stationary red directional light and a green point light that is moved back and forth by an 

SoShuttle node (see Chapter 13). Figure 4ÿ10 shows the scene graph created by this example.
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Figure 4ÿ9 Fields for SoSpotLight Node

Example 4ÿ2 Using Different Types of Lights

#include <Inventor/SoDB.h>

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>

#include <Inventor/nodes/SoCone.h>

#include <Inventor/nodes/SoDirectionalLight.h>

#include <Inventor/nodes/SoMaterial.h>

#include <Inventor/nodes/SoPointLight.h>

#include <Inventor/nodes/SoSeparator.h>

#include <Inventor/nodes/SoShuttle.h>

#include <Inventor/nodes/SoTransformSeparator.h>

main(int , char **argv)

{

   // Initialize Inventor and Xt

   Widget myWindow = SoXt::init(argv[0]);

   if (myWindow == NULL) 

      exit(1);

   SoSeparator *root = new SoSeparator;

   rootÿ>ref();
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   // Add a directional light

   SoDirectionalLight *myDirLight = new SoDirectionalLight;

   myDirLightÿ>direction.setValue(0, ÿ1, ÿ1);

   myDirLightÿ>color.setValue(1, 0, 0);

   rootÿ>addChild(myDirLight);

   // Put the shuttle and the light below a transform separator.

   // A transform separator pushes and pops the transformation 

   // just like a separator node, but other aspects of the state 

   // are not pushed and popped. So the shuttle’s translation 

   // will affect only the light. But the light will shine on 

   // the rest of the scene.

   SoTransformSeparator *myTransformSeparator =

       new SoTransformSeparator;

   rootÿ>addChild(myTransformSeparator);

   // A shuttle node translates back and forth between the two

   // fields translation0 and translation1.  

   // This moves the light.

   SoShuttle *myShuttle = new SoShuttle;

   myTransformSeparatorÿ>addChild(myShuttle);

   myShuttleÿ>translation0.setValue(ÿ2, ÿ1, 3);

   myShuttleÿ>translation1.setValue( 1,  2, ÿ3);

   // Add the point light below the transformSeparator

   SoPointLight *myPointLight = new SoPointLight;

   myTransformSeparatorÿ>addChild(myPointLight);

   myPointLightÿ>color.setValue(0, 1, 0);
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Figure 4ÿ10 Scene Graph for Light Example

    rootÿ>addChild(new SoCone);

   SoXtExaminerViewer *myViewer = 

            new SoXtExaminerViewer(myWindow);

   myViewerÿ>setSceneGraph(root);

   myViewerÿ>setTitle("Lights");

   myViewerÿ>setHeadlight(FALSE);

   myViewerÿ>show();

   SoXt::show(myWindow);

   SoXt::mainLoop();

}



Chapter 5

Shapes, Properties, and Binding

Chapter Objectives

After reading this chapter, you’ll be able to do the following:

 • Use a variety of shapes in the scene, including complex shapes that use information from

coordinate and normal nodes

 • Explain how indexed shapes specify their own order for using coordinate, material, normal, and

texture values

 • Experiment with different effects for color values, shininess, and transparency

 • Render a scene using different drawing styles for different parts of the scene

 • Render a scene using different light models

 • Create a scene with fog in it

 • Use the shape hints, complexity, and levelÿofÿdetail nodes to speed up performance

 • Experiment with different types of material and normal binding

For convenience, shapes are divided into two categories: simple shapes and complex shapes. Simple

shapes are selfÿcontained nodes that hold their own geometrical parameters. Complex shapes, in

contrast, may refer to other nodes for their coordinates and normals. This chapter also discusses

important property nodes, including material, drawÿstyle, and lightingÿ

style nodes. Other chapter examples illustrate key concepts pertaining to geometric transformations

and to binding nodes for materials and normals.

Simple Shapes

All shape nodes are derived from the abstract base class SoShape. Inventor provides the following

simple shapes:

 • Cube (you specify the width, height, and depth)

 • Cone (you specify the height and bottom radius)

 • Sphere (you specify the radius)

 • Cylinder (you specify the height and the radius)

Figure 5ÿ1 shows the portion of the class tree that contains shape classes.

Complex Shapes

Complex shapes, such as triangle strip sets and face sets, require at least a set of coordinates. If the

lighting is set to PHONG, complex shapes also require a set of surface normals, as shown in Figure

5ÿ2.  Coordinates and normals are defined by separate nodes in the scene graph so that this

information can be shared by other nodes.

Examples of complex shapes include the following:

 • Face set, indexed face set
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 • Line set, indexed line set

 • Triangle strip set, indexed triangle strip set

 • Point set

 • Quad mesh

 • NURBS curve and surface

Figure 5ÿ1 ShapeÿNode Classes

An SoCoordinate3 node sets the current coordinates in the rendering state to the specified points.

This node contains one field (point), which is of type SoMFVec3f. For example:

SbVec3f     verts[6];

SoCoordinate3    *coord = new SoCoordinate3;

// ...Initialize vertices array ...

coordÿ>point.setValues(0, 6, verts);

An SoNormal node sets the current surface normals in the rendering state

to the specified vectors. This node contains one field, vector, of type SoMFVec3f.

Tip:  Normals can also be generated automatically by Inventor, in which case you do not need an 

SoNormal node. See "Generating Normals Automatically" for further information.
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Figure 5ÿ2 Nodes Used to Create a Simple Indexed Face Set

Face Set

An SoFaceSet is a shape node that represents a polygonal object formed by constructing faces out of

the current coordinates, current normals, current materials, and current textures. It uses the values

within each node in the order they are given. (To use coordinates, normals, and materials in a different

order, use the SoIndexedFaceSet node, described in the next section.)

Example 5ÿ1 creates an obelisk using a face set composed of eight faces. The scene graph for this

example is shown in Figure 5ÿ3. Ignore the normal binding node for now. This node is explained in 

"Binding Nodes"."FaceÿSet Example"shows the image created by this example.
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Figure 5ÿ3 Scene Graph for Face Set Example

This figure

(/usr/share/Insight/library/SGI_bookshelves/SGI_Developer/books/Inv_Mentor/figures/05.4.FaceSet.i

v) is an INLINE object and can not be printed.

Media  FaceÿSet Example

Example 5ÿ1 Creating a Face Set

//  Eight polygons. The first four are triangles 

//  The second four are quadrilaterals for the sides.

static float vertices[28][3] =

{

   { 0, 30, 0}, {ÿ2,27, 2}, { 2,27, 2},            //front tri

   { 0, 30, 0}, {ÿ2,27,ÿ2}, {ÿ2,27, 2},            //left  tri

   { 0, 30, 0}, { 2,27,ÿ2}, {ÿ2,27,ÿ2},            //rear  tri

   { 0, 30, 0}, { 2,27, 2}, { 2,27,ÿ2},            //right tri

   {ÿ2, 27, 2}, {ÿ4,0, 4}, { 4,0, 4}, { 2,27, 2},  //front quad

   {ÿ2, 27,ÿ2}, {ÿ4,0,ÿ4}, {ÿ4,0, 4}, {ÿ2,27, 2},  //left  quad

   { 2, 27,ÿ2}, { 4,0,ÿ4}, {ÿ4,0,ÿ4}, {ÿ2,27,ÿ2},  //rear  quad

   { 2, 27, 2}, { 4,0, 4}, { 4,0,ÿ4}, { 2,27,ÿ2}   //right quad

};

// Number of vertices in each polygon:

static long numvertices[8] = {3, 3, 3, 3, 4, 4, 4, 4};

// Normals for each polygon:

static float norms[8][3] =

{ 

   {0, .555,  .832}, {ÿ.832, .555, 0}, //front, left tris

   {0, .555, ÿ.832}, { .832, .555, 0}, //rear, right tris

   {0, .0739,  .9973}, {ÿ.9972, .0739, 0},//front, left quads

   {0, .0739, ÿ.9973}, { .9972, .0739, 0},//rear, right quads

};

SoSeparator *

makeObeliskFaceSet()

{

   SoSeparator *obelisk = new SoSeparator();

   obeliskÿ>ref();

   // Define the normals used:

   SoNormal *myNormals = new SoNormal;

   myNormalsÿ>vector.setValues(0, 8, norms);

   obeliskÿ>addChild(myNormals);

   SoNormalBinding *myNormalBinding = new SoNormalBinding;

   myNormalBindingÿ>value = SoNormalBinding::PER_FACE;

   obeliskÿ>addChild(myNormalBinding);
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   // Define material for obelisk

   SoMaterial *myMaterial = new SoMaterial;

   myMaterialÿ>diffuseColor.setValue(.4, .4, .4);

   obeliskÿ>addChild(myMaterial);

   // Define coordinates for vertices

   SoCoordinate3 *myCoords = new SoCoordinate3;

   myCoordsÿ>point.setValues(0, 28, vertices);

   obeliskÿ>addChild(myCoords);

   // Define the FaceSet

   SoFaceSet *myFaceSet = new SoFaceSet;

   myFaceSetÿ>numVertices.setValues(0, 8, numvertices);

   obeliskÿ>addChild(myFaceSet);

   obeliskÿ>unrefNoDelete();

   return obelisk;

}

Tip:  When you construct a scene graph, be sure that you have used as few nodes as possible to

accomplish your goals. For example, to create a multifaceted polygonal shape, it’s best to put all the

coordinates for the shape into one SoCoordinate node and put the description of all the face sets into

a single SoFaceSet (or SoIndexedFaceSet) node rather than using multiple nodes for each face.

Indexed Face Set

An SoIndexedFaceSet node is a shape node that represents a polygonal object formed by constructing

faces out of the current coordinates, using the current surface normals, current materials, and current

texture. In contrast to the SoFaceSet node, this node can use those values in any order. This node class

contains four fields with indices that specify the ordering:

coordIndex (SoMFLong)

contains indices into the coordinates list. These indices connect coordinates to

form a set of faces. A value of SO_END_FACE_INDEX (ÿ1) indicates the end of

one  face and the start of the next face. This field is always used.

materialIndex (SoMFLong)

contains indices into the current material(s) for the materials of the face set. This

field is used only when some type of indexed material binding is specified in the 

SoMaterialBinding node. See "Binding Nodes". 

normalIndex (SoMFLong)

contains indices into the current normals for the vertices of the face set. This field

is used only when indexed normal binding (either per vertex or per face) is

specified in the SoNormalBinding node. See "Binding Nodes".

textureCoordIndex (SoMFLong)

contains indices of the texture coordinates that are applied to the shape (see 

Chapter 7).
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Be sure that the indices contained in the indexed face set can actually be found in the coordinates and

normals lists, or errors will occur.

Note:  If you use the SoShapeHints node to specify that the vertices are  counterclockwise, you must

specify the vertex indices according to the rightÿhand rule. The rightÿhand rule states that if you place

the fingers of your right hand around the face following the direction in which the vertices are

specified, your thumb points in the general direction of the geometric normal. Alternatively, you can

specify the vertices in clockwise order. In this case, the direction of the geometric normal is

determined by the leftÿhand rule.

Example 5ÿ2 creates the first stellation of the dodecahedron from an indexed face set. Each of the

twelve intersecting faces is a pentagon. The scene graph diagram for this example is shown in Figure

5ÿ4.  "Indexed FaceÿSet Example" shows the image created by this example.

Figure 5ÿ4 Scene Graph for Indexed FaceÿSet Example

Example 5ÿ2 Creating an Indexed Face Set

// Positions of all of the vertices:

//

static float vertexPositions[12][3] =

{

   { 0.0000,  1.2142,  0.7453},  // top

   { 0.0000,  1.2142, ÿ0.7453},  // points surrounding top

   {ÿ1.2142,  0.7453,  0.0000},

   {ÿ0.7453,  0.0000,  1.2142}, 

   { 0.7453,  0.0000,  1.2142}, 

   { 1.2142,  0.7453,  0.0000},

   { 0.0000, ÿ1.2142,  0.7453},  // points surrounding bottom

   {ÿ1.2142, ÿ0.7453,  0.0000}, 
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   {ÿ0.7453,  0.0000, ÿ1.2142},

   { 0.7453,  0.0000, ÿ1.2142}, 

   { 1.2142, ÿ0.7453,  0.0000}, 

   { 0.0000, ÿ1.2142, ÿ0.7453}, // bottom

};

This figure

(/usr/share/Insight/library/SGI_bookshelves/SGI_Developer/books/Inv_Mentor/figures/05.6.Indexed

FaceSet.iv) is an INLINE object and can not be printed.

Media  Indexed FaceÿSet Example

// Connectivity, information; 12 faces with 5 vertices each },

// (plus the endÿofÿface indicator for each face):

static long indices[72] =

{

   1,  2,  3,  4, 5, SO_END_FACE_INDEX, // top face

   0,  1,  8,  7, 3, SO_END_FACE_INDEX, // 5 faces about top

   0,  2,  7,  6, 4, SO_END_FACE_INDEX,

   0,  3,  6, 10, 5, SO_END_FACE_INDEX,

   0,  4, 10,  9, 1, SO_END_FACE_INDEX,

   0,  5,  9,  8, 2, SO_END_FACE_INDEX, 

    9,  5, 4, 6, 11, SO_END_FACE_INDEX, // 5 faces about bottom

   10,  4, 3, 7, 11, SO_END_FACE_INDEX,

    6,  3, 2, 8, 11, SO_END_FACE_INDEX,

    7,  2, 1, 9, 11, SO_END_FACE_INDEX,

    8,  1, 5,10, 11, SO_END_FACE_INDEX,

    6,  7, 8, 9, 10, SO_END_FACE_INDEX, // bottom face

};

// Colors for the 12 faces

static float colors[12][3] =

{

   {1.0, .0, 0}, { .0,  .0, 1.0}, {0, .7,  .7}, { .0, 1.0,  0},

   { .7, .7, 0}, { .7,  .0,  .7}, {0, .0, 1.0}, { .7,  .0, .7},

   { .7, .7, 0}, { .0, 1.0,  .0}, {0, .7,  .7}, {1.0,  .0,  0}

};

// Routine to create a scene graph representing a dodecahedron

SoSeparator *

makeStellatedDodecahedron()

{

   SoSeparator *result = new SoSeparator;
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   resultÿ>ref();

   // Define colors for the faces

   SoMaterial *myMaterials = new SoMaterial;

   myMaterialsÿ>diffuseColor.setValues(0, 12, colors);

   resultÿ>addChild(myMaterials);

   SoMaterialBinding *myMaterialBinding = new SoMaterialBinding;

   myMaterialBindingÿ>value = SoMaterialBinding::PER_FACE;

   resultÿ>addChild(myMaterialBinding);

   // Define coordinates for vertices

   // Define coordinates for vertices

   SoCoordinate3 *myCoords = new SoCoordinate3;

   myCoordsÿ>point.setValues(0, 12, vertexPositions);

   resultÿ>addChild(myCoords);

   // Define the IndexedFaceSet, with indices into

   // the vertices:

   SoIndexedFaceSet *myFaceSet = new SoIndexedFaceSet;

   myFaceSetÿ>coordIndex.setValues(0, 72, indices);

   resultÿ>addChild(myFaceSet);

   resultÿ>unrefNoDelete();

   return result;

}

Triangle Strip Set

The SoTriangleStripSet node constructs triangle strips out of the vertices located at the current

coordinates.  It is one of the fastest ways to draw polygonal objects in Inventor. The triangle strip set

uses the current coordinates, in order, starting at the index specified by the startIndex field. (If no

index is specified, it starts at the first index.)

The numVertices field indicates the number of vertices to use for each triangle strip in the set. The

triangle strip set is described as follows:

static long numVertices[2] =

{

   32, // flag

   8   // pole

};

SoTriangleStripSet *myStrips = new SoTriangleStripSet;

myStripsÿ>numVertices.setValues(0, 2, numVertices);

Because the numVertices field contains an array with two values, two triangle strips are created.  The

first strip (the flag) is made from the first 32 coordinate values. The second strip (the flagpole) is

made from the next 8 coordinates. Face 0 determines the vertex orderingin this case,

counterclockwise.
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Tip:  Triangle strip sets and quad meshes are generally faster to render than face sets.

Example 5ÿ3 shows the code for creating a pennantÿshaped flag. Figure 5ÿ5 shows the scene graph for

this example.   "Triangle Strip Set Example" shows the resulting image.

Figure 5ÿ5 Scene Graph for Triangle Strip Set Example

This figure

(/usr/share/Insight/library/SGI_bookshelves/SGI_Developer/books/Inv_Mentor/figures/fig5_8.iv) is

an INLINE object and can not be printed.

Media  Triangle Strip Set Example

Example 5ÿ3 Creating a Triangle Strip Set

// Positions of all of the vertices:

static float vertexPositions[40][3] =

{

   {  0,   12,    0 }, {   0,   15,    0},

   {2.1, 12.1,  ÿ.2 }, { 2.1, 14.6,  ÿ.2},

   {  4, 12.5,  ÿ.7 }, {   4, 14.5,  ÿ.7},

   {4.5, 12.6,  ÿ.8 }, { 4.5, 14.4,  ÿ.8},

   {  5, 12.7,   ÿ1 }, {   5, 14.4,   ÿ1},

   {4.5, 12.8, ÿ1.4 }, { 4.5, 14.6, ÿ1.4},

   {  4, 12.9, ÿ1.6 }, {   4, 14.8, ÿ1.6},

   {3.3, 12.9, ÿ1.8 }, { 3.3, 14.9, ÿ1.8},

   {  3,   13, ÿ2.0 }, {   3, 14.9, ÿ2.0}, 

   {3.3, 13.1, ÿ2.2 }, { 3.3, 15.0, ÿ2.2},

   {  4, 13.2, ÿ2.5 }, {   4, 15.0, ÿ2.5},

   {  6, 13.5, ÿ2.2 }, {   6, 14.8, ÿ2.2},

   {  8, 13.4,   ÿ2 }, {   8, 14.6,   ÿ2},

   { 10, 13.7, ÿ1.8 }, {  10, 14.4, ÿ1.8},

   { 12,   14, ÿ1.3 }, {  12, 14.5, ÿ1.3},

   { 15, 14.9, ÿ1.2 }, {  15,   15, ÿ1.2},
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   {ÿ.5, 15,   0 }, { ÿ.5, 0,   0},   // the flagpole

   {  0, 15,  .5 }, {   0, 0,  .5},

   {  0, 15, ÿ.5 }, {   0, 0, ÿ.5},

   {ÿ.5, 15,   0 }, { ÿ.5, 0,   0}

};

// Number of vertices in each strip.

static long numVertices[2] =

{

   32, // flag

   8   // pole

};

// Colors for the 12 faces

static float colors[2][3] =

{

   { .5, .5,  1 }, // purple flag

   { .4, .4, .4 }, // grey flagpole

};

// Routine to create a scene graph representing a pennant.

SoSeparator *

makePennant()

{

   SoSeparator *result = new SoSeparator;

   resultÿ>ref();

   // A shape hints tells the ordering of polygons. 

   // This ensures doubleÿsided lighting.

   SoShapeHints *myHints = new SoShapeHints;

   myHintsÿ>vertexOrdering = SoShapeHints::COUNTERCLOCKWISE;

   resultÿ>addChild(myHints);

   // Define colors for the strips

   SoMaterial *myMaterials = new SoMaterial;

   myMaterialsÿ>diffuseColor.setValues(0, 2, colors);

   resultÿ>addChild(myMaterials);

   SoMaterialBinding *myMaterialBinding = new SoMaterialBinding;

   myMaterialBindingÿ>value = SoMaterialBinding::PER_PART;

   resultÿ>addChild(myMaterialBinding);

   // Define coordinates for vertices

   SoCoordinate3 *myCoords = new SoCoordinate3;

   myCoordsÿ>point.setValues(0, 40, vertexPositions);

   resultÿ>addChild(myCoords);
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   // Define the TriangleStripSet, made of two strips.

   SoTriangleStripSet *myStrips = new SoTriangleStripSet;

   myStripsÿ>numVertices.setValues(0, 2, numVertices);

   resultÿ>addChild(myStrips);

   resultÿ>unrefNoDelete();

   return result;

}

Quad Mesh

The SoQuadMesh node constructs quadrilaterals from the vertices located at the current coordinates.

It uses the coordinates in order, starting at the index specified by the startIndex field. (If no index is

specified, it starts at the first index.)

The verticesPerColumn and verticesPerRow fields indicate the number of vertices in the columns

and rows of the mesh. Example 5ÿ4 creates a quad mesh as follows:

SoQuadMesh *myQuadMesh = new SoQuadMesh;

myQuadMeshÿ>verticesPerRow = 12;

myQuadMeshÿ>verticesPerColumn = 5;

Each row in this quad mesh contains 12 vertices. Each column contains 5 vertices. Figure 5ÿ6 shows

the scene graph for this example.  "Quad Mesh Example" shows the resulting image.

Figure 5ÿ6 Scene Graph for Quad Mesh Example

This figure

(/usr/share/Insight/library/SGI_bookshelves/SGI_Developer/books/Inv_Mentor/figures/fig5_10.iv) is

an INLINE object and can not be printed.
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Media  Quad Mesh Example

Example 5ÿ4 Creating a Quad Mesh

// Positions of all of the vertices:

static float vertexPositions[160][3] =

{  // 1st row

   {ÿ13.0,  0.0, 1.5}, {ÿ10.3, 13.7, 1.2}, { ÿ7.6, 21.7, 1.0}, 

   { ÿ5.0, 26.1, 0.8}, { ÿ2.3, 28.2, 0.6}, { ÿ0.3, 28.8, 0.5},

   {  0.3, 28.8, 0.5}, {  2.3, 28.2, 0.6}, {  5.0, 26.1, 0.8}, 

   {  7.6, 21.7, 1.0}, { 10.3, 13.7, 1.2}, { 13.0,  0.0, 1.5},

   // 2nd row

   {ÿ10.0,  0.0, 1.5}, { ÿ7.9, 13.2, 1.2}, { ÿ5.8, 20.8, 1.0}, 

   { ÿ3.8, 25.0, 0.8}, { ÿ1.7, 27.1, 0.6}, { ÿ0.2, 27.6, 0.5},

   {  0.2, 27.6, 0.5}, {  1.7, 27.1, 0.6}, {  3.8, 25.0, 0.8}, 

   {  5.8, 20.8, 1.0}, {  7.9, 13.2, 1.2}, { 10.0,  0.0, 1.5},

   // 3rd row

   {ÿ10.0,  0.0,ÿ1.5}, { ÿ7.9, 13.2,ÿ1.2}, { ÿ5.8, 20.8,ÿ1.0}, 

   { ÿ3.8, 25.0,ÿ0.8}, { ÿ1.7, 27.1,ÿ0.6}, { ÿ0.2, 27.6,ÿ0.5},

   {  0.2, 27.6,ÿ0.5}, {  1.7, 27.1,ÿ0.6}, {  3.8, 25.0,ÿ0.8}, 

   {  5.8, 20.8,ÿ1.0}, {  7.9, 13.2,ÿ1.2}, { 10.0,  0.0,ÿ1.5},

   // 4th row 

   {ÿ13.0,  0.0,ÿ1.5}, {ÿ10.3, 13.7,ÿ1.2}, { ÿ7.6, 21.7,ÿ1.0}, 

   { ÿ5.0, 26.1,ÿ0.8}, { ÿ2.3, 28.2,ÿ0.6}, { ÿ0.3, 28.8,ÿ0.5},

   {  0.3, 28.8,ÿ0.5}, {  2.3, 28.2,ÿ0.6}, {  5.0, 26.1,ÿ0.8}, 

   {  7.6, 21.7,ÿ1.0}, { 10.3, 13.7,ÿ1.2}, { 13.0,  0.0,ÿ1.5},

   // 5th row

   {ÿ13.0,  0.0, 1.5}, {ÿ10.3, 13.7, 1.2}, { ÿ7.6, 21.7, 1.0}, 

   { ÿ5.0, 26.1, 0.8}, { ÿ2.3, 28.2, 0.6}, { ÿ0.3, 28.8, 0.5},

   {  0.3, 28.8, 0.5}, {  2.3, 28.2, 0.6}, {  5.0, 26.1, 0.8}, 

   {  7.6, 21.7, 1.0}, { 10.3, 13.7, 1.2}, { 13.0,  0.0, 1.5}

};

// Routine to create a scene graph representing an arch.

SoSeparator *

makeArch()

{

   SoSeparator *result = new SoSeparator;

   resultÿ>ref();

   // Define the material

   SoMaterial *myMaterial = new SoMaterial;

   myMaterialÿ>diffuseColor.setValue(.78, .57, .11);

   resultÿ>addChild(myMaterial);
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   // Define coordinates for vertices

   SoCoordinate3 *myCoords = new SoCoordinate3;

   myCoordsÿ>point.setValues(0, 60, vertexPositions);

   resultÿ>addChild(myCoords);

   // Define the QuadMesh.

   SoQuadMesh *myQuadMesh = new SoQuadMesh;

   myQuadMeshÿ>verticesPerRow = 12;

   myQuadMeshÿ>verticesPerColumn = 5;

   resultÿ>addChild(myQuadMesh);

   resultÿ>unrefNoDelete();

   return result;

}

Property Nodes

This section describes a number of important property classes, all of which are derived from SoNode:

 • SoMaterial, which sets the ambient color, diffuse color, specular color, emissive color, shininess,

and transparency of the current material

 • SoDrawStyle, which tells shape nodes which drawing technique to use during rendering

 • SoLightModel, which tells shape nodes how to compute lighting calculations during rendering

 • SoEnvironment, which allows you to simulate various atmospheric effects, such as fog, haze,

pollution, and smoke, and to describe other global environmental attributes such as ambient

lighting and light attenuation

 • SoShapeHints, which provides additional information regarding vertex shapes to allow Inventor

to optimize certain rendering features

 • SoComplexity, which allows you to specify the extent to which shape objects are subdivided

into polygons, as well as the general degree of texture complexity and level of detail

 • SoUnits, which allows you to define a standard unit of measurement for all subsequent shapes in

the scene graph

Each of these classes affects different elements of the rendering state, as described later in this section.

Figure 5ÿ7 shows the portion of the class tree for property nodes.
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Figure 5ÿ7 PropertyÿNode Classes

Material Node

An SoMaterial node includes the following fields:

ambientColor (SoMFColor)
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default value for this field is [0.2, 0.2, 0.2]. 

diffuseColor (SoMFColor)

an object’s base color. The default value for this field is 

[0.8, 0.8, 0.8].

specularColor (SoMFColor)

reflective quality of an object’s highlights. The default value for this field is [0.0,

0.0, 0.0].

emissiveColor (SoMFColor)

light produced by an object. The default value for this field is [0.0, 0.0, 0.0].

shininess (SoMFFloat)

degree of shininess of an object’s surface, ranging from 0.0 for a diffuse surface

with no shininess to a maximum of 1.0 for a highly polished surface. The default

value for this field is 0.2.

transparency (SoMFFloat)

degree of transparency of an object’s surface, ranging from 0.0 for an opaque

surface to 1.0 for a completely transparent surface. The default value for this field

is 0.0.

Tip:  The transparency type is specified in the render action (see Chapter 9).

An example of setting values in an SoMaterial node is the following:

SoMaterial *gold   = new SoMaterial;

//Set material values

goldÿ>ambientColor.setValue(.3, .1, .1);

goldÿ>diffuseColor.setValue(.8, .7, .2);

goldÿ>specularColor.setValue(.4, .3, .1);

goldÿ>shininess = .4;

Since gold is opaque, you can use the default value of 0.0 for the transparency field.

SoBaseColor, another class derived from SoNode, replaces only the diffuse color field of the current

material and has no effect on other material fields.

Tip: If you are changing only the diffuse color of an object, use an SoBaseColor node in place of an 

SoMaterial node. For example, to represent a complex terrain that uses many different diffuse colors,

use one SoMaterial node for the ambient, specular, and emissive color values, and then use one 

SoBaseColor node with multiple values for the changing diffuse colors. The SoBaseColor class is

also useful when the light model is BASE_COLOR (see "LightÿModel Node").

DrawÿStyle Node

An SoDrawStyle node includes the following fields:

style (SoSFEnum) current drawing style. Values for this field are

SoDrawStyle::FILLED

filled regions (default)

 SoDrawStyle::LINES

nonfilled outlines
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 SoDrawStyle::POINTS

points

 SoDrawStyle::INVISIBLE

not drawn at all

pointSize (SoSFFloat)

(for POINTS style) radius of points, in printer’s points. The default value is 0.0.

A value of 0.0 indicates to use the fastest value for rendering, which is typically

1.0. If this value is not 0.0, the point size is scaled by the amount required to keep

it a constant size, which depends on the pixels per inch of the viewport region.

Tip: Drawÿstyle LINES and POINTS look best with a BASE_COLOR lighting model.

lineWidth (SoSFFloat)

(for LINES style)  line width, in printer’s points (1 inch = 72.27 printer’s points).

Values can range from 0.0 to 256.0. The default value is 0.0, which indicates to

use the fastest value for rendering.

linePattern (SoSFUShort)

(for LINES style) current lineÿstipple pattern. Values can range from 0 (invisible)

to 0xffff (solid). The default value is 0xffff.

"Drawing Styles (FILLED, LINES, POINTS)" shows the same object rendered in different drawing

styles.

This figure

(/usr/share/Insight/library/SGI_bookshelves/SGI_Developer/books/Inv_Mentor/figures/05.12.DrawSt

yle.iv) is an INLINE object and can not be printed.

Media  Drawing Styles (FILLED, LINES, POINTS)

LightÿModel Node

An SoLightModel node includes the following field:

model (SoSFEnum)

current lighting model applied to all subsequent shape nodes in the scene graph.

The lighting model tells the shape node how to compute lighting calculations

during rendering. Values for this field are as follows:

SoLightModel::BASE_COLOR

ignores light sources and uses only the diffuse color and transparency of the

current material.

SoLightModel::PHONG

uses the OpenGL Phong lighting model, which takes into account all light sources

in the scene and the object’s surface orientation with respect to the lights. This

lighting model (the default) usually requires at least one light in the scene. (There

may be emissive color and ambient lighting also.)

Note:  In Inventor, shading (such as Gouraud or flat) is dictated by the combination of the material

specification of the object, the lighting model, and the normal bindings. A shading model is not
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explicitly specified.

Figure Inÿ5  and Figure Inÿ6 show the same scene with the different lighting models. (Figure Inÿ5 uses

BASE_COLOR, and Figure Inÿ6 uses PHONG.)

SoMaterial and SoBaseColor can be used along with any drawing style and any lighting model. In

some cases, however, some of the material attributes might be ignored. For example, if you specify

BASE_COLOR for the SoLightModel model field, only the diffuse color and transparency of the

current material are used. But what happens if you specify only a base color (with SoBaseColor) and

subsequently select the Phong lighting model for SoLightModel? In this case, Inventor uses the base

color for the diffuse color and the default or current material element values for the other SoMaterial

fields.

Note:  By default, the light model is PHONG.  For images to render correctly, you need to specify

normals and light sources. If you  want to see only colored objects, change the light model to

BASE_COLOR and use SoBaseColor to specify only the base (diffuse) color.

Environment Node

You can use the SoEnvironment node to simulate various atmospheric effects such as fog, haze,

pollution, and smoke. For general purposes, these atmospheric effects are grouped under the term fog.

The difference between fog and haze, for example, is simply the color and density.

Specifically, the SoEnvironment node allows you to specify the color and intensity of the ambient

lighting, the light attenuation for point lights and spotlights, and the type, color, and visibility factor

for fog. Figure Inÿ7 shows the effects of an SoEnvironment node. This image uses a value of FOG

for the fog type. The fogColor is (0.2, 0.2, 0.46).

An SoEnvironment node includes the following fields:

ambientIntensity (SoSFFloat)

intensity of ambient light in the scene. This field is used with Phong lighting.

ambientColor (SoSFColor)

color of ambient light in the scene. This field is used with Phong lighting.

attenuation (SoSFVec3f)

defines how light drops off with distance from a light source. You can specify

squared, linear, and constant attenuation coefficients with respect to the distance

of the light from the object’s surface. (The three components of the vector are the

squared, linear, and constant coefficients, in that order.) This field is used with

Phong lighting.

fogType (SoSFEnum)

type of fog. Values for this field are 

SoEnvironment::NONE

no fog (default)

 SoEnvironment::HAZE

opacity of the fog increases linearly with the distance from the camera

 SoEnvironment::FOG

opacity of the fog increases exponentially with the distance from the camera

SoEnvironment::SMOKE
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increase in fog opacity is an exponentialÿsquared increase with the distance from

the camera

fogColor (SoSFColor)

color of the fog.

fogVisibility (SoSFFloat)

the distance at which fog totally obscures the objects in the scene. For the default

value (0.0), this distance is adjusted to equal the far plane of the camera.

Otherwise, it is used as is.

Tip:  For realistic scenes, clear the window to the fog color before drawing the fogged objects (see the

SoXtRenderArea::setBackgroundColor() method.)

ShapeÿHints Node

By default, Inventor does not assume anything about how the vertices in a vertex shape are ordered,

whether its surface is closed or open, or whether the faces of the shape are convex or concave. If you

know that the vertices are in a consistent order, that the shape is closed, or that the shape faces are

convex, you can use the SoShapeHints node to notify Inventor so that it can optimize certain

rendering features. 

The SoShapeHints node has four fields:

vertexOrdering (SoSFEnum)

provides hints about the ordering of the faces of a vertexÿbased shape derived

from SoVertexShape. This field describes the ordering of all the vertices of all the

faces of the shape when it is viewed from the outside.

Values for this field are

SoShapeHints::UNKNOWN_ORDERING 

the ordering of the vertices is not known (the default)

  SoShapeHints::CLOCKWISE 

the vertices for each face are specified in clockwise order

SoShapeHints::COUNTERCLOCKWISE

the vertices for each face are specified in counterclockwise order

shapeType (SoSFEnum)

SoShapeHints::UNKNOWN_SHAPE_TYPE

the shape type is not known (the default)

SoShapeHints::SOLID

the shape is a solid object (not an open surface)

faceType (SoSFEnum)

SoShapeHints::UNKNOWN_FACE_TYPE

the face type is not known

SoShapeHints::CONVEX

all faces of the shape are convex

(the default)

creaseAngle (SoSFFloat)

used for automatic normal generation. See "Generating Normals Automatically".
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If the shapeType is SOLID and the vertexOrdering is either CLOCKWISE or

COUNTERCLOCKWISE, Inventor turns on backface culling and turns off twoÿsided lighting. If the 

shapeType is not SOLID and the vertexOrdering is either CLOCKWISE or

COUNTERCLOCKWISE, Inventor turns off backface culling and turns on twoÿsided lighting. In all

other cases, backface culling and twoÿsided lighting are both off. If you use the SoShapeHints node,

be sure to describe the object accurately; otherwise, objects may be rendered incorrectly.

Tip:  In general, the more information you specify with the shapeÿhints node, the faster the rendering

speed. The exception to this rule is when shapeType is not SOLID and the vertexOrdering is either

CLOCKWISE or COUNTERCLOCKWISE. In this case, rendering may be slower because twoÿsided

lighting is automatically turned on and backface culling is turned off.

Complexity Node

Use the SoComplexity node to indicate the amount of subdivision into polygons for subsequent shape

nodes in the scene graph. This node has three fields:

type (SoSFEnum)

general type of complexity. Values for this field are 

SoComplexity::OBJECT_SPACE

(the default) bases the subdivision on the object itself, regardless of where it is on

the screen or which parts are closer to the viewer.

 SoComplexity::SCREEN_SPACE

bases the complexity on the amount of screen space occupied by the object.

Objects requiring the full screen require more detail; small objects require less

detail. The result is that objects that are closer to the viewer usually receive more

detail than objects that are farther away. This type of complexity is more

expensive to compute than the others.  In addition, it invalidates the render cache

when the camera moves (see the discussion of render caching in Chapter 9).

 SoComplexity::BOUNDING_BOX

renders a bounding box in place of the shape. This type is used for speed, when

exact shapes are not required. It uses the current drawing style to render the box.

value (SoSFFloat)

a value that provides a hint about the amount of subdivision desired, where 0.0 is

minimum complexity and 1.0 is maximum complexity. The default is 0.5.

textureQuality (SoSFFloat)

a value that provides a hint about the quality of texture mapping used on the

object.  The tradeÿoff is between speed of rendering and quality of texturing.  A

value of 0.0 indicates maximum speed (possibly turning off texturing

completely), and 1.0 indicates finest texture quality. The default is 0.5.

"Specifying Different Levels of Complexity (left: OBJECT_SPACE; right: SCREEN_SPACE)"

shows the same object with different levels of complexity. The spheres at the left use objectÿspace

complexity and a complexity value of .5. The spheres at the right use screenÿspace complexity and a

complexity value of .06. The NURBS examples in Chapter 8 use the SoComplexity node.

This figure

(/usr/share/Insight/library/SGI_bookshelves/SGI_Developer/books/Inv_Mentor/figures/05.13.Comple
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xity.iv) is an INLINE object and can not be printed.

Media  Specifying Different Levels of Complexity (left: OBJECT_SPACE; right:

SCREEN_SPACE)

Tip:  Simpler scenes render more quickly than complex scenes. For example, to increase rendering

speed, use fewer lights, turn off textures or specify a lower textureÿquality value, and choose a simpler

drawing style, such as wireframe, and a lower complexity value. The viewer popÿup menu allows you

to disable certain of these features for faster rendering.

Units Node

Inventor lets you define your data in a variety of different units. It uses meters as its default units, but

you can use the SoUnits node to specify a different unit of measurement. The units node acts like a

scale node by scaling subsequent shapes into the specified units. SoUnits can adjust the amount it

scales an object by checking to see if any other units have been defined. The units node adjusts the

scale so that the previously defined units are no longer in effect.

The SoUnits node has one field:

units (SoSFEnum) defines the current unit of measurement to be applied to all subsequent shapes in

the scene graph. Possible values are as follows:

SoUnits::METERS

SoUnits::CENTIMETERS

SoUnits::MILLIMETERS

SoUnits::MICROMETERS

SoUnits::MICRONS

SoUnits::NANOMETERS

SoUnits::ANGSTROMS

SoUnits::KILOMETERS

SoUnits::FEET

SoUnits::INCHES

SoUnits::POINTS

SoUnits::YARDS

SoUnits::MILES

SoUnits::NAUTICAL_MILES

To render your data in units other than these, use an SoUnits node to set the current units back to

meters, followed by a scale node that scales from meters into the desired units.

Binding Nodes

Materials and normals are bound to shape nodes in different ways. The first part of this discussion

focuses on material binding, which is how the current materials specified in an SoMaterial node are

mapped onto the geometry of the shape nodes that use that particular material. Since normal binding

is analogous to material binding, this initial discussion focuses on material binding. (See Example 5ÿ1

earlier in this chapter for an example of using a normal binding node.)

An SoMaterialBinding node contains a value that describes how to bind materials to shapes. These

values include the following:
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SoMaterialBinding::DEFAULT

uses the "best" binding for each shape. Most shapes interpret this binding as

OVERALL.

SoMaterialBinding::NONE

  uses no material.

SoMaterialBinding::OVERALL

uses the first current material for the entire shape.

SoMaterialBinding::PER_PART

binds one material to each part in the shape. The definition of part depends on the

shape. For face sets and cubes, a part is a face. For line sets, a part is a line

segment. For cylinders, a part is the sides, top, or bottom.

SoMaterialBinding::PER_PART_INDEXED

binds one material to each part by index.

SoMaterialBinding::PER_FACE

binds one material to each face in the shape.

SoMaterialBinding::PER_FACE_INDEXED

binds one material to each face by index (for indexed vertex shapes).

SoMaterialBinding::PER_VERTEX

binds one material to each vertex in the shape.

SoMaterialBinding::PER_VERTEX_INDEXED

binds one material to each vertex by index (for indexed vertex shapes).

Each shape node interprets the binding type somewhat differently. For example, an SoSphere node

does not have parts, faces, or indices, so those binding types (PER_PART, PER_FACE,

PER_VERTEX) are meaningless for spheres. You can regard the value specified in the

materialÿbinding node as a hint to the shape about binding. If you specify a value that makes no sense

for a particular shape, such as PER_FACE for a cylinder, the shape  interprets the information the best

it can (in this case, it uses OVERALL, since a cylinder has no faces). See the Open Inventor C++

Reference Manual for information on how each shape interprets the different binding types.

Suppose you specify PER_PART for a cylinder. The cylinder has three parts (sides, top, bottom). If

the current material contains three valuesfor example, orange, purple, yellowthose values are

used for the three parts of the cylinder, producing orange sides, a purple top, and a yellow bottom. But

what happens if the number of current materials is greater than the number of parts? As you might

guess, Inventor simply ignores the extra materials if they’re not required. (If the current material list

contains five values, your cylinder ignores the last two values.) 

If the current material contains fewer values than the binding requires, Inventor cycles through the

current values as often as needed. For example, if you specify PER_FACE for a cube and the current

materials list contains three values (violet, periwinkle, teal), the results are as follows:

Face 1 violet

Face 2 periwinkle

Face 3 teal

Face 4 violet
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Face 5 periwinkle

Face 6 teal

Indexed Binding

So far, you’ve been using the values in the current material in order. You can, however, also use the

current material values in a new order if you specify either PER_FACE_INDEXED or

PER_VERTEX_INDEXED for an indexed vertex shape or PER_PART_INDEXED for a shape that

has parts. When you use these types of binding, Inventor refers to the materialsÿindex field of the

shape node (for example, SoIndexedFaceSet, SoIndexedLineSet). Instead of starting with the first

material and working through the list, Inventor indexes into the materials list in whatever order you

specify. 

As an example, consider a tetrahedron, represented as an SoIndexedFaceSet. The current materials

list (in an SoMaterial node) contains the following values:

Material List 

0 peach

1 khaki

2 white

and the materialIndex field (in an SoIndexedFaceSet node) contains these values:

Material Index

1

1

0

2

If you specify PER_FACE (not indexed), Inventor ignores the materialIndex field and cycles

through the materials list in order:

Face 1 peach

Face 2 khaki

Face 3 white

Face 4 peach

On the other hand, if you specify PER_FACE_INDEXED, Inventor uses the materialIndex field to

pull values out of the materials list as follows:

Face 1 khaki

Face 2 khaki

Face 3 peach

Face 4 white

This indexing is economical, since you can use a single, small set of materials for a wide variety of
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objects and purposes.

Binding per Vertex

Inventor offers two types of perÿvertex binding: PER_VERTEX and PER_VERTEX_INDEXED.

With nonindexed material binding per vertex, Inventor simply selects materials in order from the

materials list and assigns a material to each vertex of the shape node. It then interpolates the materials

between the vertices and across the faces of the shape.

Nuances (Advanced)

An SoMaterial node contains six fields, each of which holds multiple values. However, the number of

values in these six fields may not be equal. You might have five different values in the ambient,

diffuse, specular, and emissive fields, but only two values in the shininess field and one in the

transparency field. In such cases, Inventor chooses a cycle equal to the field with the greatest number

of values (in this case, five). In a field with fewer values, its last value is repeated until the end of the

cycle.

When PER_VERTEX binding is specified, a value of  ÿ1 (the default) for the materialIndex field or

the normalIndex field in an SoIndexedFaceSet (or any other indexed shape node) indicates to use the

coordinate indices for materials or normals. The defined constants SO_END_LINE_INDEX,

SO_END_FACE_INDEX, and SO_END_STRIP_INDEX can be used for this specification. This

saves time and space and ensures that the indices match up. When you use a "special" coordinate

index (such as SO_END_FACE_INDEX), the corresponding material index is skipped over so that

the arrays of indices match.

Tip: For better performance, use PER_FACE or PER_FACE_INDEXED binding with one material

node and one faceÿset node that defines multiple polygons, instead of OVERALL binding with

multiple material nodes and multiple face set nodes.

Using a MaterialÿBinding Node

Example 5ÿ5 illustrates different types of material binding using the dodecahedron created in Example

5ÿ2 (the common code has been omitted here). The scene graph for the example is shown in Figure

5ÿ8. When you run the program, you can type a number to select the type of material binding, as

follows:

 • 0 for PER_FACE (see Figure Inÿ8)

 • 1 for PER_VERTEX_INDEXED (see Figure Inÿ9)

 • 2 for PER_FACE_INDEXED (see Figure Inÿ10)
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Figure 5ÿ8 Scene Graph for Material Binding Example

Example 5ÿ5 Using Different Material Bindings

   // Which material to use to color the faces 

   // half red & half blue

   static long materialIndices[12] = {

      0, 0, 0, 0, 0, 0,

      1, 1, 1, 1, 1, 1,

   };

   switch(whichBinding) {

     case 0:

       // Set up binding to use a different color for each face 

       myBindingÿ>value = SoMaterialBinding::PER_FACE;

       break;

     case 1:

       // Set up binding to use a different color at each 

       // vertex, BUT, vertices shared between faces will 

       // have the same color.

       myBindingÿ>value = SoMaterialBinding::PER_VERTEX_INDEXED;

       break;

     case 2:

       myBindingÿ>value = SoMaterialBinding::PER_FACE_INDEXED;

       myIndexedFaceSetÿ>materialIndex.setValues(

                0, 12, materialIndices);

       break;

   }

Normal Binding

Normals are bound to shapes in almost the same manner as materials. The type of normal binding

specified in an SoNormalBinding node is a hint to the shape node about how to apply the current
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normals to that shape. Indexed shape nodes such as SoIndexedFaceSet and SoIndexedTriangleÿ

StripSet contain a normalIndex field used to store indices into the normals list (in an SoNormal

node). If the type of binding specified does not require indices (for example, PER_VERTEX), the 

normalIndex field is not used.

The main difference between indexed normals and indexed materials is that indexed normals do not

cycle. If used, normals must match up exactly with the faces, vertices, or parts of the object. If the

normals do not match exactly, then default normals are generated (see the following section). You 

must specify enough normals to bind to faces, parts, or vertices.

Generating Normals Automatically

Normals can be generated automatically for any shape derived from SoVertexShape. Because this

process involves a great deal of computation, we recommend that you use automatic caching or

explicitly turn on render caching so that the results are saved and can be reused (see Chapter 9 for

more information on caching). Inventor generates normals automatically if needed for rendering and

 • DEFAULT normal binding is used and 

 • You do not specify any normals or the number of normals is different from the number of

vertices

When Inventor generates normals automatically, it looks at the creaseAngle field of the 

SoShapeHints node. The crease angle is defined as the angle between the normals for two adjoining

faces. This angle indicates the maximum angle size at which separate normals are drawn for adjoining

faces. For example, if the crease angle is one radian and the normals for two adjoining faces form an

angle less than or equal to one radian, the faces share the same normal, which causes the edge to be

shaded smoothly. If the normals for the faces form an angle greater than one radian,  Inventor

calculates separate normals for each face, which creates a crease.  If you want an object to appear

sharply faceted, specify 0 as the creaseAngle. If you want an object to appear completely smooth,

specify PI as the creaseAngle.

Transformations

Unlike other property nodes, transformation nodes do not replace the current geometric

transformation element in the action state. Instead, they have a cumulative effect on the current

geometric transformation. In Figure 5ÿ9, for example, the transformations in node xfm1 are applied

first, followed by the transformations in node xfm2.
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Figure 5ÿ9 Cumulative Effect of Transformation Nodes

The cube is affected by only the transformation in xfm1. The sphere, however, is affected by both 

xfm1 and xfm2.

SoTransform Node

An SoTransform node includes the following fields:

translation (SoSFVec3f)

the translation in x, y, and z. The default value is 

[0.0  0.0  0.0].

rotation (SoSFRotation)

the rotation in terms of an axis and an angle. The default value is [0.0  0.0  1.0],

0.0.

scaleFactor (SoSFVec3f)

the scaling factor in x, y, and z. The default value for this field is [1.0  1.0  1.0].

scaleOrientation (SoSFRotation)

the rotation to apply before the scale is applied. The default value is [0.0  0.0  1.0],

0.0.

center (SoSFVec3f)

the center point for rotation and scaling. The default value for this field is [0.0  0.0

0.0].

Tip:  If you are using only one of the fields in an SoTransform node, you can substitute the

corresponding "lightweight" version.  For rotations, use SoRotation or SoRotationXYZ; for

translations, use SoTranslation; and for scaling, use SoScale.

Order of Transformations
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Within each SoTransform node, the fields are applied so that the last field in the node (the center)

affects the shape object first. The order is first the center, followed by the scale orientation, the scaling

factor, the rotation, and the translation.

Figure 5ÿ10 and  "Effects of Ordering Transformation Fields" show how different ordering of

transformations produces different results. At the left of , "Effects of Ordering Transformation Fields"

the temple is scaled, rotated, and then translated. The transform node closest to the shape object

affects the object first. You thus need to read backward through the code to see how the effects of the

transformations are felt. At the right of , "Effects of Ordering Transformation Fields" the temple is

rotated, then scaled and translated. Example 5ÿ6 shows the code for the two sets of transformations.

Figure 5ÿ10 Two Groups with Transformations in Different Order

This figure

(/usr/share/Insight/library/SGI_bookshelves/SGI_Developer/books/Inv_Mentor/figures/05.17.Transfo

rmOrdering.iv) is an INLINE object and can not be printed.

Media  Effects of Ordering Transformation Fields

Example 5ÿ6 Changing the Order of Transformations

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>

#include <Inventor/SoDB.h>

#include <Inventor/nodes/SoMaterial.h>
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#include <Inventor/nodes/SoRotationXYZ.h>

#include <Inventor/nodes/SoScale.h>

#include <Inventor/nodes/SoSeparator.h>

#include <Inventor/nodes/SoTranslation.h>

main(int, char **argv)

{

   // Initialize Inventor and Xt

   Widget myWindow = SoXt::init(argv[0]);

   if (myWindow == NULL) exit(1);

   SoSeparator *root = new SoSeparator;

   rootÿ>ref();

   // Create two separators, for left and right objects.

   SoSeparator *leftSep = new SoSeparator;

   SoSeparator *rightSep = new SoSeparator;

   rootÿ>addChild(leftSep);

   rootÿ>addChild(rightSep);

   // Create the transformation nodes.

   SoTranslation *leftTranslation  = new SoTranslation;

   SoTranslation *rightTranslation = new SoTranslation;

   SoRotationXYZ *myRotation = new SoRotationXYZ;

   SoScale *myScale = new SoScale;

   // Fill in the values.

   leftTranslationÿ>translation.setValue(ÿ1.0, 0.0, 0.0);

   rightTranslationÿ>translation.setValue(1.0, 0.0, 0.0);

   myRotationÿ>angle = M_PI/2;   // 90 degrees

   myRotationÿ>axis = SoRotationXYZ::X;

   myScaleÿ>scaleFactor.setValue(2., 1., 3.);

   // Add transforms to the scene.

   leftSepÿ>addChild(leftTranslation);   // left graph

   leftSepÿ>addChild(myRotation);        // then rotated

   leftSepÿ>addChild(myScale);           // first scaled

   rightSepÿ>addChild(rightTranslation); // right graph

   rightSepÿ>addChild(myScale);          // then scaled

   rightSepÿ>addChild(myRotation);       // first rotated

   // Read an object from file. (as in example 4.2.Lights)

   SoInput myInput;

   if (!myInput.openFile("temple.iv")) 

      return (1);

   SoSeparator *fileContents = SoDB::readAll(&myInput);

   if (fileContents == NULL) return (1);
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   // Add an instance of the object under each separator.

   leftSepÿ>addChild(fileContents);

   rightSepÿ>addChild(fileContents);

   // Construct a renderArea and display the scene.

   SoXtExaminerViewer *myViewer = 

            new SoXtExaminerViewer(myWindow);

   myViewerÿ>setSceneGraph(root);

   myViewerÿ>setTitle("Transform Ordering");

   myViewerÿ>viewAll();

   myViewerÿ>show();

   SoXt::show(myWindow);

   SoXt::mainLoop();

}



Chapter 6

Text

Chapter Objectives

After reading this chapter, you’ll be able to do the following:

 • Add 2D text annotations to a scene

 • Add 3D text to a scene, using a variety of customized profiles and fonts

This chapter describes the use of 2D and 3D text. Inventor’s 2D text provides you with a simple, quick

method for annotating your graphics. For greater embellishment and flexibility, use 3D text, which

offers you a wide range of possibilities for shaping the profiles of 3D fonts. Key concepts introduced

in this chapter include justification, spacing, font type and size, and profiles. Although the topic of

NURBS curves and surfaces is mentioned, that subject is explained fully in Chapter 8.

The first part of this chapter focuses on 2D text and introduces certain concepts common to both 2D

and 3D text, such as justification, spacing, and font type and size. The second part of the chapter

describes the use of 3D text. The main additional concept in the use of 3D text is defining the

crossÿsectional profile for the text. You can create profiles that are straight, curved, or a combination of

the two.

TwoÿDimensional Text

The text node, SoText2, defines text strings that are rendered as 2D screenÿaligned text. Just as other

shape nodes cause their shape to be drawn when encountered during rendering traversal, an SoText2

node causes text to be drawn, using the current values for font and color. Text attributes used by 

SoText2 are specified in the SoFont node. These attributes include font type and point size.

Twoÿdimensional text does not scale in size according to changes in distance from the camera.

SoText2 has the following fields:

string (SoMFString)

the text string or strings to display. You can specify multiple strings.

spacing (SoSFFloat)

the  spacing between lines of text. The default interval is 1.0. For a multipleÿstring

field, the vertical distance from the top of one line to the top of the next line is

equal to spacing times the font size.

justification  (SoSFEnum)

alignment of the text strings relative to the text origin. Justification can be LEFT

(the default), RIGHT, or CENTER. 

The text origin is positioned at (0, 0, 0), transformed by the current geometric transformation. Text is

drawn relative to the text origin, according to the specified justification. For example, if you specify

RIGHT justification, the right side of the text aligns with the text origin.

Font Type and Size

Use the SoFont node to specify a font type and size for subsequent text nodes (both 2D and 3D) in the

scene graph. This node contains the following fields:
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name (SoSFName)

font name. Check your release documentation for a list of font types that are

supported on your system.

size (SoSFFloat)

for SoText2, the point size in printer’s points. For SoText3, the size in object

space units (default = 10.0).

For example, to specify 140ÿpoint Courier bold italic:

SoFont *font = new SoFont;

fontÿ>name.setValue("CourierÿBoldOblique");

fontÿ>size.setValue(140);

Using 2D Text

Example 6ÿ1 renders a globe and uses 2D text to label the continents Africa and Asia.  The SoFont

node specifies 24ÿpoint Times Roman as the current font. Figure 6ÿ1 shows the scene graph for this

example.  "Simple Text" shows the image produced by this program.
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Figure 6ÿ1 2D Text Example

Example 6ÿ1 Using 2D Text

#include <Inventor/nodes/SoFont.h>

#include <Inventor/nodes/SoGroup.h>

#include <Inventor/nodes/SoSeparator.h>

#include <Inventor/nodes/SoSphere.h>

#include <Inventor/nodes/SoText2.h>

#include <Inventor/nodes/SoTexture2.h>

#include <Inventor/nodes/SoTranslation.h>

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>

main(int argc, char **argv)

{

   Widget myWindow = SoXt::init(argv[0]);

   if(myWindow == NULL) exit(1);

   SoGroup *root = new SoGroup;

   rootÿ>ref();

   // Choose a font.

   SoFont *myFont = new SoFont;

   myFontÿ>name.setValue("TimesÿRoman");

   myFontÿ>size.setValue(24.0);

   rootÿ>addChild(myFont);

   // Add the globe, a sphere with a texture map.

   // Put it within a separator.

   SoSeparator *sphereSep = new SoSeparator;

   SoTexture2  *myTexture2 = new SoTexture2;

   rootÿ>addChild(sphereSep);

   sphereSepÿ>addChild(myTexture2);

   sphereSepÿ>addChild(new SoSphere);

   myTexture2ÿ>filename = "globe.rgb";

   // Add Text2 for AFRICA, translated to proper location.

   SoSeparator *africaSep = new SoSeparator;

   SoTranslation *africaTranslate = new SoTranslation;

   SoText2 *africaText = new SoText2;

   africaTranslateÿ>translation.setValue(.25,.0,1.25);

   africaTextÿ>string = "AFRICA";

   rootÿ>addChild(africaSep);

   africaSepÿ>addChild(africaTranslate);

   africaSepÿ>addChild(africaText);
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This figure

(/usr/share/Insight/library/SGI_bookshelves/SGI_Developer/books/Inv_Mentor/figures/06.2.Text.iv.

RIKK) is an INLINE object and can not be printed.

Media  Simple Text

   // Add Text2 for ASIA, translated to proper location.

   SoSeparator *asiaSep = new SoSeparator;

   SoTranslation *asiaTranslate = new SoTranslation;

   SoText2 *asiaText = new SoText2;

   asiaTranslateÿ>translation.setValue(.8,.8,0);

   asiaTextÿ>string = "ASIA";

   rootÿ>addChild(asiaSep);

   asiaSepÿ>addChild(asiaTranslate);

   asiaSepÿ>addChild(asiaText);

   SoXtExaminerViewer *myViewer = 

            new SoXtExaminerViewer(myWindow);

   myViewerÿ>setSceneGraph(root);

   myViewerÿ>setTitle("2D Text");

   myViewerÿ>setBackgroundColor(SbColor(0.35, 0.35, 0.35));

   myViewerÿ>show();

   myViewerÿ>viewAll();

   SoXt::show(myWindow);

   SoXt::mainLoop();

}

ThreeÿDimensional Text

In contrast to 2D text, 3D text scales in size according to changes in distance from the camera and

does not always stay parallel to the screen. Threeÿdimensional text has depth. The face of a 3D letter

can join its sides at right angles (the default). Or you can bevel the edges of the letter by specifying

your own text profile, as shown at the right of Figure 6ÿ3, which  shows a beveled letter A. 

The chief advantages of 2D text are that it is faster than 3D text and, because it remains parallel to the

screen, is always readable. Advantages of 3D text are that it can be scaled and is generally prettier

than 2D text.
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Figure 6ÿ2 Defining a Customized Profile for 3D Text

SoText3 has the following fields:

string (SoMFString)

the text string or strings to display. You can specify multiple strings.

spacing (SoSFFloat)

the spacing between lines of text. The default interval is 1.0. For a multipleÿstring

field, the vertical distance from the top of one line to the top of the next line is

equal to spacing times the font size.

justification  (SoSFEnum)

alignment of the text strings relative to the text origin. Justification can be LEFT

(the default), RIGHT, or CENTER. LEFT means that the bottomÿleft front of the

first character in the first line is at (0.0, 0.0, 0.0). Successive lines start under the

first character. RIGHT means that the bottomÿright of the last character is at (0.0,

0.0, 0.0). Successive lines end under the last character of the first line. CENTER

means that the center of each line is at (0.0, 0.0, 0.0).

parts (SoSFBitMask)

visible parts of the text (FRONT, SIDES, BACK, or ALL).  The default is

FRONT.

Parts of 3D Text

Threeÿdimensional text has three parts:  front, sides, and back. Text uses the current material. If

material binding is specified as PER_PART, the front uses the first material, the sides use the second

material, and the back uses the third material. 

Tip:  Be aware that when you turn on SIDES and BACK of 3D text, you draw three times more

polygons than with FRONT only, so performance is slower.
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Profile

The profile describes the crossÿsection of the letter, as shown in Figure 6ÿ3. The profile is drawn in its

own 2D plane. This plane is perpendicular to the face of the text, as shown in Figure 6ÿ4. The origin of

this plane is at the edge of the letter. In this coordinate system, capital letters are one unit high. The

profile coordinates thus need to be in the range of 0.0 to about 0.3 or 0.4 times the size of the font.

Figure 6ÿ3 2D Plane for Drawing a Text Profile

Linear Profiles

Profiles are constructed from the current profile coordinates. If the profile is a collection of connected

straightÿline segments, use the SoLinearProfile node to specify how the coordinates are connected.

The profile coordinates are specified in an SoProfileCoordinate2 node, which precedes the 

SoLinearProfile node in the scene graph (see Example 6ÿ3). 

Curved Profiles

If the profile is curved, use the SoNurbsProfile node to specify how the coordinates are used. If you

are interested in creating curved profiles, first read Chapter 8 for detailed conceptual information on

NURBS curves. The coordinates themselves are specified in the SoProfileCoordinate2 node or the 

SoProfileCoordinate3 node, depending on whether the curve is nonrational or rational. (The terms 

nonrational and rational are also explained in Chapter 8.) 

Linking Profiles (Advanced)

If your text profile is a combination of linear and curved lines, you can join the linear profile to the
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curved profile. The base profile class, SoProfile, includes a linkage field that is inherited by both 

SoLinearProfile and SoNurbsProfile. This field indicates whether the profile is START_FIRST

(begin the first profile for the text), START_NEW (begin a new profile; for NURBS trimming only),

or ADD_TO_CURRENT (append this profile to the previous one).

Simple Use of 3D Text

Example 6ÿ2  illustrates a simple use of 3D text.  It renders a globe and then uses 3D text to label the

continents Africa and Asia.  The SoFont node specifies Times Roman as the current font. Figure 6ÿ5

shows the scene graph for this example.  "Simple 3D Text Example" shows the image produced by

this program.

Figure 6ÿ4 Scene Graph for Simple 3D Text Example

Example 6ÿ2 Using 3D Text

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>

#include <Inventor/nodes/SoFont.h>

#include <Inventor/nodes/SoGroup.h>

#include <Inventor/nodes/SoMaterial.h>

#include <Inventor/nodes/SoMaterialBinding.h>

#include <Inventor/nodes/SoSeparator.h>

#include <Inventor/nodes/SoSphere.h>

#include <Inventor/nodes/SoText3.h>

#include <Inventor/nodes/SoTexture2.h>
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#include <Inventor/nodes/SoTransform.h>

main(int, char **argv)

{

   Widget myWindow = SoXt::init(argv[0]);

   if(myWindow == NULL) exit(1);

   SoGroup *root = new SoGroup;

   rootÿ>ref();

This figure

(/usr/share/Insight/library/SGI_bookshelves/SGI_Developer/books/Inv_Mentor/figures/06.6.Simple3

DText.iv) is an INLINE object and can not be printed.

Media  Simple 3D Text Example

   // Choose a font.

   SoFont *myFont = new SoFont;

   myFontÿ>name.setValue("TimesÿRoman");

   myFontÿ>size.setValue(.2);

   rootÿ>addChild(myFont);

   // We’ll color the front of the text white, and the sides 

   // dark grey. So use a materialBinding of PER_PART and

   // two diffuseColor values in the material node.

   SoMaterial        *myMaterial = new SoMaterial;

   SoMaterialBinding *myBinding = new SoMaterialBinding;

   myMaterialÿ>diffuseColor.set1Value(0,SbColor(1,1,1));

   myMaterialÿ>diffuseColor.set1Value(1,SbColor(.1,.1,.1));

   myBindingÿ>value = SoMaterialBinding::PER_PART;

   rootÿ>addChild(myMaterial);

   rootÿ>addChild(myBinding);

   // Create the globe.

   SoSeparator *sphereSep = new SoSeparator;

   SoTexture2  *myTexture2 = new SoTexture2;

   rootÿ>addChild(sphereSep);

   sphereSepÿ>addChild(myTexture2);

   sphereSepÿ>addChild(new SoSphere);

   myTexture2ÿ>filename = "globe.rgb";

   // Add Text3 for AFRICA, transformed to proper location.

   SoSeparator *africaSep = new SoSeparator;

   SoTransform *africaTransform = new SoTransform;

   SoText3 *africaText = new SoText3;

   africaTransformÿ>rotation.setValue(SbVec3f(0,1,0),.4);

   africaTransformÿ>translation.setValue(.25,.0,1.25);
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   africaTextÿ>parts = SoText3::ALL;

   africaTextÿ>string = "AFRICA";

   rootÿ>addChild(africaSep);

   africaSepÿ>addChild(africaTransform);

   africaSepÿ>addChild(africaText);

   // Add Text3 for ASIA, transformed to proper location.

   SoSeparator *asiaSep = new SoSeparator;

   SoTransform *asiaTransform = new SoTransform;

   SoText3 *asiaText = new SoText3;

   asiaTransformÿ>rotation.setValue(SbVec3f(0,1,0),1.5);

   asiaTransformÿ>translation.setValue(.8,.6,.5);

   asiaTextÿ>parts = SoText3::ALL;

   asiaTextÿ>string = "ASIA";

   rootÿ>addChild(asiaSep);

   asiaSepÿ>addChild(asiaTransform);

   asiaSepÿ>addChild(asiaText);

   SoXtExaminerViewer *myViewer = 

            new SoXtExaminerViewer(myWindow);

   myViewerÿ>setSceneGraph(root);

   myViewerÿ>setTitle("3D Text");

   myViewerÿ>setBackgroundColor(SbColor(0.35, 0.35, 0.35));

   myViewerÿ>show();

   myViewerÿ>viewAll();

   SoXt::show(myWindow);

   SoXt::mainLoop();

}

Advanced Use of 3D Text (Advanced)

Example 6ÿ3 illustrates additional features available with 3D text. It specifies a beveled crossÿsection

for the text using the  SoProfileÿCoordinate2 and SoLinearProfile nodes. The text uses two different

materials one for the front of the text, and one for the back and sides. The font node specifies the

Times Roman font. Figure 6ÿ7 shows the scene graph for this figure.  "Advanced 3D Text Example"

shows the rendered image.
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Figure 6ÿ5 Scene Graph for Advanced 3D Text Example

Example 6ÿ3 Creating Beveled 3D Text

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>

#include <Inventor/nodes/SoFont.h>

#include <Inventor/nodes/SoGroup.h>

#include <Inventor/nodes/SoLinearProfile.h>

#include <Inventor/nodes/SoMaterial.h>

#include <Inventor/nodes/SoMaterialBinding.h>

#include <Inventor/nodes/SoPerspectiveCamera.h>

#include <Inventor/nodes/SoProfileCoordinate2.h>

#include <Inventor/nodes/SoText3.h>

main(int argc, char **argv)

{

   Widget myWindow = SoXt::init(argv[0]);

   if(myWindow == NULL) exit(1);

   SoGroup *root = new SoGroup;

   rootÿ>ref();

   // Set up camera. 

   SoPerspectiveCamera *myCamera = new SoPerspectiveCamera;

   myCameraÿ>position.setValue(0, ÿ(argc ÿ 1) / 2, 10);

   myCameraÿ>nearDistance.setValue(5.0);

   myCameraÿ>farDistance.setValue(15.0);

   rootÿ>addChild(myCamera);

This figure

(/usr/share/Insight/library/SGI_bookshelves/SGI_Developer/books/Inv_Mentor/figures/06.8.Complex

3DText.iv) is an INLINE object and can not be printed.
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Media  Advanced 3D Text Example

   // Let’s make the front of the text white, 

   // and the sides and back yellow.

   SoMaterial *myMaterial = new SoMaterial;

   SbColor colors[3];

   // diffuse

   colors[0].setValue(1, 1, 1);

   colors[1].setValue(1, 1, 0);

   colors[2].setValue(1, 1, 0);

   myMaterialÿ>diffuseColor.setValues(0, 3, colors);

   // specular

   colors[0].setValue(1, 1, 1);

   colors[1].setValue(1, 1, 0);

   colors[2].setValue(1, 1, 0);

   myMaterialÿ>specularColor.setValues(0, 3, colors);

   myMaterialÿ>shininess.setValue(.1);

   rootÿ>addChild(myMaterial);

   // Choose a font.

   SoFont *myFont = new SoFont;

   myFontÿ>name.setValue("TimesÿRoman");

   rootÿ>addChild(myFont);

   // Specify a beveled crossÿsection for the text.

   SoProfileCoordinate2 *myProfileCoords = 

            new SoProfileCoordinate2;

   SbVec2f coords[4];

   coords[0].setValue(.00, .00);

   coords[1].setValue(.25, .25);

   coords[2].setValue(1.25, .25);

   coords[3].setValue(1.50, .00);

   myProfileCoordsÿ>point.setValues(0, 4, coords);

   rootÿ>addChild(myProfileCoords);

   SoLinearProfile *myLinearProfile = new SoLinearProfile;

   long    index[4] ;

   index[0] = 0;

   index[1] = 1;

   index[2] = 2;

   index[3] = 3;

   myLinearProfileÿ>index.setValues(0, 4, index);

   rootÿ>addChild(myLinearProfile);

   // Set the material binding to PER_PART.

   SoMaterialBinding *myMaterialBinding = new SoMaterialBinding;

   myMaterialBindingÿ>
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            value.setValue(SoMaterialBinding::PER_PART);

   rootÿ>addChild(myMaterialBinding);

   // Add the text.

   SoText3 *myText3 = new SoText3;

   myText3ÿ>string.setValue("Beveled Text");

   myText3ÿ>justification.setValue(SoText3::CENTER);

   myText3ÿ>parts.setValue(SoText3::ALL);

   rootÿ>addChild(myText3);

   SoXtExaminerViewer *myViewer = 

            new SoXtExaminerViewer(myWindow);

   myViewerÿ>setSceneGraph(root);

   myViewerÿ>setTitle("Complex 3D Text");

   myViewerÿ>show();

   myViewerÿ>viewAll();

   SoXt::show(myWindow);

   SoXt::mainLoop();

}



Chapter 7

Textures

Chapter Objectives

After reading this chapter, you’ll be able to do the following:

 • Apply textures to objects in the scene graph using the default values for texture mapping

 • Apply textures to objects in the scene graph by specifying texture coordinates explicitly

 • Use textureÿcoordinate functions such as SoTextureCoordinatePlane and 

SoTextureCoordinateEnvironment to map textures onto objects

 • Create a texture map that can be stored in memory and applied to an object

 • Wrap a texture around an object so that the image is repeated

 • Specify how a texture affects the underlying shaded color of an object

This chapter explains how to use textures, which allow you to add realism and detail to scenes. In

Inventor, you create a 2D texture image and then apply this texture to the surface of a 3D shape object.

The rectangular patch of texture you define is stretched and compressed to "fit" the 3D shape

according to your specifications. Key concepts introduced in this chapter include texture map, 

wrapping textures, texture model, texture components, and environment mapping. 

Creating Textured Objects

Using textures, you can create a table with a wood grain, an orange with a dimpled, shiny surface, and

a field of grass. To do so, first create wood, orange peel, and grass textures and then apply the textures

to the various shape objects. Figure 7ÿ1 contrasts two sets of objects:  the objects on the right use

texture mapping, and the objects on the left do not use textures.
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Figure 7ÿ1 Texture Mapping

What Is a Texture Map?

A texture map is a 2D array of pixel information for a particular pattern, or texture.  Inventor, like

OpenGL, uses the letter s for the horizontal texture coordinate and t for the vertical texture coordinate.

A texture map is a 1×1 square, with coordinates ranging from 0.0 to 1.0 in both the s and t dimensions,

as shown in Figure 7ÿ2. Texture coordinates are assigned to each vertex of a polygon (this assignment

is done either explicitly by you, or automatically by Inventor). If the pixels in the texture do not match

up exactly with the pixels in the polygon, Inventor uses a filtering process to assign texture pixels to

the object. The texture is read from a file or from memory.

Nodes Used for Texture Mapping

This section describes use of the following node classes:

SoTexture2 specifies a 2D texture map to be used and associated parameters for texture

mapping.

SoTextureCoordinate2

explicitly defines the set of 2D texture coordinates to be used by subsequent

vertex shapes.

SoTextureCoordinateBinding

specifies how the current texture coordinates are to be bound to subsequent shape

nodes.
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SoTextureCoordinatePlane

SoTextureCoordinateEnvironment

 allow you to use a function to map from spatial

 coordinates to texture coordinates.

SoTextureCoordinateDefault

turns off any previous textureÿcoordinate function so that all following shapes use

their default texture coordinates.

SoTexture2Transform

defines a 2D transformation for the texture map.

Figure 7ÿ2 Texture Coordinates

The SoComplexity node has a textureQuality field that relates to texture mapping as well.  It allows

you to specify a value between 0.0 and 1.0, with 0.0 for the fastest rendering and 1.0 for the finest

texturing.  (In general, there is a tradeÿoff between speed and the quality of texturing.) The default

value for this field is 0.5.

Using the Defaults

Although you can affect how a texture is applied to an object in many ways, the simplest way to use

textures is to use the default values. If you use textures, you need only an SoTexture2 node (for the

texture) and a shape node (the target object). Example 7ÿ1, which displays a textured cube,  illustrates

this method. See "SoTexture2 Node" for a detailed description of the SoTexture2 node and its

defaults.

Example 7ÿ1 Using the Default Texture Values

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>

#include <Inventor/nodes/SoCube.h>
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#include <Inventor/nodes/SoCube.h>

#include <Inventor/nodes/SoSeparator.h>

#include <Inventor/nodes/SoTexture2.h>

main(int , char **argv)

{

   Widget myWindow = SoXt::init(argv[0]);

   if(myWindow == NULL) exit(1);

   SoSeparator *root = new SoSeparator;

   rootÿ>ref();

   // Choose a texture 

   SoTexture2 *rock = new SoTexture2;

   rootÿ>addChild(rock);

   rockÿ>filename.setValue("brick.1.rgb");

   // Make a cube

   rootÿ>addChild(new SoCube);

   SoXtExaminerViewer *myViewer = 

            new SoXtExaminerViewer(myWindow);

   myViewerÿ>setSceneGraph(root);

   myViewerÿ>setTitle("Default Texture Coords");

   myViewerÿ>show();

   SoXt::show(myWindow);

   SoXt::mainLoop();

}

Tip:  If several nodes use the same texture, position the texture node so that it can be used by all the

nodes.  When possible, group nodes to share textures first, then to share materials, because it is

expensive to switch textures.

Key Concepts

This section explains some special ways you can change how a texture is applied to a shape object.

These variations include the following:

 • How the texture wraps around the object

 • How the texture affects the object’s underlying colors

In addition, this section explains how to specify the pixels for a texture image to be stored in memory.

Wrapping a Texture around an Object

Texture coordinates range from 0.0 to 1.0 in each dimension (see "What Is a Texture Map?").  What

happens, then, if your polygon texture coordinates range from 0.0 to 2.0 in some dimension?  In such

cases, you have a choice:  
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 • The texture can either be repeated as many times as necessary to cover the face (or stretched to

cover the face) 

 • Or the last row of pixels can be repeated to cover the rest of the face (called clamping)

Figure 7ÿ3 shows examples of both types of wrapping. The cylinder on the left has the texture

repeated twice along its length and around its circumference. The cylinder on the right has the top

scanline clamped, by setting wrapT to CLAMP. See "SoTexture2 Node" for a description of the 

wrapS and wrapT fields.

How a Texture Affects the Underlying Colors (Advanced)

You can specify one of three texture models to use (see "SoTexture2 Node").  Each model causes the

texture map to affect the underlying colors of the polygon in different ways.  The model types are as

follows:

MODULATE  multiplies the shaded color by the texture color (the default). If the texture has an

alpha component, the alpha value modulates the object’s transparency.

DECAL replaces the shaded color with the texture color. If the texture has an alpha

component, the alpha value specifies the texture’s transparency, allowing the

object’s color to show through the texture.

BLEND uses the texture intensity to blend between the shaded color and a specified

constant blend color. 

Figure 7ÿ3 Wrapping the Texture around the Object

The MODULATE model can be used with any texture file. The BLEND model is used with oneÿ or

twoÿcomponent files. The DECAL model is used with threeÿ or fourÿcomponent files. See 

"Components of a Texture".

Tip: MODULATE works best on bright materials because the texture intensity, which is less than or
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equal to 1.0, is multiplied by the shaded color.

Figure Inÿ11 through Figure Inÿ14 show examples of each texture model. The image in Figure Inÿ11

shows the scene without a texture. The image in Figure Inÿ12 uses a MODULATE model, so the color

of the building is a combination of the texture and material colors. The image in Figure Inÿ13 uses a

DECAL model, so the color of the building is determined completely by the texture map. The image

in Figure Inÿ14 uses the BLEND model, so the color of the building blends between the underlying

material color and the blend color value (gold).

Tip: To create bright green polka dots on an object, create a black and white texture with white dots.

Then use the BLEND texture model with a green blend color.

See the glTexEnv() function in the OpenGL Reference Manual for the actual equations used to

calculate the final textured object colors.

Tip:  If you use MODULATE, you may want to surround your texture images with a oneÿpixel

border of white pixels and set wrapS and wrapT to CLAMP so that the object’s color is used where

the texture runs out.

Storing an Image (Advanced)

Texture maps are read from a file or from memory. For information on what image file formats your

platform supports, see your release documentation. 

You can store a texture map as an SoSFImage and then specify the image in the image field of the 

SoTexture2 node.  This section provides details on how to store the textureÿmap pixels in memory.

The texture, whether stored in a file or in memory, can contain from one to four components, as

described in the following section. 

Components of a Texture

A texture can be one of the following types:

 • Oneÿcomponent texturecontains only an intensity value. This type of texture is often referred

to as an intensity map. For example, an image of a mountain could use a oneÿcomponent texture

and vary the intensity of a constantÿcolor polygon to make the image more realistic.

 • Twoÿcomponent texturecontains an intensity value and an alpha (transparency) value. For

example, you can create a tree with leaves made of polygons of varying intensity, from dark

green to bright green. Then, you can vary the transparency at the edges of the leaf 

area, so that you can see around the edges of the leaves to the objects behind them.

 • Threeÿcomponent texturecontains red, green, and blue values. This is a redÿgreenÿblue image,

such as a photo or a commonly used texture such as brick, concrete, or cloth.

 • Fourÿcomponent texturecontains red, green, blue, and alpha (transparency) values. This texture

is similar to the RGB threeÿcomponent texture, but also contains transparency information. You

can use a fourÿcomponent texture to create a colorful New England maple tree in October using

the technique described previously for twoÿcomponent textures.

Tip: Oneÿ and twoÿcomponent textures are generally faster than threeÿ and fourÿcomponent textures,

since they require less computation.
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Storing an Image in Memory

Use the setValue() method to assign the value to the SoSFImage. This method requires you to supply

the size of the texture (width * height, in pixels), the number of components in the texture, and the

values of the components for each pixel (as an array of unsigned chars, with values 0 to 255).

For a oneÿcomponent texture, each byte in the array stores the intensity value for one pixel.  As shown

in Figure 7ÿ4, byte 0 is the lower left corner of the pixel map, and numbering of bytes is from left to

right within each row.

For example, to store a oneÿcomponent texture, the code would be

SoTexture2 *textureNode = new SoTexture2;

// A 3ÿbyÿ2 array of black and white pixels; the array is

//upsideÿdown here (the first pixel is the lower left corner)

unsigned char image [] = {

   255, 0,

   0, 255,

   255, 0

};

//Set the image field:

textureNodeÿ>image.setValue(SbVec2s(3,2), 1, image);

Figure 7ÿ4 Format for Storing a OneÿComponent Texture in Memory

For a twoÿcomponent texture, byte 0 is the intensity of the first pixel, and byte 1 is the alpha

(transparency) value for the first pixel.  Bytes 2 and 3 contain the information for pixel 2, and so on

(see Figure 7ÿ5).
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Figure 7ÿ5 Format for Storing a TwoÿComponent Texture in Memory

A threeÿcomponent texture requires three bytes to store the information for each pixel.  For the first

pixel, byte 0 contains the red value, byte 1 contains the green value, and byte 2 contains the blue value

(see Figure 7ÿ6). A fourÿcomponent texture requires four bytes for each pixel (red, green, blue, and

alpha values).

Figure 7ÿ6 Format for Storing a ThreeÿComponent Texture in Memory

SoTexture2 Node

An SoTexture2 node specifies the image for the texture map,  how the texture wraps around the

object, and the texture model to use. 

Fields of an SoTexture2 Node

The SoTexture2 node has the following fields:

filename (SoSFName)

specifies the name of the file to use as a texture map. 

See your release documentation for information on what file formats your system

supports. You specify either a file name or an image (see next field) for the

 The Inventor Mentor:   Programming ObjectÿOriented   3D Graphics with Open Inventor  ,  Release 2 ÿ Chapter

7,  Textures ÿ 8



If the filename field is set, the image file is read and the image field is set to the

pixels in that file.  If the image field is set, the filename field is set to " " (an

empty string; the default value). This behavior assures that there is no ambiguity

about which field is used for the texture.

image (SoSFImage)

specifies the color and number of pixels in the texture map.

wrapS (SoSFEnum),wrapT (SoSFEnum)

 specifies how the image wraps in the s (horizontal) and

t (vertical) directions (see Figure 7ÿ3).  Possible values

 are as follows:

 REPEAT specifies to repeat the map to fill the

  shape (the default)

 CLAMP specifies to repeat the last row of pixels

model (SoSFEnum)

specifies the texture model to use.  Possible values are

as follows:

MODULATE  multiplies the shaded color times the

  texture color (the default)

DECAL  replaces the shaded color with the

  texture color

BLEND  blends between the shaded color and

  the specified blend color (see the

blendColor field)

blendColor (SoSFColor)

specifies the color to blend when using the BLEND texture model.

The textureQuality field of the SoComplexity node controls the quality of filtering used to apply the

texture.  A value of 0.0 disables texturing completely, and a value of 1.0 specifies to use the highest

quality of texturing.  The default value for this field is 0.5.

Transforming a Texture Map

You can transform the texture map by inserting an SoTexture2Transform node into the scene graph

before the shape node. This node has a cumulative effect and is applied to the texture coordinates. As

shown in Figure 7ÿ7, the relationship between the SoTexture2Transform node and the 

SoTextureCoordinate2 node is analogous to the relationship between the SoTransform nodes and

the SoCoordinate nodes.
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Figure 7ÿ7 How the SoTexture2Transform Node Relates to the Texture Coordinates

The fields of the SoTexture2Transform node are as follows: 

translation (SoSFVec2f)

specifies a translation of the object’s texture coordinates.

rotation (SoSFFloat)

specifies a rotation of the object’s texture coordinates.  The rotation angle is in

radians.

scaleFactor (SoSFVec2f)

specifies how to scale the texture on the object.  The object’s s and t coordinates

are multiplied by the scale factor.  A scale factor of (2.0, 2.0) thus makes the

texture appear smaller on the object (see left side of Figure 7ÿ8). A scale factor of

(0.5, 0.5) makes the texture appear larger (see right side of Figure 7ÿ8).

center (SoSFVec2f)

specifies the center of the rotation and scale transformations.  The default is (0.0,

0.0), the lower left corner of the texture.

In Figure 7ÿ8, the sphere on the left has a texture scaleFactor of (2.0, 2.0), so the texture is repeated

twice in s and t. The sphere on the right has a texture scaleFactor of  (0.5, 0.5), so only half the texture

is used in both the s and t directions.
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Figure 7ÿ8 Effects of Different Scale Factors on a Texture Map

Mapping the Texture onto the Object

You can choose one of three techniques for mapping the 2D texture space onto the 3D object space:

1. Use the default texture coordinates.  The texture is applied in different ways for different shapes,

as described later in this section. 

2. For shapes derived from SoVertexShape, you can specify the texture coordinates explicitly.

With this method, you create an SoTextureCoordinate2  node and specify a texture coordinate

for each vertex in the shape.

3. Use one of the textureÿcoordinate functions to map the texture to the shape:

SoTextureCoordinatePlane

SoTextureCoordinateEnvironment

Techniques 1 and 3 are automatic, and hence easy to use. Technique 2 requires explicit coordinates

generated by you and is thus harder to use but gives more explicit control. Each of these three

techniques is described in detail in the following sections.

Using the Default Texture Mapping

Inventor uses the same technique for generating default texture coordinates for any shape that is

derived from SoVertexShape. First, it computes the bounding box of the object.  Then, it uses the

longest edge of the box as the horizontal (s) axis of the texture. It uses the next longest edge as the

vertical (t) axis of the texture. The value of the s coordinate ranges from 0.0 to 1.0, from one end of the

bounding box to the other.  The value of t ranges from 0 to n, where n equals the ratio of the second

longest side of the bounding box to the longest side (the effect is that the texture is applied to the

longest side of the box, without distortion).

For shapes that are not derived from SoVertexShape, the default texture coordinates are generated

differently for each shape. These shapes include SoCone, SoCube, SoCylinder, SoNurbsSurface, 

SoSphere, and SoText3. Default texture mapping for each of these shapes is described in the

following paragraphs.

SoSphere

For example, if your scene graph contains an SoTexture2 node followed by an SoSphere node, the

texture is applied to the sphere using default texture coordinates. The texture covers the entire surface

of the sphere, wrapping counterclockwise from the back of the sphere (see Figure 7ÿ9).  The texture

wraps around and connects to itself. A visible seam can result if the texture is nonrepeating.
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Figure 7ÿ9 Default Texture Mapping for SoSphere

Tip: Increasing the complexity of a simple shape improves the appearance of a texture on it.

SoCube

When a texture is applied to an SoCube using the default texture coordinates, the entire texture is

applied to each face.  On the front, back, right, and left sides of the cube, the texture is applied

rightÿside up. On the top, the texture appears rightÿside up if you tilt the cube toward you. On the

bottom, the texture appears rightÿside up if you tilt the cube away from you (see Figure 7ÿ10).
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Figure 7ÿ10 Default Texture Mapping for SoCube

SoCylinder

When a texture is applied to an SoCylinder using the default texture coordinates, the texture wraps

around the sides in a counterclockwise direction, beginning at the ÿz axis.  A circle cut from the center

of the texture square is applied to the top and bottom of the cylinder. When you look at the cylinder

from the +z axis, the texture on the top appears rightÿside up when the cylinder tips towards you. The

texture on the bottom appears rightÿside up when the cylinder tips away from you (see Figure 7ÿ11).
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Figure 7ÿ11 Default Texture Mapping for SoCylinder

SoCone

When a texture is applied to an SoCone using the default texture coordinates, the texture wraps

counterclockwise around the sides of the cone, starting at the back of the cone. The texture wraps

around and connects to itself. A visible seam can result if the texture is nonrepeating. A circle cut from

the center of the texture square is applied to the bottom of the cone just as it is applied to the bottom of

a cylinder (see Figure 7ÿ12).

Tip: Increasing the complexity of a textured cone is especially important because of the way the

texture is mapped near the tip of the cone. 
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Figure 7ÿ12 Default Texture Mapping for SoCone

SoNurbsSurface

When a texture is applied to a NURBS surface using the default texture coordinates, the edges of the

texture square are stretched to fit the NURBS patch (see Figure 7ÿ13). A surface can be made up of

many patches, like the teapot. If the NURBS surface is trimmed, so is the texture.

 The Inventor Mentor:   Programming ObjectÿOriented   3D Graphics with Open Inventor  ,  Release 2 ÿ Chapter

7,  Textures ÿ 15



Figure 7ÿ13 Default Texture Mapping for SoNurbsSurface

SoText3

When a texture is applied to the front of an SoText3 surface using the default texture coordinates,

texture coordinate (0,0) is at the text’s origin. The distance from 0.0 to 1.0 in s and t texture

coordinates is equal to the font size. For the sides of an SoText3 surface, using default texture

mapping, the s coordinate extends forward along the text profile, starting with texture coordinate 0.0 at

the back of the letter and increasing to the front.  A fontÿsize distance along the profile is a texture

coordinate distance of 1.0. The t coordinates extend around the outline of the character clockwise in a

similar fashion. (See Figure 7ÿ13.)
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Figure 7ÿ14 Default Texture Mapping for SoText3

Specifying Texture Coordinates Explicitly (Advanced)

Sometimes, you may want to explicitly specify the texture coordinates for each vertex of an object. In

this case, create an SoTextureCoordinate2 node and specify the set of 2D texture coordinates to be

applied to the vertices of the shape.

When you use this technique, you must specify a texture coordinate for each vertex in the shape. The

coordinates are specified in pairs: the s coordinate followed by the t coordinate.

Example 7ÿ2 shows specifying texture coordinates explicitly. It uses an 

SoTextureCoordinateBinding node to index into the textureÿcoordinates list.

Example 7ÿ2 Specifying Texture Coordinates Explicitly

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>

#include <Inventor/nodes/SoCoordinate3.h>

#include <Inventor/nodes/SoFaceSet.h>

#include <Inventor/nodes/SoNormal.h>

#include <Inventor/nodes/SoNormalBinding.h>

#include <Inventor/nodes/SoSeparator.h>

#include <Inventor/nodes/SoTexture2.h>

#include <Inventor/nodes/SoTextureCoordinate2.h>

#include <Inventor/nodes/SoTextureCoordinateBinding.h>

 The Inventor Mentor:   Programming ObjectÿOriented   3D Graphics with Open Inventor  ,  Release 2 ÿ Chapter

7,  Textures ÿ 17



main(int , char **argv)

{

   Widget myWindow = SoXt::init(argv[0]);

   if(myWindow == NULL) exit(1);

   SoSeparator *root = new SoSeparator;

   rootÿ>ref();

   // Choose a texture 

   SoTexture2 *brick = new SoTexture2;

   rootÿ>addChild(brick);

   brickÿ>filename.setValue("brick.1.rgb");

   // Define the square’s spatial coordinates

   SoCoordinate3 *coord = new SoCoordinate3;

   rootÿ>addChild(coord);

   coordÿ>point.set1Value(0, SbVec3f(ÿ3, ÿ3, 0));

   coordÿ>point.set1Value(1, SbVec3f( 3, ÿ3, 0));

   coordÿ>point.set1Value(2, SbVec3f( 3,  3, 0));

   coordÿ>point.set1Value(3, SbVec3f(ÿ3,  3, 0));

   // Define the square’s normal

   SoNormal *normal = new SoNormal;

   rootÿ>addChild(normal);

   normalÿ>vector.set1Value(0, SbVec3f(0, 0, 1));

   // Define the square’s texture coordinates

   SoTextureCoordinate2 *texCoord = new SoTextureCoordinate2;

   rootÿ>addChild(texCoord);

   texCoordÿ>point.set1Value(0, SbVec2f(0, 0));

   texCoordÿ>point.set1Value(1, SbVec2f(1, 0));

   texCoordÿ>point.set1Value(2, SbVec2f(1, 1));

   texCoordÿ>point.set1Value(3, SbVec2f(0, 1));

   // Define normal and texture coordinate bindings

   SoNormalBinding *nBind = new SoNormalBinding;

   SoTextureCoordinateBinding *tBind =

            new SoTextureCoordinateBinding;

   rootÿ>addChild(nBind);

   rootÿ>addChild(tBind);

   nBindÿ>value.setValue(SoNormalBinding::OVERALL);

   tBindÿ>value.setValue 

            (SoTextureCoordinateBinding::PER_VERTEX);

   // Define a FaceSet

   SoFaceSet *myFaceSet = new SoFaceSet;
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   rootÿ>addChild(myFaceSet);

   myFaceSetÿ>numVertices.set1Value(0, 4);

   SoXtExaminerViewer *myViewer = 

            new SoXtExaminerViewer(myWindow);

   myViewerÿ>setSceneGraph(root);

   myViewerÿ>setTitle("Texture Coordinates");

   myViewerÿ>show();

   SoXt::show(myWindow);

   SoXt::mainLoop();

}

Using a TextureÿCoordinate Function

A third way to map texture coordinates onto an object is through the use of a textureÿcoordinate

function. A textureÿcoordinate function defines the texture coordinates for an object based on the

position of each vertex in the object.  Each textureÿcoordinate function uses a different algorithm for

calculating the texture coordinates, as described in detail in the following subsections. These

functions allow you to specify texture mapping in a general way, without requiring you to define

explicit texture coordinates. The textureÿcoordinate function ignores the current texture coordinates

specified by an SoTextureCoordinate2 node.

Inventor includes two textureÿcoordinate functions:

SoTextureCoordinatePlane

projects a texture map through a plane.

SoTextureCoordinateEnvironment

 specifies that objects should look as if they reflect their environment (also known

as reflection mapping or environment mapping).

To use the default texture coordinates (in effect, to "turn off" the effect of any previous

textureÿcoordinate node in the scene graph without using a separator), use the 

SoTextureCoordinateDefault node.

SoTextureCoordinatePlane

SoTextureCoordinatePlane, probably the most commonly used textureÿcoordinate function, projects

a texture plane onto a shape object, as shown in Figure Inÿ15. You define an s and a t direction, which

are used to define a plane for the texture. The texture coordinate (s) is then defined by the following

equation, where coord is a coordinate in the object:
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The fields for SoTextureCoordinatePlane are as follows:

directionS (SoSFVec3f)

projection direction of s coordinate 

(default = 1.0, 0.0, 0.0)

directionT  (SoSFVec3f)

projection direction of t coordinate 

(default = 0.0, 1.0, 0.0)

The length of the direction vector equals the repeat interval of the texture (see Example 7ÿ3).

Example 7ÿ3 shows the use of SoTextureCoordinatePlane (see  "SoTextureCoordinatePlane with

Different Repeat Frequencies"). It draws three textureÿmapped spheres, each with a different repeat

frequency as defined by the fields of the SoTextureCoordinatePlane node.

Example 7ÿ3 Using SoTextureCoordinatePlane

#include <Inventor/nodes/SoMaterial.h>

#include <Inventor/nodes/SoSeparator.h>

#include <Inventor/nodes/SoSphere.h>

#include <Inventor/nodes/SoTexture2.h>

#include <Inventor/nodes/SoTexture2Transform.h>

#include <Inventor/nodes/SoTextureCoordinatePlane.h>

#include <Inventor/nodes/SoTranslation.h>

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>

main(int , char **argv)

{

   Widget myWindow = SoXt::init(argv[0]);

   if(myWindow == NULL) exit(1);

   SoSeparator *root = new SoSeparator;

   rootÿ>ref();

   // Choose a texture.

   SoTexture2 *faceTexture = new SoTexture2;

   rootÿ>addChild(faceTexture);

   faceTextureÿ>filename.setValue("sillyFace.rgb");

   // Make the diffuse color pure white

   SoMaterial *myMaterial = new SoMaterial;

   myMaterialÿ>diffuseColor.setValue(1,1,1);

   rootÿ>addChild(myMaterial);

This figure

(/usr/share/Insight/library/SGI_bookshelves/SGI_Developer/books/Inv_Mentor/figures/07.15.Texture

Function.iv) is an INLINE object and can not be printed.
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Media  SoTextureCoordinatePlane with Different Repeat Frequencies

   // This texture2Transform centers the texture about (0,0,0) 

   SoTexture2Transform *myTexXf = new SoTexture2Transform;

   myTexXfÿ>translation.setValue(.5,.5);

   rootÿ>addChild(myTexXf);

   // Define a texture coordinate plane node.  This one will 

   // repeat with a frequency of two times per unit length.

   // Add a sphere for it to affect.

   SoTextureCoordinatePlane *texPlane1 = new

             SoTextureCoordinatePlane;

   texPlane1ÿ>directionS.setValue(SbVec3f(2,0,0));

   texPlane1ÿ>directionT.setValue(SbVec3f(0,2,0));

   rootÿ>addChild(texPlane1);

   rootÿ>addChild(new SoSphere);

   // A translation node for spacing the three spheres.

   SoTranslation *myTranslation = new SoTranslation;

   myTranslationÿ>translation.setValue(2.5,0,0);

   // Create a second sphere with a repeat frequency of 1.

   SoTextureCoordinatePlane *texPlane2 = new

            SoTextureCoordinatePlane;

   texPlane2ÿ>directionS.setValue(SbVec3f(1,0,0));

   texPlane2ÿ>directionT.setValue(SbVec3f(0,1,0));

   rootÿ>addChild(myTranslation);

   rootÿ>addChild(texPlane2);

   rootÿ>addChild(new SoSphere);

   // The third sphere has a repeat frequency of .5

   SoTextureCoordinatePlane *texPlane3 = new

            SoTextureCoordinatePlane;

   texPlane3ÿ>directionS.setValue(SbVec3f(.5,0,0));

   texPlane3ÿ>directionT.setValue(SbVec3f(0,.5,0));

   rootÿ>addChild(myTranslation);

   rootÿ>addChild(texPlane3);

   rootÿ>addChild(new SoSphere);

   SoXtExaminerViewer *myViewer = new SoXtExaminerViewer(myWindow);

   myViewerÿ>setSceneGraph(root);

   myViewerÿ>setTitle("Texture Coordinate Plane");

   myViewerÿ>show();

   SoXt::show(myWindow);

   SoXt::mainLoop();

}
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SoTextureCoordinateEnvironment

The SoTextureCoordinateEnvironment node specifies that subsequent objects should reflect their

environment, just as a shiny round Christmas ornament reflects its surroundings. For best results, the

texture map specified should be a spherical reflection map. See the OpenGL Programming Guide,

Chapter 9, for tips on how to create a spherical reflection map.

When SoTextureCoordinateEnvironment is used, a calculation is made at each vertex of the

polygon to determine where a vector from the viewpoint to the vertex would be reflected.  This

reflection point defines the texture coordinate for that point on the polygon. See Figure Inÿ17 and 

Figure Inÿ18.

Because of the way environment mapping is implemented in OpenGL, environment maps are accurate

only if the camera does not move relative to the environment being reflected.



Chapter 8

Curves and Surfaces

Chapter Objectives

After reading this chapter, you’ll be able to do the following:

 • Create a variety of curves and surfaces

 • Trim areas of NURBS surfaces

 • Use NURBS profiles to specify the beveled edges of 3D text

(Advanced)

Curves and curved surfaces provide a convenient mathematical means of describing a geometric

model. Instead of using drawings, metal strips, or clay models, designers can use these mathematical

expressions to represent the surfaces used on airplane wings, automobile bodies, machine parts, or

other smooth curves and surfaces. Inventor uses a particular type of parametric polynomial, a NURBS

(NonÿUniform Rational BÿSpline), to represent curves and surfaces. This entire chapter can be

considered advanced material.

Overview

To use NURBS curves and surfaces in an Inventor program, you need to develop an intuitive feel for

a number of basic concepts. This section defines these key concepts and shows how they pertain to the

various Inventor NURBSÿrelated classes. For a more rigorous mathematical description of a NURBS,

see "Suggestions for Further Reading" at the end of this chapter.

Classes Used with NURBS Shapes

This chapter describes use of the following classes:

SoNurbsCurve

represents a NURBS curve. (This is where the knot sequence is specified.)

SoNurbsSurface

represents a NURBS surface. (This is where the knot sequence is specified.)

SoNurbsProfile

trims regions from a NURBS surface using a NURBS curve.

SoLinearProfile

trims regions from a NURBS surface using connected line segments.

SoProfileCoordinate2

specifies 2D coordinates for trim curves.

SoProfileCoordinate3

 specifies rational 2D coordinates for trim curves.

SoCoordinate3

specifies the control points of a NURBS surface or curve.

SoCoordinate4 

specifies rational control points of a NURBS surface or curve.
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Parametric Curves

For simplicity, this discussion first explains the important NURBS concepts in terms of curves, which

are lines in 3D space, such as a helix. Once you understand how to define a NURBS curve, defining a

NURBS surface is a simple extension of your knowledge (see "NURBS Surfaces").

A NURBS curve or surface is parametricthat is, the equations that describe it depend on variables

(or parameters) that are not explicitly part of the geometry. A NURBS curve is described in terms of

one parameter, u. The following three functions map this single parameter into x y z space:

x = f(u)

y = g(u)

z = h(u)

By sweeping through different values of u (that is, through parameter space), it is possible to evaluate

the equations and determine the x, y, and z values for points on the curve in object space. Figure 8ÿ1

represents this mapping of parameter space to object space. 

Figure 8ÿ1 Mapping a Parametric Curve to Object Space

Key Concepts

Your job as programmer is to define the components that make up the parametric functions, referred

to as f(), g(), and h() in the previous section. Instead of explicitly specifying the equations, you specify

the following three things:

 • Control pointsusing SoCoordinate3 or SoCoordinate4 nodes

 • Knot sequenceusing SoNurbsCurve or SoIndexedNurbsCurve nodes

 • Orderimplicitly defined by number of control points and number of knots

A brief description of each is provided in this section, along with discussions of how they are related

and how continuity is defined. A more elaborate description is provided in "Basis Function".

Control points are points in object space that affect the shape of the curve in some way. The curve
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may pass near the control points, as shown at the left in Figure 8ÿ2, or pass through some of them, as

shown at the right in the figure. The control points can be a set of data points through which you want

to fit a curve, or a grid of points used to describe a curved surface such as the hood of a car. In

Inventor, control points are specified in an SoCoordinate3 or SoCoordinate4 node.

Figure 8ÿ2 Using Control Points to Shape the Curve

The knot sequence defines how the control points affect the curve. The knot sequence is simply a list

of nondecreasing numbers.  These numbers determine whether the curve passes through and

interpolates between some of the control points (an interpolating curve) or passes near the control

points (an approximating curve). In Inventor, the knot sequence is specified in an SoNurbsCurve or 

SoNurbsSurface (or SoIndexedNurbsCurve, SoIndexedNurbsSurface) node.

The order of a curve determines the form of the parametric equations. The order is equal to one plus

the maximum exponent (degree) of the variables in the parametric equations. For example, the

parametric equations of a cubic curve (degree = 3, order = 4) have the following form:

x(u) = Axu3 + Bxu2 + Cxu + Dxy(u) = Ayu3 + Byu2 + Cyu + Dyz(u) =

 Azu3 + Bzu2 + Czu + Dz

Similarly, the parametric equations of a quadratic curve (degree = 2, 

order = 3) have the following form:

x(u) = Axu2 + Bxu + Cxy(u) = Ayu2 + Byu + Cyz(u) = Azu2 + Bzu + Cz

Alternatively, you may wish to think of the order as the number of coefficients in the parametric

equation. The order of a curve affects how smooth the curve can be (see "Continuity of a Curve").

In Inventor, the order of a curve is not explicily specified.  Order is equal to 

number_of_knots number_of_control_points

Control Points and Order

The order of the curve determines the minimum number of control points necessary to define the

curve. You must have at least order control points to define a curve. (So for a curve of order 4, you

must have at least four control points.)  To make curves with more than order control points, you can

join two or more curve segments into a piecewise curve (see Figure 8ÿ3).
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Figure 8ÿ3 Piecewise Cubic Curve

The order of the curve also affects how the curve behaves when a control 

point is moved. In Inventor, a NURBS curve can have an order up to 8. However, higher orders

introduce oscillation into the curve and can behave unpredictably when a control point moves.  Cubic

curves (order of 4) are the most commonly used curves, since they provide enough control for most

geometric modeling applications without the drawbacks of higherÿorder curves.

Continuity of a Curve

A breakpoint is where two curve segments meet within a piecewise curve. The continuity of a curve at

a breakpoint describes how those curves meet at the breakpoint. Figure 8ÿ4 shows four possible types

of continuity:

No continuity The curves do not meet at all.

C0 continuity The endpoints of the two curves meet (the curves have positional continuity

only). There may be a sharp point where they meet.

C1 continuity The curves have identical tangents at the breakpoint. (The tangent is the slope at

the breakpoint.) The curves join smoothly. C1 curves also have positional

continuity.

C2 continuity The curves have identical curvature at the breakpoint. (Curvature is defined as the

rate of change of the tangents.) Curvature continuity implies both tangential and

positional continuity.

The order of a curve determines the maximum continuity possible. Thus, you may need a higher order

curve if you need more continuity. The maximum continuity is order ÿ 2. For example, for cubic

curves, the maximum continuity possible is C2 (curvature continuity).
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Figure 8ÿ4 Continuity of a Curve

Basis Function

Each control point is like a magnet tugging on the curve (see Figure 8ÿ5). The strength and extent of

these magnets is described mathematically by a particular basis function. For a NURBS, this function

is the Bÿspline basis function. (See "Suggestions for Further Reading" for references presenting a more

thorough derivation of the Bÿspline basis function.)
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Figure 8ÿ5 Control Points Influence the Curve

The Bÿspline basis function (Figure 8ÿ6) describes the curve in parameter (u) space. For each value of 

u:

contribution_of_each_control_point  =  location * its_basis _function

The resulting curve is equal to the sum of the contributions from each control point. Note that often a

control point (a "magnet") affects the entire curve, although its influence becomes weaker as you

move away from it. The exact extent of the influence is determined by the knot sequence.

Figure 8ÿ6 BÿSpline Basis Function

Knot Sequence

The distribution of basis functions in parameter space is controlled by the knot sequence (also referred

to as the knot vector, or the knots). The knot sequence is a list of nondecreasing values. Each knot

defines the beginning and end of a basis function. There must be exactly (order + number of control

points) values in the knot sequence. The curve is defined only where order basis functions overlap (as

shown in Figure 8ÿ7). If the knot values are singular (no repeating values) and regularly spaced, the

curve is a uniform Bÿspline (as shown in Figure 8ÿ7).

Figure 8ÿ7 shows a uniform knot sequence. Four control points are defined (in object space). The top

of the figure illustrates the four basis functions for each of the control points. The basis functions

overlap where u = 3.0 to

u = 4.0, as indicated by the shaded portion.  This figure also illustrates another important NURBS

relationship: at any point where the curve is defined, the sum of all basis functions is equal to 1. 
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Figure 8ÿ7 Uniform Knot Sequence

Knot Multiplicity

Distinct knot values define segments.  A basis function always spans order segments. In Figure 8ÿ7,

for example, the basis function beginning at 0 and ending at 4 spans four segments (knot 0 to knot 1;

knot 1 to knot 2; knot 2 to knot 3; and knot 3 to knot 4). 

Duplicating values in the knot sequence increases that value’s multiplicity and causes more than one

basis function to start at that point. This also causes a corresponding decrease in the continuity of the

curve. Figure 8ÿ8 uses the same two sets of control points, with different knot sequences for the top

and bottom curves. Notice how the bottom curve has C0 continuity, and the top curve has C2

continuity. This relationship between multiplicity and the continuity of the curve can be expressed

mathematically as follows:

CORD ÿ (M + 1)

where ORD equals the order of the curve and M is the multiplicity.

The maximum multiplicity (maximum times you can repeat a knot) is order. Table 8ÿ1 shows knot

multiplicity and the resulting continuity.
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Figure 8ÿ8 Knot Multiplicity

Knot Multiplicity Continuity
Conditions

Continuity

1 positional
tangential
curvature

C2

2 positional
tangential

C1

3 positional C0

4 none none

Table 8ÿ1 Continuity and Knot Multiplicity for Cubic Curves

Common Knot Sequences

Several common knot sequences are extremely useful for a wide variety of applications:
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Uniform cubic Bÿspline

knots are uniformly spaced; single multiplicity

(for example, 0, 1, 2, 3, 4, 5, 6, 7)

Cubic Bezier curvemultiplicity = 4 at beginning and end(for example, 0, 0, 0, 0, 1, 1, 1, 1)

Uniform cubic Bÿspline that passes through endpoints 

multiplicity=  4 at beginning and end; uniformly spaced single knots between

(for example, 0, 0, 0, 0, 1, 2, 3, 4, 5, 5, 5, 5)

The behavior of the Bezier curve and the uniform cubic Bÿspline makes them ideal for geometric

modeling and CAD applications.  The curve passes through the first and last control points (see Figure

8ÿ9). A line drawn through the first and second control points determines the tangent at the first

endpoint. A line drawn through the last two control points determines the tangent at the second

endpoint.

Figure 8ÿ9 Cubic Bezier Curve

Summary of NURBS Relationships

The previous pages have outlined important relationships among NURBS parameters. They can be

summarized as follows:

 • order = degree + 1, where

degree is the maximum exponent in the parametric equations

 • To define a curve, you need at least order control points

 • Maximum continuity = order ÿ 2

 • Number of knots = order + number of control points

 • Knot values must be nondecreasing

 • Maximum knot multiplicity = order
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 • Continuity = order ÿ ( multiplicity + 1 )

Thus, for cubic curves, the order equals 4. You need at least four control points to define a cubic

curve. The maximum continuity for cubics is C2 continuity. You need a minimum of eight knots in

the knot sequence. The maximum knot multiplicity of cubics is 4.

Rational Curves

Each control point has an associated weight that influences the shape of its basis function. As shown in

Figure 8ÿ10, this is analogous to having magnets of differing sizes tugging on the curve.  For 

nonrational curves, all control points have a weight of 1.0. For rational curves, the control points

have differing weights.  If a control point has a weight greater than 1.0, its influence on the curve is

greater than that of control points with weights 

of 1.0.

The parametric equations for rational curves have both a numerator and a denominator, which results

in a ratio. (The numerator is the original parametric equation. The denominator is another parametric

equation that takes the weight into account.) We recommend that the weight be a value greater than 0.

Use an SoCoordinate4 node to specify x, y, z, and w (weight) values. 

Rational curves and surfaces are required to accurately represent conic sections, spheres, and

cylinders. For more information, see "Suggestions for Further Reading".

Figure 8ÿ10 Rational Curves

NÿUÿRÿBÿS Spells NURBS

If you’ve made it this far into the discussion of the NURBS, you now understand all the buzzwords

that form this acronym:

NonÿUniform Knot spacing need not be uniform.
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Rational The parametric equations describing the curve can have a denominator (that is,

they can be ratios).

BÿSpline The influence of the control points is based on the Bÿspline basis function.

Examples of NURBS Curves

This section provides two examples of NURBS curves:  a Bÿspline curve and a uniform Bÿspline

curve that passes through the end control points.

BÿSpline Curve

Example 8ÿ1 creates and displays a Bÿspline curve. Seven control points are defined. The knot vector

contains ten knots. Since

number_of_knots = order + number_of_control_points

this curve has an order of 3. It has a multiplicity of 2 (one knot is used twice). This curve has a

continuity of C0.

Figure 8ÿ11 shows the scene graph for the nodes in this example. Figure 8ÿ12  shows the resulting

curve.

Figure 8ÿ11 Scene Graph for BÿSpline Curve Example
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Example 8ÿ1 Creating a BÿSpline Curve

// The control points for this curve

float pts[7][3] = {

   { 4.0, ÿ6.0,  6.0},

   {ÿ4.0,  1.0,  0.0},

   {ÿ1.5,  5.0, ÿ6.0},

   { 0.0,  2.0, ÿ2.0},

   { 1.5,  5.0, ÿ6.0},

   { 4.0,  1.0,  0.0},

   {ÿ4.0, ÿ6.0,  6.0}};

// The knot vector

float knots[10] = {1, 2, 3, 4, 5, 5, 6, 7, 8, 9};

// Create the nodes needed for the BÿSpline curve.

SoSeparator *

makeCurve()

{

   SoSeparator *curveSep = new SoSeparator();

   curveSepÿ>ref();

   // Set the draw style of the curve.

   SoDrawStyle *drawStyle  = new SoDrawStyle;

   drawStyleÿ>lineWidth = 4;

   curveSepÿ>addChild(drawStyle);

   // Define the NURBS curve including the control points

   // and a complexity.

   SoComplexity  *complexity = new SoComplexity;

   SoCoordinate3 *controlPts = new SoCoordinate3;

   SoNurbsCurve  *curve      = new SoNurbsCurve;

   complexityÿ>value = 0.8;

   controlPtsÿ>point.setValues(0, 7, pts);

   curveÿ>numControlPoints = 7;

   curveÿ>knotVector.setValues(0, 10, knots);

   curveSepÿ>addChild(complexity);

   curveSepÿ>addChild(controlPts);

   curveSepÿ>addChild(curve);

   curveSepÿ>unrefNoDelete();

   return curveSep;

}

Uniform BÿSpline Curve Passing through Endpoints

Example 8ÿ2 creates a uniform Bÿspline curve that passes through the end control points. The knot

sequence has a multiplicity of 4 at the beginning and end, which causes the curve to pass through the
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first and last control points. In between, the curve is uniform.

The scene graph for the nodes in this example has the same structure as the scene graph shown in 

Figure 8ÿ11.  "A Uniform BÿSpline Curve that Passes through the Endpoints" shows the resulting

curve.

Example 8ÿ2 Creating a Uniform BÿSpline Curve

// The control points for this curve

float pts[13][3] = {

   { 6.0,  0.0,  6.0},

   {ÿ5.5,  0.5,  5.5},

   {ÿ5.0,  1.0, ÿ5.0},

   { 4.5,  1.5, ÿ4.5},

   { 4.0,  2.0,  4.0},

   {ÿ3.5,  2.5,  3.5},

   {ÿ3.0,  3.0, ÿ3.0},

   { 2.5,  3.5, ÿ2.5},

   { 2.0,  4.0,  2.0},

   {ÿ1.5,  4.5,  1.5},

   {ÿ1.0,  5.0, ÿ1.0},

This figure

(/usr/share/Insight/library/SGI_bookshelves/SGI_Developer/books/Inv_Mentor/figures/08.13.UniCur

ve.iv) is an INLINE object and can not be printed.

Media  A Uniform BÿSpline Curve that Passes through the Endpoints

   { 0.5,  5.5, ÿ0.5},

   { 0.0,  6.0,  0.0}};

// The knot vector

float knots[17] = {

   0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 10, 10};

// Create the nodes needed for the BÿSpline curve.

SoSeparator *

makeCurve()

{

   SoSeparator *curveSep = new SoSeparator();

   curveSepÿ>ref();

   // Set the draw style of the curve.

   SoDrawStyle *drawStyle  = new SoDrawStyle;

   drawStyleÿ>lineWidth = 4;

   curveSepÿ>addChild(drawStyle);

   // Define the NURBS curve including the control points

   // and a complexity.
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   SoComplexity  *complexity = new SoComplexity;

   SoCoordinate3 *controlPts = new SoCoordinate3;

   SoNurbsCurve  *curve      = new SoNurbsCurve;

   complexityÿ>value = 0.8;

   controlPtsÿ>point.setValues(0, 13, pts);

   curveÿ>numControlPoints = 13;

   curveÿ>knotVector.setValues(0, 17, knots);

   curveSepÿ>addChild(complexity);

   curveSepÿ>addChild(controlPts);

   curveSepÿ>addChild(curve);

   curveSepÿ>unrefNoDelete();

   return curveSep;

}

NURBS Surfaces

A surface differs from a curve only in that it has two parametric directions (u and v) instead of one (

Figure 8ÿ14), and that the order and knot vector must be specified for both parameters.

Figure 8ÿ12 Curved Surfaces

The two parametric dimensions, u and v, are mapped to 3D object space. As with curves, control

points are specified in object space. The u and v parameters can have a different order, and a different

knot sequence, although they are often the same. The order for each dimension is specified as 

order = number_of_knots number_of_control_points

Tip: Put NURBS shapes under their own separator to facilitate caching.

Bezier Surface

Example 8ÿ3 creates a plain Bezier surface.  The knot vectors define a cubic Bezier surface

(multiplicity 4 at beginning and end). The surface is order 4 with 16 control points arranged in a

fourÿbyÿfour grid.  The u and v knot vectors each have a length of 8. Figure 8ÿ15 shows the scene

graph for the nodes in this example. Notice that the points used as control points (controlPts) must

precede the NURBS node (surface) in the scene graph.  "Bezier Surface" shows the rendered image.
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Figure 8ÿ13 Scene Graph for a Bezier Surface

Example 8ÿ3 Bezier Surface

// The control points for this surface

float pts[16][3] = {

   {ÿ4.5, ÿ2.0,  8.0},

   {ÿ2.0,  1.0,  8.0},

   { 2.0, ÿ3.0,  6.0},

   { 5.0, ÿ1.0,  8.0},

   {ÿ3.0,  3.0,  4.0},

   { 0.0, ÿ1.0,  4.0},

   { 1.0, ÿ1.0,  4.0},

   { 3.0,  2.0,  4.0},

   {ÿ5.0, ÿ2.0, ÿ2.0},
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   {ÿ2.0, ÿ4.0, ÿ2.0},

   { 2.0, ÿ1.0, ÿ2.0},

   { 5.0,  0.0, ÿ2.0},

   {ÿ4.5,  2.0, ÿ6.0},

   {ÿ2.0, ÿ4.0, ÿ5.0},

   { 2.0,  3.0, ÿ5.0},

   { 4.5, ÿ2.0, ÿ6.0}};

// The knot vector

float knots[8] = {

   0, 0, 0, 0, 1, 1, 1, 1};

This figure

(/usr/share/Insight/library/SGI_bookshelves/SGI_Developer/books/Inv_Mentor/figures/08.16.BezSur

f.iv) is an INLINE object and can not be printed.

Media  Bezier Surface

// Create the nodes needed for the Bezier surface.

SoSeparator *

makeSurface()

{

   SoSeparator *surfSep = new SoSeparator();

   surfSepÿ>ref();

   // Define the Bezier surface including the control

   // points and a complexity.

   SoComplexity  *complexity = new SoComplexity;

   SoCoordinate3 *controlPts = new SoCoordinate3;

   SoNurbsSurface  *surface  = new SoNurbsSurface;

   complexityÿ>value = 0.7;

   controlPtsÿ>point.setValues(0, 16, pts);

   surfaceÿ>numUControlPoints = 4;

   surfaceÿ>numVControlPoints = 4;

   surfaceÿ>uKnotVector.setValues(0, 8, knots);

   surfaceÿ>vKnotVector.setValues(0, 8, knots);

   surfSepÿ>addChild(complexity);

   surfSepÿ>addChild(controlPts);

   surfSepÿ>addChild(surface);

   surfSepÿ>unrefNoDelete();

   return surfSep;

}

Tip:  If a NURBS surface is changing, inserting an SoComplexity node with SCREEN_SPACE

specified as the type may improve performance, especially if the NURBS surfaces are far away.

Trimming NURBS Surfaces
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Profile curves are used to trim (cut areas away from) a NURBS surface.  Profile curves themselves are

not rendered; they are simply used to trim any subsequent NURBS surfaces in the scene graph. Like

transformations, profile curves are pushed and popped by separator groups, yet they accumulate with

each other.

Profile curves are often used to perform a stencil operation, such as cutting a shape out of a cloth

surface with a pair of scissors. They are also used to remove sharp corners from a NURBS surface.

See also Example 6ÿ3, which uses a profile curve with 3D text.

Trimming NURBS surfaces is considered an advanced topic. If this is your first exposure to a

NURBS, experiment first with curves and surfaces, then move on to trimmed surfaces.

A profile curve can consist of a linear profile curve (SoLinearProfile), a NURBS curve (

SoNurbsProfileCurve), or a combination of the two. For coordinates, it uses either 

SoProfileCoordinate2 (for nonrational profile curves)  or SoProfileCoordinate3 (for rational profile

curves). The main requirement is that the composite profile curve make a complete loop, with its first

point repeated as its last point. In addition, it cannot be selfÿintersecting. 

Tip: If you want your profile curve to be straight but follow the surface, use an 

SoNurbsProfileCurve with an order 2 curve. (See Example 8ÿ4.) Linear profiles create straight trim

edges in object space that do not follow the surface. You will seldom use an SoLinearProfile to trim

a NURBS surface.

The direction in which the points of a profile curve are defined is significant. If the profile curve is

defined in a clockwise direction, the area inside the curve is discarded and the area outside the curve is

retained. If the profile curve is defined in a counterclockwise direction, the area inside is retained and

the area outside is discarded. Profile curves can be nested inside each other but cannot intersect each

other. The outermost profile curve must be defined in a counterclockwise direction (see Example 8ÿ4).

Profile curves are defined in parameter  space, which is mapped to 

object space.

Example 8ÿ4 adds profile curves to the surface created in Example 8ÿ3. Figure 8ÿ17 shows the scene

graph for the nodes in this example. Notice that the points used as control points (controlPts) must

precede the NURBS node (surface)  in the scene graph. Similarly, the points that define the profile

curve (trimPts) must precede the profileÿcurve nodes (nTrim1, nTrim2, and nTrim3). And, naturally,

the profileÿcurve nodes must precede the NURBS surface to be trimmed.
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Figure 8ÿ14 Scene Graph for Trimmed Bezier Surface

Figure 8ÿ18 shows the trim curves used in Example 8ÿ4, mapped in parameter  (u/v) space. This

example uses three NURBS profile curves. Each curve has its own knot vector. The first curve, 

nTrim1, has four segments and five control points (it starts and ends at the same point). It is an order 2

curve that passes through the endpoints. The second profile curve, nTrim2, is also linear. It passes

through the endpoints and has three segments. The third profile curve, nTrim3, is a cubic curve (order

= 4). It has a multiplicity 4 at beginning and end (which makes it a Bezier curve that passes through

the endpoints).

Notice that these trim curves are nested inside each other and that the outermost curve is

counterclockwise. They do not intersect each other.  "A Trimmed Bezier Surface" shows the trimmed

Bezier surface produced by Example 8ÿ4.

 The Inventor Mentor:   Programming ObjectÿOriented   3D Graphics with Open Inventor  ,  Release 2 ÿ Chapter

8,  Curves and Surfaces ÿ 18



Figure 8ÿ15 Trim Curves Used in Example 8ÿ4

Example 8ÿ4 Trimming a Bezier Surface

// The array of trim coordinates

float tpts[12][2] = {

   {0.0, 0.0},

   {1.0, 0.0},

   {1.0, 1.0},

   {0.0, 1.0},

   {0.2, 0.2},

   {0.2, 0.7},

   {0.9, 0.7},

   {0.9, 0.2},

   {0.7, 0.0},

   {0.4, 0.8}};

// The 16 coordinates defining the Bezier surface. 

float pts[16][3] = {

   {ÿ4.5, ÿ2.0,  8.0},

   {ÿ2.0,  1.0,  8.0},

   { 2.0, ÿ3.0,  6.0},

This figure

(/usr/share/Insight/library/SGI_bookshelves/SGI_Developer/books/Inv_Mentor/figures/08.19.TrimSu
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rf.iv) is an INLINE object and can not be printed.

Media  A Trimmed Bezier Surface

Figure 8ÿ16 A Trimmed Bezier Surface

   { 5.0, ÿ1.0,  8.0},

   {ÿ3.0,  3.0,  4.0},

   { 0.0, ÿ1.0,  4.0},

   { 1.0, ÿ1.0,  4.0},

   { 3.0,  2.0,  4.0},

   {ÿ5.0, ÿ2.0, ÿ2.0},

   {ÿ2.0, ÿ4.0, ÿ2.0},

   { 2.0, ÿ1.0, ÿ2.0},

   { 5.0,  0.0, ÿ2.0},

   {ÿ4.5,  2.0, ÿ6.0},

   {ÿ2.0, ÿ4.0, ÿ5.0},

   { 2.0,  3.0, ÿ5.0},

   { 4.5, ÿ2.0, ÿ6.0}};

// The 3 knot vectors for the 3 trim curves.

float tknots1[7] = {0, 0, 1, 2, 3, 4, 4};

float tknots2[6] = {0, 0, 1, 2, 3, 3};

float tknots3[8] = {0, 0, 0, 0, 1, 1, 1, 1};

// The Bezier knot vector for the surface.

// This knot vector is used in both the U and

// V directions.

float knots[8] = {0, 0, 0, 0, 1, 1, 1, 1};

// Create the nodes needed for the Bezier patch

// and its trim curves.

SoSeparator *

makeSurface()

{

   SoSeparator *surfSep = new SoSeparator();

   surfSepÿ>ref();

   // Define the Bezier surface including the control

   // points, trim curve, and a complexity.

   SoComplexity  *complexity     = new SoComplexity;

   SoCoordinate3 *controlPts     = new SoCoordinate3;

   SoNurbsSurface *surface       = new SoNurbsSurface;

   complexityÿ>value = 0.7;

   controlPtsÿ>point.setValues(0, 16, pts);

   surfaceÿ>numUControlPoints.setValue(4);

   surfaceÿ>numVControlPoints.setValue(4);

   surfaceÿ>uKnotVector.setValues(0, 8, knots);
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   surfaceÿ>vKnotVector.setValues(0, 8, knots);

   surfSepÿ>addChild(complexity);

   surfSepÿ>addChild(controlPts);

   SoProfileCoordinate2 *trimPts = new SoProfileCoordinate2;

   SoNurbsProfile *nTrim1        = new SoNurbsProfile;

   SoNurbsProfile *nTrim2        = new SoNurbsProfile;

   SoNurbsProfile *nTrim3        = new SoNurbsProfile;

   long trimInds[5];

   trimPtsÿ>point.setValues(0, 12, tpts);

   trimInds[0] = 0;

   trimInds[1] = 1;

   trimInds[2] = 2;

   trimInds[3] = 3;

   trimInds[4] = 0;

   nTrim1ÿ>index.setValues(0, 5, trimInds);

   nTrim1ÿ>knotVector.setValues(0, 7, tknots1);

   trimInds[0] = 4;

   trimInds[1] = 5;

   trimInds[2] = 6;

   trimInds[3] = 7;

   nTrim2ÿ>linkage.setValue(SoProfile::START_NEW);

   nTrim2ÿ>index.setValues(0, 4, trimInds);

   nTrim2ÿ>knotVector.setValues(0, 6, tknots2);

   trimInds[0] = 7;

   trimInds[1] = 8;

   trimInds[2] = 9;

   trimInds[3] = 4;

   nTrim3ÿ>linkage.setValue(SoProfile::ADD_TO_CURRENT);

   nTrim3ÿ>index.setValues(0, 4, trimInds);

   nTrim3ÿ>knotVector.setValues(0, 8, tknots3);

   surfSepÿ>addChild(trimPts);

   surfSepÿ>addChild(nTrim1);

   surfSepÿ>addChild(nTrim2);

   surfSepÿ>addChild(nTrim3);

   surfSepÿ>addChild(surface);

   surfSepÿ>unrefNoDelete();

   return surfSep;

}

Suggestions for Further Reading

The following texts provide more detailed information on NURBS curves and surfaces:

Bartels, R., J. Beatty, and B. Barsky, An Introduction to Splines for Use in Computer Graphics and
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Geometric Modeling. Los Altos, Ca.: Morgan Kaufmann, 1987.

Farin, G., Curves and Surfaces for Computer Aided Geometric Design, 2e. San Diego, Ca.: Academic

Press, Inc., 1990.



Chapter 9

Applying Actions

Chapter Objectives

After reading this chapter, you’ll be able to do the following:

 • Draw, or render, all or part of a scene graph

 • Print a scene graph

 • Create a texture map from a rendering of a scene graph

 • Compute a 3D bounding box for objects in a scene graph

 • Compute a cumulative transformation matrix (and its inverse) for objects in a scene graph

 • Write a scene graph to a file

 • Search for nodes, types of nodes, or nodes with specific names in a scene graph

 • Pick objects in a scene graph and obtain information about them

 • Perform your own action by writing callback functions that can be invoked during scene graph

traversal

 • Write callback functions that use the primitives (points, lines, triangles) generated by Inventor

shapes

This chapter describes how actions are applied to an Inventor scene graph. Earlier chapters introduced

you to the most commonly used action, GL rendering, which traverses the scene graph and draws it

using the OpenGL Library. This chapter outlines a general model for performing any action and

highlights important concepts related to other Inventor actions, including picking, calculating a

bounding box, calculating a transformation matrix, writing to a file, and searching the scene graph for

certain nodes.

Inventor Actions

The preceding chapters focused on building a scene graph using group, property, and shape nodes.

Once you have created this scene graph, you can apply actions to it. Table 9ÿ1 summarizes some of the

ways you can use the scene graph and the specific Inventor action to use. 

You Can Perform This Task Using This Action

Draw, or render, the scene graph SoGLRenderAction

Compute a 3D bounding box for objects in the scene
graph

SoGetBoundingBoxAction

Compute a cumulative transformation matrix (and  its
inverse)

SoGetMatrixAction

Write the scene graph to a file  SoWriteAction

Search for paths to specific nodes, types of nodes, or
nodes with specific names in the scene graph

SoSearchAction

Allow objects in the scene graph to handle an event
(see Chapter 10)

SoHandleEventAction

Pick objects in the scene graph along a ray  SoRayPickAction

Traverse the scene graph and accumulate traversal   SoCallbackAction
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state, then perform your own action using callback
functions

Table 9ÿ1  Using Inventor Actions

Figure 9ÿ1 shows the portion of the class tree for actions.

Figure 9ÿ1 Action Classes

General Model

Performing any action on the scene graph follows the general model described in this section.

1. Initialize the action by constructing an instance of the action class. You can construct the action

on the stack as follows:

 SbViewportRegion region(300, 200);

 SoGLRenderAction renderAction(region);

You can also use the new operator to allocate an instance of the action:

renderAction = new SoGLRenderAction(region); 

If you create the action with new, don’t forget to delete the action when you finish using it.

2. Set up special parameters for the action. For example, the constructor for SoGLRenderAction

allows you to specify the viewport region as well as whether to inherit the current OpenGL

settings. If you specify

SoGLRenderAction renderAction(region, TRUE); 

you can use the current OpenGL values for line width, material, and so on. If you specify FALSE

(or omit this parameter), Inventor sets up its own defaults.

3. Apply the action to a node, a path, or a path list. For example:

renderActionÿ>apply(root);

4. Obtain the results of the action, if applicable. Some actions have additional methods that can be

used with them. For example, the SoGetBoundingBoxAction has one method, 

getBoundingBox(), that returns the bounding box computed by the action and another method, 

getCenter(), that returns the computed center.
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Applying an Action

When an action is applied to a scene graph, each node encountered in the graph implements its own

action behavior. In some cases, a particular type of node does nothing for a particular action. 

SoMaterial does nothing when an SoGetBoundingBoxAction is applied, for example. In other cases,

the action behavior is relatively simple. For example, for most actions, all classes derived from

SoGroup do little except traverse their children in a specified order.

When an action is applied, the Inventor database manages a traversal state (similar to the rendering

state of OpenGL). The traversal state is an internal class used by Inventor to store transient state

elements (parameters) during execution of the action. Typically, this management involves traversing

the scene graph from top to bottom and from left to right. The elements in the traversal state are

modified by the nodes encountered during this traversal. For certain actions, such as writing to a file (

SoWriteAction) and accumulating a transformation matrix (SoGetMatrixAction), little or no

traversal state is maintained. In these cases, the database does not need to keep track of all parameters

inherited by nodes lower in the graph from the nodes above them.

The following sections focus on individual actions and how they are implemented by different nodes.

You don’t need to worry about exactly how the database manages the traversal state. You need only a

general idea of which nodes implement a given action and how they implement it.

An action can be applied to a node, a path, or a path list.  When an action is applied to a node, the

graph rooted by that node is traversed. When the action is applied to a path, all nodes in the path chain

itself are traversed, as well as all nodes, if any, under the last node in the path. In addition, all nodes

that affect the nodes in the path chain are also traversed (typically, these nodes are to the left and

above the nodes in the path). Applying an action to a path list is similar to applying the action to each

path, except that subgraphs common to two or more paths are traversed only once.

Rendering 

Chapters 3 through 8 illustrated how different nodes implement the SoGLRenderAction. This action

draws the objects represented by a scene graph. Here is how various nodes implement the 

SoGLRenderAction:

 • If the node is a group node, it visits each of its children in a specified order. If it is an 

SoSeparator node, it saves the traversal state before traversing its children and restores it after

traversing its children.

 • If the node is a property node, it often replaces a value in the corresponding element of the

traversal state (other property nodes, such as SoTransform, may have different behaviors). For

example:

SoMaterial replaces the values for the current material.

SoLightModel replaces the values for the current lighting model.

SoDrawStyle replaces the values for the current drawing style.

SoCoordinate3 replaces the values for the current coordinates.

 • If the node is derived from SoTransformation, it modifies the current transformation matrix.

Each new set of values is preconcatenated onto the existing transformation matrix.
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 • If the node is a shape node, it causes its shape to be drawn, using the current elements in the

traversal state. Figure 9ÿ2 shows an indexed face set instanced in two different groups. When

rendered as part of group1, it uses the current elements of the traversal state, causing a red

wireframe face set to be drawn. Because subsequent nodes in group2 modify the current material,

drawing style, and transformation matrix, the next instance of the indexed face set, later in the

graph, appears green and filled. It is also twice as big as the red face set and translated to a new

location.

Figure 9ÿ2 Shared Instances of a Shape Node

Setting the Transparency Quality

Use the setTransparencyType() method of the render action to specify the quality of rendering for

transparent objects. Inventor uses three general types of transparency rendering. Screenÿdoor

transparency uses a fill pattern to simulate transparency. Additive blending adds the transparent object

to the colors already in the frame buffer. Alpha blending uses a multiplicative algorithm for

combining source and destination colors and alpha factor. Within these general categories, there are

three types of additive blending and three types of alpha blending, depending on the degree of realism

and amount of speed required for a particular rendering job.

See the OpenGL Programming Guide for a discussion of alpha blending.

Transparency Levels

In Inventor, the transparency quality level can be specified as follows:

SCREEN_DOOR use OpenGL stipple patterns for screenÿdoor transparency.

ADD use additive OpenGL alpha blending.

DELAYED_ADD use additive blending; render opaque objects first and transparent objects last.
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SORTED_OBJECT_ADD

use additive blending. Draw opaque objects first, then transparent objects. Sort the

transparent objects by their distance from the camera and draw them from back to

front (same as DELAYED_ADD because adding is commutative). 

BLEND use OpenGL alpha blending. (See Figure Inÿ19.)

DELAYED_BLEND

use OpenGL alpha blending; render opaque objects first and transparent objects

last. (See Figure Inÿ20.)

SORTED_OBJECT_BLEND

use OpenGL alpha blending. Draw opaque objects first, then transparent objects.

Sort the transparent objects by their distance from the camera and draw them from

back to front. (See Figure Inÿ21.)

Tradeÿoffs

Transparency rendering with the ADD (or BLEND) level of transparency, however, works only if the

transparent object is being blended into something already in the frame buffer. This type of

transparency rendering computes the transparency in the order in which the objects are rendered. 

To ensure that transparent objects are rendered last, use the  DELAYED_ADD (or

DELAYED_BLEND) level. For example, if you draw a transparent cube first and then draw an

opaque cylinder behind the cone, you won’t see the transparency with the ADD level of transparency.

In this case, you must use DELAYED_ADD (or DELAYED_BLEND). The delayed levels require

more time than ADD or BLEND, but the realism is greater. (Compare Figure Inÿ19 and Figure Inÿ20.)

For the highest degree of realism in rendering transparent objects, specify SORTED_OBJECT_ADD

(or SORTED_OBJECT_BLEND). This level requires the most time but produces the best results. It

renders the transparent objects after the opaque objects and also sorts the objects by distance from the

camera, drawing them from back to front. (See Figure Inÿ21.)

Tip:  Objects such as face sets do not sort within themselves, so the faces in a face set may not be

drawn in the correct order for transparency.  If the object is solid, using the SoShapeHints node with

the proper hints may improve the picture.

Note to OpenGL programmers: If you are using delayed or sorted transparency levels, Inventor does

not update the z buffer for transparent objects so that they can be drawn in any order.

If you are using an SoXtRenderArea, you can use the setTransparencyÿ

Type() method to set the quality level for rendering transparent objects.

Antialiasing

The SoGLRenderAction class also provides methods for antialiasing, techniques used to eliminate or

reduce jagged lines and make objects drawn on the screen appear smooth. You can choose from two

antialiasing methods:  

 • Smoothing, which is relatively "cheap" in terms of processing time. Smoothing applies to lines

and points only.

 • Using the accumulation buffer, which requires more processing time than smoothing but applies
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to the whole image and results in superior antialiasing. This technique requires an OpenGL

window that supports an accumulation buffer.

Method 1:  Smoothing

Use the SoGLRenderAction::setSmoothing() method to turn on smoothing. The isSmoothing()

method returns the current state of the Smoothing flag. This form of antialiasing is for lines and points

only. Because it requires alpha or additive blending, Inventor changes the transparency type if

necessary when you turn on smoothing.

Method 2:  Using the Accumulation Buffer

Normally, Inventor performs one rendering pass each time a render action is applied. You can use the 

SoGLRenderAction::setNumPasses() method to increase the number of rendering passes for

accumulation buffer antialiasing. Inventor then renders the scene multiple times, moving the camera a

little bit each time, and averages the results. The more times Inventor renders a scene, the better the

antialiasing. The tradeÿoff is that increasing the number of passes also increases the amount of time

required to render the scene. The number of passes can be from 1 to 255, inclusive. Specifying 1

disables multipass antialiasing.

In addition, if you specify TRUE for the SoGLRenderAction::setPassÿ

Update() method, the current contents of the accumulation buffer are copied into the currently active

drawing buffer after each rendering pass. This technique slows things down but allows you to watch

what happens between the incremental rendering passes. The default for setPassUpdate() is FALSE.

Tip:  Use the SoXtRenderArea::setAntialiasing() method to turn on smoothing and to specify the

number of passes for accumulation buffer antialiasing. You can specify either smoothing or

accumulation buffer antialiasing, or both.

Printing and Offÿscreen Rendering

To print all or part of an Inventor scene graph, use the SoOffscreenÿRenderer class, which in turn

uses an SoGLRenderAction to render an image into an offÿscreen memory buffer. This rendering

buffer can be used both to generate an image to send to a PostScript printer (see Example 9ÿ1) and to

generate an image to be used as a texture map (see Example 9ÿ2).

The image rendered into the buffer can be one of four component types:

LUMINANCE one component (grayscale)

LUMINANCE_TRANSPARENCY

two components (grayscale with alpha value)

RGB three components (full color)

RGB_TRANSPARENCY

four components (full color with alpha value)

Use the SoOffscreenRenderer::setComponents() method to specify the  components in the image

generated before you render the image. To print black and white, use LUMINANCE.  To print color,

use RGB. To generate images with transparency information, use LUMINANCE_TRANSPARENCY

or RGB_TRANSPARENCY.

Tip:  If you want the output to go directly to a printer, use the SoXtPrintDialog, an Xt component.
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See the Open Inventor C++ Reference Manual for more information.

How to Generate a File for Printing

To write a scene graph to a file in Encapsulated PostScript (EPS) format, you first render the scene

with the offÿscreen renderer. Then you use the writeToPostScript() method to generate the PostScript

output and write it to the given file.

For example, suppose you want to print a screen area that is 300 pixels by 400 pixels. Use the 

setWindowSize() method on SbViewportRegion to specify the size of the viewport to be printed:

SbViewportRegion vp;

vp.setWindowSize(SbVec2s(300, 400));

rootNode = getMyScene();

SoOffscreenRenderer renderer(vp);

rendererÿ>render(rootNode);

rendererÿ>writeToPostScript(stdout);

This code fragment assumes the default pixels per inch (approximately 72). To change the number of

pixels per inch, use the setPixelsPerInch() method on SbViewportRegion. Typically, you use the

resolution of the printer. For a 300 dotsÿperÿinch (DPI) printer, you would specify the following:

vp.setPixelsPerInch(300);

This resolution affects line width, the size of 2D text, and point size, which are all specified in pixels.

You may want the printed image to be the same size as the image rendered on the screen. To

determine the size of the image on the screen, first use the getViewportSizePixels() method on 

SbViewportRegion to obtain the number of pixels (in x and y) of the viewport region. Then use the 

getScreenPixelsPerInch() method on SoOffscreenRenderer to find out the screen resolution in

pixels. 

screenVp = renderAreaÿ>getViewportRegion();

SbVec2s screenSize = screenVp.getViewportSizePixels();

float screenPixelsPerInch =  

         SoOffscreenRenderer::getScreenPixelsPerInch();

Now you can calculate the size of the screen image in pixels by dividing x and y by

screenPixelsPerInch. If you have a  300ÿbyÿ400ÿpixel viewport on a screen with a resolution of 100

pixels per inch, your image is 3 by 4 inches. 

To print this image at the same size, you specify the following:

vp. setWindowSize (SbVec2s( x_in_inches  * printer_DPI ,

 y_in_inches  * printer_DPI ));

vp. setPixelsPerInch ( printer_DPI );

Your OpenGL implementation may restrict the maximum viewport size.  Use 

getMaximumResolution() to obtain the maximum resolution possible for a viewport in your window

system.
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Example 9ÿ1 shows a simple function that renders a given scene graph and then saves it in a file that

can be sent to a printer.

Example 9ÿ1 Printing

SbBool 

printToPostScript (SoNode *root, FILE *file,

   SoXtExaminerViewer *viewer, int printerDPI)

{

   // Calculate size of the image in inches which is equal to

   // the size of the viewport in pixels divided by the number

   // of pixels per inch of the screen device.  This size in

   // inches will be the size of the Postscript image that will

   // be generated.

   const SbViewportRegion &vp  = viewerÿ>getViewportRegion();

   const SbVec2s &imagePixSize = vp.getViewportSizePixels();

   SbVec2f imageInches;

   float pixPerInch;

   pixPerInch = SoOffscreenRenderer::getScreenPixelsPerInch();

   imageInches.setValue((float)imagePixSize[0] / pixPerInch,

                        (float)imagePixSize[1] / pixPerInch);

   // The resolution to render the scene for the printer

   // is equal to the size of the image in inches times

   // the printer DPI;

   SbVec2s postScriptRes;

   postScriptRes.setValue((short)(imageInches[0])*printerDPI,

                          (short)(imageInches[1])*printerDPI);

   // Create a viewport to render the scene into.

   SbViewportRegion myViewport;

   myViewport.setWindowSize(postScriptRes);

   myViewport.setPixelsPerInch((float)printerDPI);

   // Render the scene

   SoOffscreenRenderer *myRenderer = 

            new SoOffscreenRenderer(myViewport);

   if (!myRendererÿ>render(root)) {

      delete myRenderer;

      return FALSE;

   }

   // Generate PostScript and write it to the given file

   myRendererÿ>writeToPostScript(file);

   delete myRenderer;

   return TRUE;
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}

Generating a Texture Map

You can also use the offÿscreen renderer to render an image to be used as a texture map. In this case,

use the SoOffscreenRenderer::render() method to render the image. Then use the getBuffer()

method to obtain the buffer.

Example 9ÿ2 shows the typical sequence for using the rendering buffer to generate a texture map.

Example 9ÿ2  Generating a Texture Map

#include <Inventor/SoDB.h>

#include <Inventor/SoInput.h>

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>

#include <Inventor/SbViewportRegion.h>

#include <Inventor/misc/SoOffscreenRenderer.h>

#include <Inventor/nodes/SoCube.h>

#include <Inventor/nodes/SoDirectionalLight.h>

#include <Inventor/nodes/SoPerspectiveCamera.h>

#include <Inventor/nodes/SoRotationXYZ.h>

#include <Inventor/nodes/SoSeparator.h>

#include <Inventor/nodes/SoTexture2.h>

SbBool 

generateTextureMap (SoNode *root, SoTexture2 *texture, 

   short textureWidth, short textureHeight)

{

   SbViewportRegion myViewport(textureWidth, textureHeight);

   // Render the scene

   SoOffscreenRenderer *myRenderer = 

            new SoOffscreenRenderer(myViewport);

   myRendererÿ>setBackgroundColor(SbColor(0.3, 0.3, 0.3));

   if (!myRendererÿ>render(root)) {

      delete myRenderer;

      return FALSE;

   }

   // Generate the texture

   textureÿ>image.setValue(SbVec2s(textureWidth, textureHeight),

            SoOffscreenRenderer::RGB, myRendererÿ>getBuffer());

   delete myRenderer;

   return TRUE; 

}

main(int, char **argv)

{
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   // Initialize Inventor and Xt

   Widget appWindow = SoXt::init(argv[0]);

   if (appWindow == NULL)

      exit(1);

   // Make a scene from reading in a file

   SoSeparator *texRoot = new SoSeparator;

   SoInput in;

   SoNode *result;

   texRootÿ>ref();

      in.openFile("jumpyMan.iv");

   SoDB::read(&in, result);

   SoPerspectiveCamera *myCamera = new SoPerspectiveCamera;

   SoRotationXYZ *rot = new SoRotationXYZ;

   rotÿ>axis  = SoRotationXYZ::X;

   rotÿ>angle = M_PI_2;

   myCameraÿ>position.setValue(SbVec3f(ÿ0.2, ÿ0.2, 2.0));

   myCameraÿ>scaleHeight(0.4); 

   texRootÿ>addChild(myCamera);

   texRootÿ>addChild(new SoDirectionalLight);

   texRootÿ>addChild(rot);

   texRootÿ>addChild(result);

   // Generate the texture map

   SoTexture2 *texture = new SoTexture2; 

   textureÿ>ref();

   if (generateTextureMap(texRoot, texture, 64, 64))

      printf ("Successfully generated texture map\n");

   else

      printf ("Could not generate texture map\n");

   texRootÿ>unref();

   // Make a scene with a cube and apply the texture to it

   SoSeparator *root = new SoSeparator;

   rootÿ>ref();

   rootÿ>addChild(texture);

   rootÿ>addChild(new SoCube);

   // Initialize an Examiner Viewer

   SoXtExaminerViewer *viewer =

            new SoXtExaminerViewer(appWindow);

   viewerÿ>setSceneGraph(root);

   viewerÿ>setTitle("Offscreen Rendered Texture");

   viewerÿ>show();
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   SoXt::show(appWindow);

   SoXt::mainLoop();

}

Caching

Caching saves the result of an operation so that it doesn’t need to be repeated. Inventor provides two

kinds of caching:  render caching and boundingÿbox caching. (See "Calculating a Bounding Box" for a

description of the SoGetBoundingBoxAction.) For both the render action and the boundingÿbox

action, you can specify that the results of the traversal be saved in a cache. The render cache, for

example, contains an OpenGL display list that results from traversing the scene graph to be rendered.

If the scene graph does not change, Inventor can use the contents of this cache for subsequent

renderings, without traversing the scene graph at all. 

An SoSeparator node has two fields that are used for caching.  Possible values for these fields are

AUTO, ON, or OFF. AUTO is the default value.

renderCaching (SoSFEnum) 

specifies whether render caching is used. AUTO turns on caching when the scene

graph below the separator is not changing. ON specifies to always try to build a

cache, regardless of whether it is efficient.  OFF specifies not to build or use a

cache.

boundingBoxCaching (SoSFEnum)

specifies whether boundingÿbox caching is used.

The SoSeparator class has a setNumRenderCaches() method that allows you to specify how many

render caches each separator node will have. The greater the number of render caches that are built,

the more memory used. You might use two caches, for example, if a viewer switches between

wireframe and filled drawÿstyles, and the drawÿstyle is set outside the cache. This method affects only

the separator nodes that are created after it is called. Setting the number of render caches to 0 before

any separators are created turns off render caching. The default number of render caches is 2.

Tip: If render caching is AUTO, it will take several renderings for caching to take effect.  The

caching mechanism requires several renderings for comparison to determine that nothing is changing

and the scene can be cached.

How Caching Works

The caching process begins with the separator group, as follows:

1. The separator group checks whether a valid cache exists.

2. If a valid cache exists, the separator group ignores the scene graph below it and uses the contents

of the cache.

3. If a valid cache does not exist, the separator group checks the appropriate field to see if it should

create a cache.

4. If caching is ON, it opens a cache, traverses the nodes under the separator group, records the

results in the cache, and then calls the cache. If caching is AUTO, Inventor uses a special set of

conditions to determine whether it is efficient to create a cache.
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The nodes under the separator group may inherit values from nodes that appear before the separator

group in the graph. For example, materials, coordinates, texture coordinates, complexity nodes,

normals, and bindings tend to be used by each shape.  If these values change, the cache needs to

change. (Note that if a texture outside the cache changes, the cache is still valid because the shape

does not send the texture calls to OpenGL. The texture is sent directly to OpenGL when the 

SoTexture2 node is traversed.)

Be aware that these changes also invalidate the cache:

 • For SoText2, changing the font or camera (because the text is screenÿaligned)

 • For SoText3, changing the profile coordinates or type of profile

Inventor is conservative in determining whether the current cache is valid  (that is, caches may be

invalidated and rebuilt even if inherited values have not changed). 

Figure 9ÿ3 shows a scene graph with a transform node whose values are changing frequently and a

cube. In this case, turn on caching at the separator above the cube so that the changing transform

values do not invalidate the cache.

Figure 9ÿ3 Caching a Shape

Figure 9ÿ4 shows a scene graph with a complexity node whose values are changing frequently and a

cube. Here, you would include both the property node and the shape in the same cache, since the

shape always uses the property node when it is rendered.
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Figure 9ÿ4 Caching a Shape along with a Changing Property Node

Tradeÿoffs

Render caches can consume a great deal of memory, but they are very useful for speeding up

rendering. Using the AUTO (default) value for render caching allows Inventor to determine whether

creating a render cache will save time.

Boundingÿbox caching is relatively inexpensive. Inventor uses boundingÿ

box caching to speed up picking.  If boundingÿbox caching is on and the user picks part of the graph

that contains a separator group, the separator group can first check to see if the bounding box is

picked.  If not, it knows nothing under it is picked and does not need to traverse the subgraph.

Culling Part of the Scene

If you are dealing with a large scene and you know that the camera will frequently view only part of

that scene, you may want to turn on render culling so that Inventor doesn’t take time rendering parts of

the scene that lie completely outside the camera’s view. An SoSeparator node has two flags used for

culling:  renderCulling and pickCulling . By default, render culling is AUTO. By default, pick

culling is ON. 

This description deals with render culling. (Pick culling works in a similar manner and is relatively

inexpensive; you will probably simply leave it ON.) Here’s a brief summary of how render culling

works:

1. The camera puts the worldÿspace view volume into the traversal state when it is traversed.

2. During traversal, the separator node tests its renderCulling field. If it is ON, it culls the render

area, as follows:

• It computes the bounding box for the separator, in object space. (This information may be

cached already.)

• It transforms the boundingÿbox information into world space and compares it to the view

volume in the state.
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• If the bounding box is completely outside the current view volume, the separator does not

traverse its children.

Since Step 2 (computing the bounding box and testing it) is fairly expensive in terms of time, render

culling is off by default. You’ll need to evaluate your scene graph to determine whether render culling

will be efficient. For example, you could have a large scene graph with external walls, and detailed

electrical and plumbing connections beneath them. Although the scene graph is complex, culling

won’t help because all elements would be in the camera’s view at the same time. However, for scenes

where objects are widely separated in space, such as a scene graph for a solar system, culling can be

very useful.

Tip:  To facilitate culling, organize the database spatially so that objects that are close to each other in

3D space are under the same separator and objects far away from each other are under different

separators. In the case of the scene graph with external walls, you could group the plumbing and

electrical connections for each wall under a separator.

Guidelines for turning on render culling are as follows:

 • In general, don’t put a culling separator underneath a caching separator (that is, an SoSeparator

with its renderCaching field set explicitly to ON). Use a culling separator under SoSeparator

nodes with render caching set to OFF or AUTO.

The reason for this guideline is that culling depends on the camera. If a separator makes a culling

decision, any cache that it is part of will depend on the camera. Caches dependent on the camera

will often be broken, because in most applications, the camera changes frequently. 

It’s also efficient to turn on culling and caching at the same separator node (or turn on culling and

leave caching at AUTO).

 • Turn on culling only for objects that are separated in space.

 • Turn on culling only for objects with a fairly large number of polygons, or deciding whether to

cull might take longer than just drawing the object.

Calculating a Bounding Box

The   boundingÿbox action computes a 3D bounding box that encloses the shapes in a subgraph under

a node or defined by a path. This action also computes the center point of these shapes (see Example

9ÿ3). SoGetÿBoundingBoxAction is typically called on a path, which enables you to obtain a

bounding box for a specific object in world coordinates. This action returns an SbBox3f, which

specifies a 3D box aligned with the xÿ, yÿ, and zÿaxes in world coordinate space. 

Create an Instance of the Action

An example of creating an instance of SoGetBoundingBoxAction is

SbViewportRegion vpReg;

vpReg.setWindowSize(300, 200);

SoGetBoundingBoxAction bboxAction (vpReg);

This constructor has one parameter, the viewport region. This information is needed for computing

the bounding box of screenÿaligned or screenÿsized objects, such as SoText2.
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Apply the Action

SoGetBoundingBoxAction can be applied to the root node of a subgraph, to a path, or to a path list.

Obtain Results

Three methods access the results of SoGetBoundingBoxAction:

getBoundingBox()

returns an SbBox3f bounding box that encloses 

the shape or shapes

getCenter() returns the computed center point for the shapes

getXfBoundingBox()

returns an SbXfBox3f bounding box 

The center point returned by getCenter() is defined differently for different objects. For example, the

center of an SoFaceSet is defined as the average of its vertices’ coordinates. The center of a group is

defined as the average of the centers of the objects in the group.

An SbXfBox3f stores the original bounding box for a shape and the matrix that transforms it to the

correct world space. The advantage to using an SbXfBox3f instead of an SbBox3f is that the

bounding box isn’t enlarged unnecessarily.  You may want to use this class if you need to perform

additional transformations on the bounding box.

Example 9ÿ3 shows using an SoGetBoundingBoxAction (bboxAction ) to return the center of the

graph rooted by a node so that rotations can be made around it.

Example 9ÿ3  Setting the Center Field of a Transform Node

SbViewportRegion myViewport;

SoTransform *myTransform;

SoGetBoundingBoxAction bboxAction(myViewport);

bboxAction.apply(root);

myTransformÿ>center = bboxAction.getCenter(); 

Accumulating a Transformation Matrix

The SoGetMatrixAction returns the current transformation matrix for any node derived from 

SoTransformation or for a path. When you apply this action to any SoTransformation node, it

returns the transformation matrix for that node. When you apply it to a path, SoGetMatrixAction

accumulates a transformation matrix for all the transformations in the subgraph defined by that path.

This action enables you to convert from one coordinate space to another, typically from local space to

world space (when you apply it to a path whose head node is the root of the scene graph).

An important distinction between SoGetMatrixAction and other actions is that SoGetMatrixAction

does not traverse downward in the scene graph from the node or path to which it is applied. When

applied to a node, it returns the current transformation matrix for that node only (and therefore makes

sense only for transformation nodes, since all others return identity). When applied to a path, it

collects transformation information for all nodes in the path but stops when it reaches the last node in

the path chain.
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Create an Instance of the Action

The constructor for SoGetMatrixAction has no parameters: 

SoGetMatrixAction mtxAction;

Apply the Action

SoGetMatrixAction can be applied to a node or to a path.

Obtain Results

Two methods return the results of SoGetMatrixAction:

getMatrix() returns an SbMatrix  that is the cumulative transformation matrix for the node or

path

getInverse() returns an SbMatrix  that is the inverse of the cumulative transformation matrix

for the node or path

The getInverse() method enables you to take a point in world space and map it into an object’s local

coordinate space. See the Open Inventor C++ Reference Manual for a description of the many

convenient methods available for SbMatrix . For example, you can use multVecMatrix()  to transform

a point by a matrix. Use multDirMatrix()  to transform a direction vector by a matrix. (Inventor

assumes row vectors.)

Tip:  You can convert a point in one object’s coordinate space into another object’s space by applying

a getÿmatrix action to the first object, transforming the point into world space using the matrix,

applying a getÿmatrix action to the other object, and then transforming the worldÿspace point by the

inverse matrix of the second object.

As an example, assume that SoGetMatrixAction is applied to the path shown in Figure 9ÿ5. The 

xform1 node contains a translation of (0.0, 0.0, 1.0), and the xform2 node contains a scale of (0.5, 0.5,

0.5).
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Figure 9ÿ5 Applying SoGetMatrixAction to a Path

Each new transformation is premultiplied onto the current transformation matrix. In this case, the

matrix multiplication looks like this:
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In this example, getMatrix()  returns the following matrix:

For texture coordinates, use the getTextureMatrix()  and getTextureInverse() methods. See Chapter

7 and the Open Inventor C++ Reference Manual for more information.

Writing to a File

Inventor scene graphs can be written to a file in either ASCII or binary format.  SoWriteAction is

used for writing scene graphs to files. An instance of this class contains an instance of SoOutput,

which by default writes to stdout  in ASCII format. The getOutput() method returns a pointer to the 

SoOutput. Other methods for SoOutput include the following:

openFile() opens and writes to a file rather than to stdout.

setFilePointer() explicitly sets the pointer to the file to write to.

closeFile() closes the file opened with openFile(). The file is closed automatically when the

action is destroyed.

setBinary() writes the file in binary format if TRUE; writes the file in ASCII if FALSE (the

default).

setBuffer() writes to a buffer in memory rather than to a file.

For example, to write in binary to an already open file pointed to by fp:
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SoWriteAction myAction;

FILE *fp;

myAction.getOutput()ÿ>setBinary(TRUE);

myAction.getOutput()ÿ>setFilePointer(fp);

myAction.apply(root);

To write in ASCII to a named file:

SoWriteAction myAction;

myAction.getOutput()ÿ>openFile("myFile.iv");

myAction.getOutput()ÿ>setBinary(FALSE);

myAction.apply(root);

myAction.getOutput()ÿ>closeFile();

See Chapter 11 for a complete description of the Inventor file format. Here is an example of the output

of SoWriteAction for a subgraph:

#Inventor V2.0 ascii

Separator {

    Separator {

         Transform {

             scaleFactor 1 2 1

         }

         Material {

             ambientColor .2 .2 .2

             diffuseColor .6 .6 .6

             specularColor .5 .5 .5

             shininess .5

         }

         Cube{ 

       }

     }

}

Searching for a Node

SoSearchAction searches through the scene graph for paths to specific nodes, types of nodes, or

nodes with a given name. First, you initialize the action. Then, you specify the node, node type, or 

name to search for (or a combination of these elements). If you specify a node type, you can also

specify whether to search for an exact type match, or to search for subclasses of the specified type as

well.

Specify the Search Criteria

First, specify what you are searching for, whether you want to find all matches, and how to traverse

the scene graph. 

Searching for a Node
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If you want to search for a particular node (by pointer), use the setNode() method. For example, you

might use setNode() to search for a particular lightÿsource node so that you can attach an editor to it. 

Searching for a Node Type

Rather than searching for a specific node, you may want to search for a type of node (see Chapter 3).

When searching for a node type, you then have the choice of searching for all nodes of a particular

type, or for derivations of the given type (the default). The syntax for setType() is as follows:

setType(SoType t, int derivedIsOk = TRUE);

Searching for a Name

Use the setName() method to specify the name of the node to search for. (See Chapter 3 for more

information on naming.)

Specify Whether to Find All Matches

Use the setInterest() method to specify which paths to return:

FIRST returns only the first path found (the default)

LAST returns only the last path found

ALL returns all paths found

Specify the Type of Traversal

Use the setSearchingAll() method to specify whether to search using normal traversal (following

traversal order for switches and separators) or to search every node in the scene graph, regardless of

switch settings.  The default is FALSE (search using normal traversal order).

Apply the Action

SoSearchAction is applied in the same manner as any other action.

Obtain the Results

To obtain the results of the search, use one of the following methods:

getPath() returns the found path (if interest is FIRST or LAST)

getPaths() returns the found path list (if interest is ALL)

See the Open Inventor C++ Reference Manual for a complete description of all methods available for 

SoSearchAction.

The following example searches a scene graph for any node derived from SoLight. If it does not find

one, it creates and adds an SoDirectionalLight. This example searches for only the first match by

calling setInterest

(SoSearchAction::FIRST). 

SoSearchAction mySearchAction;

// Look for first existing light derived from class SoLight
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mySearchAction.setType(SoLight::getClassTypeId());

mySearchAction.setInterest(SoSearchAction::FIRST);

mySearchAction.apply(root);

if (mySearchAction.getPath() == NULL) { // No lights found

   // Add a default directional light to the scene

   SoDirectionalLight *myLight = new SoDirectionalLight;

   rootÿ>insertChild(myLight, 0);

}

Picking

SoRayPickAction finds objects along a ray from the camera through a point on the near plane of the

view volume. This ray is typically specified by giving the coordinates of a windowÿspace pixel

through which it passes.  SoRayPickAction traverses the scene graph you apply the action to and then

returns the paths to all shapes along the picking ray, sorted from nearest to farthest. The picking action

is primarily interested in geometry, transformation, and shape nodes.

Tip:  The SoSelection node picks objects automatically. You don’t need to explicitly use the pick

action to select objects. The SoHandleEvent action also performs picking automatically. In addition,

the SoEventCallback node allows you to register a callback function that is invoked whenever a

certain event (such as a mouse press) occurs over a specified object. See Chapter 10 for more

information on SoSelection, SoHandleEvent, and SoEventCallback. 

Picking Style

By default, all objects in the scene graph are pickable (even invisible and transparent objects). To

make an object or group of objects invisible to the pick action, insert an SoPickStyle node in the

scene graph and set its style field to UNPICKABLE. Anything that follows in the scene graph cannot

be picked until the SoPickStyle node is reset to SHAPE (to pick points on the shape objects in the

scene) or BOUNDING_BOX (to pick points on the bounding boxes for the objects in the scene).

BOUNDING_BOX pick style is most often used for SoText3 nodes. The pick style, like all other

properties, is saved and restored by SoSeparator groups.

Create an Instance of the Action

The constructor for SoRayPickAction has one parameter, the viewport region (a required parameter).

An example of creating an instance of SoRayPickAction is 

SbViewportRegion myViewport;

SoRayPickAction myPickAction(myViewport);

The viewport region is used to compute the bounding boxes for screenÿaligned objects such as 

SoText2.

Set Parameters

Before you apply the picking action, you can set the following parameters:

 • Ray to pick along
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 • Whether to return all objects along the ray, or only the closest one

The picking ray can be specified in one of two ways:  either specify a window point and a radius, or

specify a point and a direction in world space. The first method is the more typical for interactive

programs, since you are generally most interested in the area underneath the cursor.

Specifying the Picking Ray with a Window Point

Before you apply the picking action, use the setPoint() and setRadius() methods to set the ray to be

used for picking. 

The ray to pick along is typically specified in viewport coordinates, where 

(0, 0) is the lower left corner of the viewport and (vpWidthÿ1, vpHeightÿ1) is the upper right corner

(see Figure 9ÿ6). In the figure, the viewport is 1000 by 1000. The near plane of the camera maps to the

picking viewport.

To make it easier to pick lines and points, the ray can be augmented to be a cone (for a perspective

camera; see Figure 9ÿ6) or a cylinder (for an orthographic camera). Use the setRadius() method to

control the size of this cone or cylinder where it intersects the near plane of the camera. (The default

radius is 5 pixels.) Things that are picked must fall within this cone (or cylinder), as follows: 

 • For points and lines, if any part of the shape falls within this cone, it is picked. (A sphere drawn

with LINES drawÿstyle is still picked as a solid sphere.)

 • For all other shapes, the ray itself must intersect the shape for it to be picked.

Figure 9ÿ6 Cone Representing the Picking Ray for a Perspective Camera

Specifying the Picking Ray with a WorldÿSpace Ray
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You can also specify the picking ray by specifying a worldÿspace ray along which to pick. The ray is

defined as a starting point, a direction vector, and a near distance and far distance for the picked

objects. No radius is used. For example:

SbViewportRegion viewport(400, 300);

SbVec2s cursorPosition(250, 125);

SoRayPickAction myPickAction(viewport);

myPickAction.setRay(SbVec3f(0.0, 0.0, 0.0),  // starting point

                    SbVec3f(0.0, 0.0, ÿ1.0); // direction vector

This example uses the default near and far distances, which disables clipping to the near and far

planes.

Picking the Closest Object 

Use the setPickAll() method to specify whether you want information returned for all objects picked

(sorted from closest to farthest), or just the closest one. Specify TRUE for all objects, or FALSE (the

default) for only the closest one.

Apply the Action

The picking action can be applied to either a node, a path, or a path list. To apply the picking action to

the root node of a scene graph:

pickActionÿ>apply(rootNode);

Obtain Results

The results of the pick are stored in an SoPickedPoint (for the first hit) or an SoPickedPointList (for

information on all hit objects). Use the methods on SoPickedPoint to obtain this information.

SoPickedPoint

An SoPickedPoint represents a point on the surface of an object that was picked. The picked point

contains the point of intersection, the surface normal and texture coordinates at that point, the index

into the current set of materials, and the path to the object that was intersected. Use the following

methods on SoPickedPoint to obtain this information:

getPoint() returns the intersection point, in world space.

getNormal() returns the surface normal at the intersected point, in world space.

getTextureCoords()

returns the texture coordinates at the intersection point, in image space.

getMaterialIndex()

returns the index into the current set of materials that is used at the intersection

point.  If the materials are interpolated between vertices, the index corresponds to

the material at the closest vertex.

getPath() returns the path to the object that was intersected.

For example:
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SoPath *pathToPickedObject;

const SoPickedPoint *myPickedPoint = 

         myPickAction.getPickedPoint();

if (myPickedPoint != NULL)

   pathToPickedObject = myPickedPointÿ>getPath();

Figure 9ÿ7 shows the path returned by an SoRayPickAction (which can be obtained with the 

getPath() method on SoPickedPoint).  This path contains a pointer to each node in the path to the

picked object.  Use the following methods on SoPickedPoint to obtain information about the pick in

the object space of a particular node in the path chain.  You pass in a pointer to the node you are

interested in, or use the default (NULL) to obtain information about the tail of the path:

getObjectPoint() returns the intersection point, in object space

getObjectNormal()

returns the surface normal for the picked point

getObjectTextureCoords()

returns the texture coordinates for the picked point
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Figure 9ÿ7 Path to Picked Point and Detail List

Using an SoDetail

Each node in the picked path may have an associated SoDetail in which it can store additional

information about the pick. For some classes, this associated SoDetail is NULL.  Table 9ÿ2 shows the

classes that store information in a subclass of SoDetail.

Figure 9ÿ8 shows the class tree for SoDetail.

Figure 9ÿ8 Detail Classes

Class Name Type of Detail Added Information Provided

SoCone SoConeDetail Contains information about
which part of the cone was  hit

SoCube SoCubeDetail Contains information about
which face (part) of the  cube
was hit

SoCylinder SoCylinderDetail Contains information about
which part of the cylinder  was
hit

SoText2, SoText3 SoTextDetail Specifies the index of the
string that was hit; the  index
of the character  within the
string that was  hit; which part
of the text  was hit; the
objectÿspace  bounding box of
the  character that was
intersected

SoFaceSet; all vertexÿbased
shapes except lines, points,
and NURBS

SoFaceDetail Specifies which face in the
shape was hit

SoLineSet,  SoIndexedLineSet SoLineDetail Specifies which line in the
line set was hit

SoPointSet SoPointDetail Specifies which point in the
point set was hit
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Table 9ÿ2 Classes That Store an SoDetail

Use the getDetail() method on SoPickedPoint to return the detail for a given node in the picked path.

This method takes a pointer to a node in the picked path. It returns information for the tail of the path

if NULL or no node is specified. For example, to determine whether a cylinder was hit and, if so,

whether it was the top part of the cylinder, the code would be as follows:

const SoDetail *pickDetail = myPickedPointÿ>getDetail();

if (pickDetail != NULL && pickDetailÿ>getTypeId() ==

                        SoCylinderDetail::getClassTypeId()) {

   // Picked object is a cylinder

   SoCylinderDetail *cylDetail = 

            (SoCylinderDetail *) pickDetail;

   // See if top of the cylinder was hit

   if (cylDetailÿ>getPart() == SoCylinder::TOP) {

      printf("Top of cylinder was hit\n");

   }

}

The following fragment shows how you could find the closest vertex to the hit point of a faceÿbased

shape using an SoFaceDetail. An SoFaceDetail contains an array of SoPointDetails. You can

examine these details to find the coordinates of the point closest to the hit point by using the 

getCoordinateIndex() method on SoPointDetail. Finding the node that contains the coordinates is

left to the application. (You can create a search action, apply it to the picked path, and ask for the last 

SoCoordinate3 node in the path. But you also need to know something about the structure of your

graphfor example, whether it contains Override flags or Ignore flags that may affect the search.) 

//   This function finds the closest vertex to an intersection

//   point on a shape made of faces, passed in the

//   "pickedPoint" argument. It returns the SoCoordinate3 node

//   containing the vertex’s coordinates in the "coordNode"

//   argument and the index of the vertex in that node in the

//   "closestIndex" argument. If the shape is not made of faces

//   or there were any other problems, this returns FALSE.

static SbBool

findClosestVertex(const SoPickedPoint *pickedPoint,

            SoCoordinate3 *&coordNode, int &closestIndex)

{

   const SoDetail *pickDetail = pickedPointÿ>getDetail();

   if (pickDetail != NULL && pickDetailÿ>getTypeId() ==

                             SoFaceDetail::getClassTypeId()) {

      // Picked object is made of faces

      SoFaceDetail *faceDetail = (SoFaceDetail *) pickDetail;

      // Find the coordinate node that is used for the faces.

      // Assume that it’s the last SoCoordinate3 node traversed

      // before the picked shape.
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      SoSearchAction  mySearchAction;

      mySearchAction.setType(SoCoordinate3::getClassTypeId());

      mySearchAction.setInterest(SoSearchAction::LAST);

      mySearchAction.apply(pickedPointÿ>getPath());

      if (mySearchAction.getPath() != NULL) {  // We found one

         coordNode = (SoCoordinate3 *)

                     mySearchAction.getPath()ÿ>getTail();

         // Get the intersection point in the object space

         // of the picked shape

         SbVec3f objIntersect = pickedPointÿ>getObjectPoint();

         // See which of the points of the face is the closest

         // to the intersection point

         float minDistance = 1e12;

         closestIndex = ÿ1;

         for (int i = 0; i < faceDetailÿ>getNumPoints(); i++) {

            int pointIndex =

                  faceDetailÿ>getPoint(i)ÿ>getCoordinateIndex();

            float curDistance = (coordNodeÿ>point[pointIndex] ÿ

                  objIntersect).length();

            if (curDistance < minDistance) {

               closestIndex = pointIndex;

               minDistance = curDistance;

            }

         }

         if (closestIndex >= 0)

            return TRUE;

      }

   }

   return FALSE;

}

Using the Pick Action

Example 9ÿ4 shows setting up the pick action and writing the path to the picked object to stdout.

Example 9ÿ4 Writing the Path to the Picked Object

SbBool

writePickedPath (SoNode *root, 

   const SbViewportRegion &viewport, 

   const SbVec2s &cursorPosition)

{

   SoRayPickAction myPickAction(viewport);
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   // Set an 8ÿpixel wide region around the pixel

   myPickAction.setPoint(cursorPosition);

   myPickAction.setRadius(8.0);

   // Start a pick traversal

   myPickAction.apply(root);

   const SoPickedPoint *myPickedPoint = 

            myPickAction.getPickedPoint();

   if (myPickedPoint == NULL)

      return FALSE;         // no object was picked

   // Write out the path to the picked object

   SoWriteAction myWriteAction;

   myWriteAction.apply(myPickedPointÿ>getPath());

   return TRUE;

}

Calling Back to the Application

The SoCallbackAction allows you to traverse the scene graph and accumulate state. It includes

methods for calling back to application functions whenever nodes of a specified type are encountered

during the traversal. At every node, the callback function has access to the entire Inventor traversal

state. It can thus query any element in the state, such as the current coordinates, current normals, or

current material binding. See the Open Inventor C++ Reference Manual on SoCallbackAction for a

description of all state query functions.

The callback action also allows you to register callback functions that are called whenever certain

shape nodes are traversed. The primitives used to draw the shape are passed to the callback function

for use by the application.

This action provides a convenient mechanism for adding your own action to Inventor without

subclassing (see The Inventor Toolmaker for information on creating a new action). It is particularly

useful for C programmers who want to add functionality to scene graph traversal.

Create an Instance of the Action

An example of creating an instance of SoCallbackAction is as follows:

SoCallbackAction cbAction;

Register Callback Functions

Inventor provides a number of methods for setting callback functions for a node. Each method takes a

node type, a pointer to the user callback function, and a pointer to user data. The function is called

whenever a node of the specified type or a subclass of that type, is encountered during traversal of the

scene graph.

GeneralÿPurpose Callback Functions
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The following functions are set for any type of node:

addPreCallback()

adds a callback function that is called just before a node of a particular type is

traversed

addPostCallback()

adds a callback function that is called just after a node of a particular type is

traversed

addPreTailCallback()

adds a callback function that is called just before the last node in the path is

traversed

addPostTailCallback()

adds a callback function that is called just after the last node in the path is

traversed

In the case of a separator node, the addPreCallback() method is called before the children are

traversed, and the addPostCallback() method is called after the children are traversed but before the

state is restored. The addPreTailCallback() and addPostTailCallback() methods are used only

when you apply the callback action to a path.

A generalÿpurpose callback function must return one of three values:

SoCallbackAction::CONTINUE

continue traversal of the scene graph.

SoCallbackAction::PRUNE

do not go any lower in the scene graph; continue traversal of the rest of the scene

graph above and to the right.

SoCallbackAction::ABORT

stop traversal of the scene graph and pop state back up to the root.

Primitive Generation

The following callback functions are set for a particular type of shape node.  When these callback

functions are set and the shape is traversed, primitives for the shape are generated, the callback

function is invoked, and the primitives are passed to the callback function. You might use  

addTriangleCallback(), for example, if you are writing your own renderer and you want to tessellate

all filled objects into triangles.

addTriangleCallback()

adds a callback function to a node that generates triangles, such as SoFaceSet or 

SoNurbsSurface

addLineSegmentCallback()

adds a callback function to a node that generates line segments, such as SoLineSet

or SoIndexedLineSet (but not to SoFaceSet or related classes even when the

drawÿstyle is LINES)

addPointCallback()

adds a callback function to a node that generates points, such as SoPointSet (but
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For triangles, the associated callback is of the following form:

void SoTriangleCB(void *userData, SoCallbackAction *action, 

   const SoPrimitiveVertex *v1,

 const SoPrimitiveVertex *v2,

 const SoPrimitiveVertex *v3);

Here, the callback function is called once for each triangle the shape generates. An example of using

this callback function would be if you are writing a ray tracer and want to deal with only one type of

data structure for all polygonal shapes.  A triangle callback function can be registered on spheres,

cones, cylinders, and NURBS surfaces, as well as on face sets and quad meshes.

An SoPrimitiveVertex is a vertex of a primitive shape (triangle, line segment, or point) that is

generated by a callback action.  It contains an objectÿspace point, normal, texture coordinate, material

index, and a pointer to an instance of an SoDetail subclass. The detail may contain additional

information about the vertex.

Tip: Your callback function can use the value of the drawÿstyle element from the state if you want to

determine if the triangles would be rendered as points or lines. For example:

    if(SoDrawStyleElement::get(actionÿ>getState())==

    SoDrawStyleElement::LINES)

    ...//do something

See The Inventor Toolmaker for more information on elements.

Apply the Action

SoCallbackAction can be applied to a node, a path, or a path list.

Using a Callback for Generated Primitives

Example 9ÿ5  shows using the callback action to decompose a sphere into a set of triangle primitives. 

Example 9ÿ5 Using a Triangle Callback Function

...

SoSphere *mySphere = new SoSphere;

mySphereÿ>ref();

printSpheres(mySphere);

...

void

printSpheres(SoNode *root)

{

   SoCallbackAction myAction;

   myAction.addPreCallback(SoSphere::getClassTypeId(), 

            printHeaderCallback, NULL);

   myAction.addTriangleCallback(SoSphere::getClassTypeId(), 

            printTriangleCallback, NULL);

   myAction.apply(root);
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}

SoCallbackAction::Response

printHeaderCallback(void *, SoCallbackAction *, 

      const SoNode *node)

{

   printf("\n Sphere ");

   // Print the node name (if it exists) and address

   if (! !nodeÿ>getName())

      printf("named \"%s\" ", nodeÿ>getName());

   printf("at address %#x\n", node);

   return SoCallbackAction::CONTINUE;

}

void

printTriangleCallback(void *, SoCallbackAction *,

   const SoPrimitiveVertex *vertex1,

   const SoPrimitiveVertex *vertex2,

   const SoPrimitiveVertex *vertex3)

{

   printf("Triangle:\n");

   printVertex(vertex1);

   printVertex(vertex2);

   printVertex(vertex3);

}

void

printVertex(const SoPrimitiveVertex *vertex)

{

   const SbVec3f &point = vertexÿ>getPoint();

   printf("\tCoords     = (%g, %g, %g)\n", 

               point[0], point[1], point[2]);

   const SbVec3f &normal = vertexÿ>getNormal();

   printf("\tNormal     = (%g, %g, %g)\n", 

               normal[0], normal[1], normal[2]);

}



Chapter 10

Handling Events and Selection

Chapter Objectives

After reading this chapter, you’ll be able to do the following:

 • Explain how Open Inventor handles input events

 • Select objects in the scene using one of Inventor’s builtÿin selection policies

 • Implement your own selection policy by creating an event callback node

 • Highlight selected objects in the scene

 • Write selection callback functions to allow the application to perform certain operations when the

selection list changes

This chapter describes the Open Inventor event model, which provides a simple mechanism for

passing events such as a key press or mouse movement to objects in the database for processing. In

much the same way a window system passes events to its client windows, Inventor passes events to

database objects that can handle them. Important concepts introduced in this chapter include the

Inventor programming model for event handling and the use of the SoXtRenderArea, a widget that

performs rendering and event handling on the Inventor database. The SoHandleEventAction is

discussed in detail, as well as the concepts of event callback functions, the selection node, and 

highlighting.

Overview

When a user clicks a mouse button on a handleÿbox manipulator and drags the object to a new location

on the screen, how does Inventor receive the user input from the mouse and translate the object

accordingly? What happens if the user clicks the mouse on a space in the rendered image that doesn’t

contain any objects? How does Inventor keep track of several userÿselected objects? These are all

questions that need to be answered before you can write interactive Inventor applications.

This chapter begins by providing a brief description of how windowÿspecific events are translated into

Inventor events. It introduces you to the different kinds of Inventor events and the methods associated

with them. You will learn how the scene manager finds the event handler for a specific event and how

different nodes handle events. 

General Programming Model for Event Handling

Inventor includes a builtÿin event model for the scene database. This model is not based on any

specific window system or toolkit. When writing an Inventor program, you can select the X window

programming model and use the tools provided by the window system to open windows and pass

events into Inventor. Inventor provides event translation from X events into the Inventor event

classes. Figure 10ÿ1 shows how X events are passed to the render area and then translated into

Inventor events that are handled by the Inventor scene manager. Since Inventor is independent of any

window system, you can also choose a different window system and then write your own event

translator.
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Figure 10ÿ1 Event Processing in Inventor

Using the X Window System

Inventor provides a set of Xt utilities for use with the X Window System. This set of utilities contains

the following:

 • A renderÿarea "widget"

 • Main loop and initialization functions

 • An event translator utility

In addition to these features, the Inventor Component Library also contains a set of Xt components.
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In addition to these features, the Inventor Component Library also contains a set of Xt components.

These components include viewers and editors with a user interface for modifying the scene database

directly.

This chapter focuses on the aspects of Inventor that are independent of the window system:

 • Events (derived from SoEvent)

 • Scene manager

 • Handle event action

 • Event callback functions

 • Selection node

Chapter 16 describes use of the Inventor Component Library in more detail. If you want to use

Inventor viewers and editors, you must use an Xt render area (SoXtRenderArea) and the X Window

System model. If you are not using these viewers and editors, you can choose a different window

system and then implement your own render area, event loop, and event translator.

Render Area

The  renderÿarea widget provides a convenient object for creating a window and translating

windowÿspecific events into generic Inventor events. With the X Window System model, you create

an SoXtRenderArea (see Figure 10ÿ1). Windowÿspecific events are passed into this render area and

then automatically translated into a generic Inventor SoEvent.

The render area provides the following:

 • Builtÿin sensors that redraw the window when the scene changes or when the window resizes or

is exposed

 • Builtÿin event processing

 • Certain controls, such as the type of transparency and the amount of antialiasing

Inventor Events (SoEvent)

The class tree for SoEvent is shown in Figure 10ÿ2.

Figure 10ÿ2 Event Classes

Each SoEvent instance contains the following information:

 • Type identification (SoType)

 • Time the event occurred
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 • Cursor position when the event occurred

 • State of the modifier keys (Shift, Control, Alt) when the event occurred

Subclasses of SoEvent contain additional information. For example, SoButtonEvent contains

information about whether the button was up or down when the event occurred. 

SoMouseButtonEvent contains information about which button was pressed (button 1, 2, or 3).

See the Open Inventor C++ Reference Manual entry on SoEvent for a list of methods available for

querying the event. In addition, you can use the following macros:

 • SO_MOUSE_PRESS_EVENT()You pass in an SoEvent and a button number, and the macro

returns TRUE if that button was pressed.

 • SO_MOUSE_RELEASE_EVENT()You pass in an SoEvent and a button number, and the

macro returns TRUE if that button was released.

SoKeyboardEvent contains information on which key was pressed (but does not indicate uppercase

or lowercase).

Tip: Using the SoKeyboardEvent::getKey() method is the same as 

using XLookupKeysym() on an X key event.

An SoLocation2Event is generated whenever the cursor moves. This event contains the absolute

location of the cursor in window coordinates. (Window coordinates begin with (0, 0) at the lower left

corner of the window.) An SoMotion3Event is generated whenever a 3D input device, such as the

spaceball, moves. This event contains the rotation and translation relative to the device’s previous

position.

Tip: Inventor events are extensible. If you have a device that does not correspond to existing SoEvent

classes, you can create your own. (See The Inventor Toolmaker, Chapter 11.)

Scene Manager

As shown in Figure 10ÿ1, SoSceneManager is a common class used to tie windowÿsystem-dependent

render areas (such as SoXtRenderArea) to Inventor. The render area employs the scene manager to

handle the scene graph. The scene manager handles both rendering and event processing and is

independent of any particular window system. 

Inventor Event Handling

In Inventor, events are distributed to the 3D objects contained in the scene database. Manipulator and

dragger objects, described in detail in Chapter 15, are the 3D objects in the Inventor scene graph that

handle events. Shape objects (such as sphere, cylinder, quad mesh), property objects (such as material

and draw style), transformation objects, light objects, and camera objects ignore events. Finding the

node that handles an event is discussed in "How Nodes Handle Events: SoHandleEventAction".

With Inventor, you can choose from one of four eventÿhandling mechanisms:

1. You can use Inventor’s automatic eventÿhandling mechanism, provided by the scene manager, in

which certain kinds of nodes handle events (see "How Nodes Handle Events:

SoHandleEventAction"). This is probably the easiest mechanism to use. (Note that you can also

create your own nodes to handle events. You might create your own node if you want to use it in
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several different applications or 

give it to other programmers.  You could also create a new manipulator to handle events. See The

Inventor Toolmaker for more information on creating new nodes and manipulators.)

2. You can use Inventor’s event callback mechanism, in which userÿwritten callback nodes handle

events (see "Using Event Callback Nodes"). This method handles events on a perÿobject basis and

is fairly easy to implement. Its drawback is that, although the callback node does write to a file, it

has no fields describing which path it is monitoring or which events it is interested in.

3. You can override Inventor’s eventÿhandling mechanisms entirely and pass all events directly to

the application (see "Sending Events Directly to the Application"). Use this method if you prefer

to work directly with X events and you do not need to handle events on a perÿobject basis.  This

method bypasses scene traversal and handles only window events.

4. You can use Inventor’s generic callback mechanism in which userÿwritten callback nodes handle

all actions (see Chapter 17 for an example of an SoCallback node). Use this mechanism if you

need to handle events and you want to implement another action, such as rendering.  If you are

only handling events, use Method 2 (the event callback node), because it does more work for

you.

Methods 1, 2, and 4 are recommended because they are windowÿsystem-

independent and therefore more flexible. Methods 1 and 2 are probably the easiest.

How Nodes Handle Events: SoHandleEventAction

(Advanced)

Inventor provides a mechanism for automatic event handling by "smart" nodes, which can be

summarized as follows:

1. The render area registers interest in particular events with its window system.

2. The render area receives an event from its window system. (SoXtRenderArea receives an X

event.)

3. The render area translates the event into an SoEvent.

4. The SoEvent is sent to the scene manager, which creates an instance of the 

SoHandleEventAction.

5. (Advanced)

The handle event action is applied to the top node of the scene graph. This action traverses the

scene graph. Each node implements its own action behavior, as described in the following

paragraphs. When a node is found to handle the event (typically a manipulator), the 

SoHandleEventAction stops traversing the scene graph and the node handles the event.

The following sections describe how different types of nodes implement SoHandleEventAction.

SoNode

SoNode, the base class for all nodes, does nothing for the handle event action.  Therefore, all

properties, transforms, shapes, cameras, and lights do nothing for this action.

SoGroup
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When the handle event action is applied to an SoGroup, the group traverses its children from left to

right, asking each child to handle the event. After each child, it checks to see if the event was handled.

If it was, the handle event action ends its traversal of the scene graph. If the event was not handled, the

SoGroup asks the next child to handle the event.

The SoGroup uses the isHandled() method of SoHandleEventAction to find out if an event has been

handled. When a node handles an event, it calls setHandled() on the handle event action.

SoManipulator

Manipulators are the "smart" objects in the scene graph that handle certain kinds of events (see 

Chapter 15 for a more detailed discussion). Typically, a manipulator replaces a node in the scene

graph with an editable version of that node. Using SoHandleBoxManip, you can change an object’s

size and position by replacing the transform node in the scene graph that affects the object with the

handleÿbox manipulator. This manipulator then scales and translates itself in response to the user

moving the mouse. Using SoTrackballManip , you can rotate an object around a center point by

replacing the appropriate transform node in the scene graph with a 

trackball manipulator. This manipulator then changes its rotation field in response to the user moving

the mouse.

Manipulators, such as the trackball and handle box, require picking information in addition to the

event type. These manipulators call getPickedPoint() on SoHandleEventAction to see which object

was picked. If the manipulator was picked, it handles the event. You can also create manipulators that

do not require a hit on their geometry to be activated. (See The Inventor Toolmaker, Chapter 8, for

information on creating your own manipulator.)

Grabbing

A node can request that all subsequent events be sent directly to it until further notice. This request is

called grabbing. For example, after receiving a mouseÿbuttonÿdown event, a manipulator might grab

all subsequent events until a mouseÿbuttonÿup event occurs. The setGrabber() method is called on the

handle event action, with a pointer to the manipulator (this):

handleEAÿ>setGrabber(this);

The handle event action now applies the action directly to the grabbing node instead of to the scene

graph root. To stop grabbing events, the manipulator uses the releaseGrabber() method:

handleEAÿ>releaseGrabber();

If the node calls releaseGrabber() for an event but did not handle the event, the handle event action

initiates a traversal at the root and passes the event to the entire scene graph.  For example,

manipulators grab after a mouseÿ

press event.  However, if a mouse release occurs with no mouse motion in between, the manipulator

ungrabs and does not handle the event.  The event is then passed to the scene graph for processing.

The getGrabber() method returns the node that is currently grabbing events. (See 

SoHandleEventAction in the Open Inventor C++ Reference Manual.)

Note:  Grabbing events in the scene graph does not perform an X server grab.

SoSelection
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An SoSelection node, derived from SoGroup, is typically inserted near the top of the scene graph, as

shown in Figure 10ÿ3. When the handle event action is applied to an SoSelection node, it traverses its

children in the same way as SoGroup. However, if none of its children handles the event, the

selection node itself handles it. 

Figure 10ÿ3 Inserting an SoSelection Node

Picking

When a leftÿmouseÿbutton event occurs, the SoSelection object needs to know which node was

picked. It calls the getPickedPoint() method on the handle event action. (SoSelection checks the

picked object on both mouseÿdown and mouseÿup events to make sure that both events occurred over

the same object. Specify FALSE for the setPickMatching() method to disable this feature, and 

SoSelection will get the picked point only on mouseÿup events.)

The handle event action performs the pick the first time a node in the scene graph requests

information concerning the hit objects (picking is performed only when necessary). 

SoHandleEventAction caches this picking information so that any subsequent nodes encountered

during traversal, such as manipulators and the selection object, can have access to this information

quickly. Only one pick (at most) is performed during the traversal for SoHandleEventAction.

Selection Policy

After receiving the pick information, the SoSelection class implements the appropriate selection

policy. Currently, you can choose one of three 

selection policies with the policy field. SoSelection keeps track of the selection list for you. Selected

objects can be highlighted by the render area (see "Highlighting Selected Objects"). The default

selection policy, SoSelection::SHIFT, is as follows:
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 • If the user clicks the left mouse button on a node, SoSelection clears the selection list and adds

the node to the list.

 • If the user clicks the left mouse button on a node while pressing the Shift key, SoSelection

toggles the node’s selection status (that is, if the node is currently in the selection list, it is

removed from the list; if the node is not currently selected, it is added to the selection list).

 • If the user clicks the left mouse button on nothing, SoSelection clears the selection list.

With the SoSelection::SINGLE policy, only one object can be selected at a time. This policy is as

follows:

 • If the user clicks the left mouse button on a node, SoSelection clears the selection list and adds

the node to the list.

 • If the user clicks the left mouse button on nothing, SoSelection clears the selection list.

With the SoSelection::TOGGLE policy, multiple objects can be selected at a time. This policy is as

follows:

 • If the user clicks the left mouse button on a node, SoSelection toggles that node’s selection status

(that is, it adds the node to the list if it was not previously selected, or it removes the node from

the list if it was previously selected).

 • If the user clicks the left mouse button on nothing, SoSelection does nothing.

Tip:  Shift selection is the same as Single selection when the Shift key is not pressed, and Toggle

selection when the Shift key is pressed.

If none of these selection policies meets your needs, you can implement  your own custom selection

policy by creating an event callback node and passing it a pointer to the SoSelection node. You can

then call select(), deselect(), toggle(), and deselectAll() on the SoSelection node to implement your

new selection policy. An additional alternative is to derive your own class from SoSelection.

See "Selection" for more information on the selection list.

Finding the Event Handler

The following example illustrates the process of finding the event handler for a given event. Assume

you have a scene graph containing several shape objects, with a handleÿbox manipulator that affects

the transformation of an indexed face set. The scene graph also contains yourManip, a manipulator

you’ve written that handles the middle mouseÿbutton event. This scene graph is shown in Figure 10ÿ4.

If the user clicks the left mouse button on the handle box surrounding the faceÿset object on the screen,

the scene manager receives the event and sends it to the SoHandleEventAction with the setEvent()

method. Here is how the nodes in Figure 10ÿ4 respond during the handle event action traversal:

1. The SoSeparator group asks each child, from left to right in the scene graph, to handle the event.

2. The yourManip node does not handle the event, since it handles only middle mouseÿbutton

events.
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Figure 10ÿ4 Scene Graph with Manipulators

3. The carGroup node traverses each of its children, from left to right, and asks them to handle the

event. The third child, also a group, traverses its children from left to right.

4. The handleÿbox manipulator node, which handles left mouse events, needs to know if it is in the

picked path. It calls getPickedPoint() on the SoHandleEventAction. Since it was hit, it then calls

setHandled() and handles the event.

In Figure 10ÿ5, the scene graph contains a new instance of a face set (faceSet2). Suppose the user

clicks on this face set instead of the handle box surrounding faceSet1. Since the handleÿbox

manipulator is not contained in the pick path and has no effect on the pick path, it does not handle the

event. In this case, the SoSelection object handles the event.
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Figure 10ÿ5 Picking a Shape Node

Using Event Callback Nodes (Advanced)
If you require an eventÿhandling behavior that is not provided by Inventor manipulators, you can

create your own manipulator, or you can write your own event handler using an event callback node.

Creating new manipulators is discussed in The Inventor Toolmaker, Chapter 8. Using event callback

nodes is discussed in this section.

An event callback node contains a userÿwritten function that is invoked whenever an event of a

specified type occurs, when the specified path is picked, and when the handle event action traverses

the event callback node. If no path is specified (that is, NULL), the event callback function is invoked

automatically every time an event of the specified type occurs and the node is traversed by the handle

event action. You can write multiple event callback functions and add them to the list of callback

functions maintained by the SoEventCallback node.

To specify which SoEvents the callback node is interested in and to specify the callback, use the 

addEventCallback() method:
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SoEventCallback *eventCB = new SoEventCallback;

eventCBÿ> addEventCallback(SoKeyboardEvent::getClassTypeId(),

        myCallbackFunc ,  userData );

To specify the path to be monitored, use the setPath() method.

When the callback function is invoked, it is passed the user data and a pointer to the instance of 

SoEventCallback. To remove a callback function from the event callback list, use the 

removeEventCallback() method.

Tip: To have your callback invoked for every event type, pass SoEvent::getClassTypeId() as the

type.

The SoHandleEventAction, discussed earlier in this chapter, does its work behind the scenes when

you use event callback functions. It performs a pick when necessary and caches the pick information.

The event callback function itself is responsible for setting whether the event was handled (with the 

setHandled() method). If there are multiple event callback functions in an event callback node, all of

them are invoked, regardless of whether one of them has handled the event.

The event callback function can use any of the following methods on SoEventCallback, which

parallel those used in standard Inventor event handling:

getAction() returns the handle event action applied.

getEvent() returns the Inventor event to handle.

getPickedPoint() returns the object hit. The pick is performed automatically by the 

SoHandleEventAction.

grabEvents() tells the event callback node to grab events. However, the event callback functions

are still invoked only for events of interest. 

releaseEvents() tells the event callback node to stop grabbing events.

setHandled() tells the action that the event was handled.

isHandled() returns whether the event has been handled.

Example 10ÿ1 shows the use of event callback functions with the SoEventCallback node. It creates

an event callback node that is interested in keyÿpress events. The callback function, myKeyPressCB, is

then registered with the addEventCallback() method. The scene graph has four objects that can be

selected by picking with the left mouse button. (Use the Shift key to extend the selection to more than

one object.) When a keyÿpress occurs, it checks to see if the up or down arrow is pressed and scales

the picked object up or down accordingly.

Example 10ÿ1 Using an Event Callback

// An event callback node so we can receive key press events

SoEventCallback *myEventCB = new SoEventCallback;

myEventCBÿ>addEventCallback(

         SoKeyboardEvent::getClassTypeId(), 

         myKeyPressCB, selectionRoot);

selectionRootÿ>addChild(myEventCB);

...
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// userData is the selectionRoot from main().

void

myKeyPressCB(void *userData, SoEventCallback *eventCB)

{

   SoSelection *selection = (SoSelection *) userData;

   const SoEvent *event = eventCBÿ>getEvent();

   // Check for the Up and Down arrow keys being pressed.

   if (SO_KEY_PRESS_EVENT(event, UP_ARROW)) {

      myScaleSelection(selection, 1.1);

      eventCBÿ>setHandled();

   } else if (SO_KEY_PRESS_EVENT(event, DOWN_ARROW)) {

      myScaleSelection(selection, 1.0/1.1);

      eventCBÿ>setHandled();

   }

}

Sending Events Directly to the Application (Advanced)
In some cases, you may want to shortÿcircuit Inventor event handling and send all events directly to

the application. SoXtRenderArea contains a method that enables you to pass events to an application

event handler. For example:

SoXtRenderArea *myRenderArea;

myRenderAreaÿ>setEventCallback(myEventCallback, userData);

When this method is passed a nonÿNULL user function, all events that come into the render area are

passed to the user function.  The callback function returns a Boolean value. If this value is TRUE, the

callback function handled the event and the render area does not send the event to the scene manager

for handling. If this value is FALSE, the event is sent to the scene graph for handling.

Note that the events sent to the event callback function are not Inventor events. For the 

SoXtRenderArea, X events are passed.  The application is thus assured of receiving every event,

even those that do not translate to Inventor events.

Example 10ÿ2 demonstrates using setEventCallback(), which causes events to be sent directly to the

application without being sent into the scene graph.

Example 10ÿ2 Sending Events Directly to the Application

// Clicking the left mouse button and dragging will draw 

// points in the xy plane beneath the mouse cursor.

// Clicking middle mouse and holding causes the point set 

// to rotate about the Y axis. 

// Clicking right mouse clears all points drawn so far out 

// of the point set.

...

// Have render area send events to us instead of the scene 

// graph.  We pass the render area as user data.

myRenderAreaÿ>setEventCallback(
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            myAppEventHandler, myRenderArea);

SbBool

myAppEventHandler(void *userData, XAnyEvent *anyevent)

{

   SoXtRenderArea *myRenderArea = (SoXtRenderArea *) userData;

   XButtonEvent *myButtonEvent;

   XMotionEvent *myMotionEvent;

   SbVec3f vec;

   SbBool handled = TRUE;

   switch (anyeventÿ>type) {

   case ButtonPress:

      myButtonEvent = (XButtonEvent *) anyevent;

      if (myButtonEventÿ>button == Button1) {

         myProjectPoint(myRenderArea, 

                  myButtonEventÿ>x, myButtonEventÿ>y, vec);

         myAddPoint(myRenderArea, vec);

      } else if (myButtonEventÿ>button == Button2) {

         myTickerÿ>schedule();  // start spinning the camera

      } else if (myButtonEventÿ>button == Button3) {

         myClearPoints(myRenderArea);  // clear the point set

      }

      break;

   case ButtonRelease:

      myButtonEvent = (XButtonEvent *) anyevent;

      if (myButtonEventÿ>button == Button2) {

         myTickerÿ>unschedule();  // stop spinning the camera

      }

      break;

   case MotionNotify:

      myMotionEvent = (XMotionEvent *) anyevent;

      if (myMotionEventÿ>state & Button1Mask) {  

         myProjectPoint(myRenderArea, 

                  myMotionEventÿ>x, myMotionEventÿ>y, vec);

         myAddPoint(myRenderArea, vec);

      }

      break;

   default:

      handled = FALSE;

      break;

   }
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   return handled;

}

Selection

The SoSelection node provides several additional features that relate to the topic of user interaction.

These features include managing the selection list (introduced in "Selection Policy"), highlighting the

selected objects, and the use of userÿwritten callback functions that are invoked when the selection list

changes. The following sections describe each of these features.

Managing the Selection List

The SoSelection node keeps a list of paths to objects that have been selected. This list is called the 

selection list. Typically, the user selects an object or objects and then performs an operation on the

selected objects, such as copying them, deleting them, or setting their color.

Each path in the selection list begins with the selection node and ends with the selected object.

Objects can be added to and removed from the selection list in one of two ways:

 • By the eventÿprocessing mechanism of the selection object itself. This mechanism is based on the

current selection policy.

 • By methods on SoSelection that allow you to select, deselect, toggle, and clear objects from the

selection list. You need to use these methods only if you want to manage the selection list

directly.

The methods on SoSelection that are available for direct management of the selection list are as

follows:

select(path) adds a path to the selection list

deselect(path) removes a path from the selection list

toggle(path) toggles a path in the selection list (that is, adds the path if it is not already in the

list, or removes the path if it is in the list)

deselectAll() removes all paths from the selection list

isSelected() returns TRUE if the passed path is in the selection list

getNumSelected() returns the length of the selection list

getList() returns the selection list

getPath(index) returns one item (path) in the selection list

For convenience, you can provide these methods with a node instead of a path. If the node is instanced

multiple times in the scene graph, the path to the first instance of the node is used.

For example, suppose each of the objects in the scene graph has a name associated with it, such as a

car part. The user selects the object by clicking on a name from a list displayed on the screen

("hubcap"). Your program then uses this name, finds the path to the selected object, and adds this path

to the selection list. Example 10ÿ3 shows using a Motifÿstyle list to select objects in this manner. This

example shows selecting and deselecting objects using a Motifÿstyle list that contains names for four

objects (cube, sphere, cone, cylinder). 
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Example 10ÿ3 Using a MotifÿStyle List to Select Objects

//  The scene graph has 4 objects which may be

//  selected by picking with the left mouse button

//  (use shift key to extend the selection to more

//  than one object).

// 

//  Hitting the up arrow key will increase the size of

//  each selected object; hitting down arrow will decrease

//  the size of each selected object.

//

//  This also demonstrates selecting objects from a Motifÿstyle

//  list, and calling select/deselect functions on the

//  SoSelection node to change the selection. Use the Shift

//  key to extend the selection (i.e. pick more than one

//  item in the list.)

...

enum objects {

        CUBE,

        SPHERE,

        CONE,

        CYL,

        NUM_OBJECTS

};

static char *objectNames[] = {

        "Cube",

        "Sphere",

        "Cone",

        "Cylinder"

};

...

   cubeÿ>setName(objectNames[CUBE]);

   sphereÿ>setName(objectNames[SPHERE]);

   coneÿ>setName(objectNames[CONE]);

   cylÿ>setName(objectNames[CYL]);

...

   // Create a table of object names

   XmString *table = new XmString[NUM_OBJECTS];

   for (i=0; i<NUM_OBJECTS; i++) {

       table[i] = XmStringCreate(objectNames[i], 

                                 XmSTRING_DEFAULT_CHARSET);

   }

   // Create the list widget

   n = 0;

   XtSetArg(args[n], XmNitems, table);
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   n++;

   XtSetArg(args[n], XmNitemCount, NUM_OBJECTS);

   n++;

   XtSetArg(args[n], XmNselectionPolicy, XmEXTENDED_SELECT);

   n++;

   motifList = XmCreateScrolledList(shell, "funcList", args, n);

   XtAddCallback(motifList, XmNextendedSelectionCallback,

      (XtCallbackProc) myListPickCB, (XtPointer) selection);

...

   // Clear the selection node, then loop through the list

   // and reselect

   selectionÿ>deselectAll();

   // Update the SoSelection based on what is selected in

   // the list.  We do this by extracting the string

   // from the selected XmString, and searching for the 

   // object of that name.

   for (int i = 0; i < listDataÿ>selected_item_count; i++) {

      mySearchAction.setName(

               SoXt::decodeString(listDataÿ>selected_items[i]));

      mySearchAction.apply(selection);

      selectionÿ>select(mySearchAction.getPath());

   }

Another example of how the selection list might be used is that the user selects several objects and

wants to make all of them twice their original size. Here, you would call getList() or getPath() for

each of the selected objects. Then you would find the appropriate SoTransform node in the path for

each object and modify its scaleFactor field. Example 10ÿ4 is an example of using the selection list in

this way. 

Example 10ÿ4 Using the Selection List

// Scale each object in the selection list

void

myScaleSelection(SoSelection *selection, float sf)

{

   SoPath *selectedPath;

   SoTransform *xform;

   SbVec3f scaleFactor;

   int i,j;

   // Scale each object in the selection list

   for (i = 0; i < selectionÿ>getNumSelected(); i++) {

      selectedPath = selectionÿ>getPath(i);

      xform = NULL;

      // Look for the shape node, starting from the tail of the 
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      // Look for the shape node, starting from the tail of the 

      // path.  Once we know the type of shape, we know which 

      // transform to modify

      for (j=0; j < selectedPathÿ>getLength() && 

                (xform == NULL); j++) {

         SoNode *n = (SoNode *)selectedPathÿ>getNodeFromTail(j);

         if (nÿ>isOfType(SoCube::getClassTypeId())) {

            xform = cubeTransform;

         } else if (nÿ>isOfType(SoCone::getClassTypeId())) {

            xform = coneTransform;

         } else if (nÿ>isOfType(SoSphere::getClassTypeId())) {

            xform = sphereTransform;

         } else if (nÿ>isOfType(SoCylinder::getClassTypeId())) {

            xform = cylTransform;

         }

      }

      // Apply the scale

      scaleFactor = xformÿ>scaleFactor.getValue();

      scaleFactor *= sf;

      xformÿ>scaleFactor.setValue(scaleFactor);

   }

}

Highlighting Selected Objects

Usually, when objects are selected, they are highlighted or treated in some other special way to

distinguish them from unselected objects. With the SoXtRenderArea, Inventor provides two

highlight styles. You can choose to have highlighted objects drawn in wireframe with a particular

color, line pattern, and line width, or you can have selected objects drawn with a wireframe bounding

box surrounding each object. The type of highlight can be set on SoXtRenderArea. The default

highlight style is no highlight.

Figure 10ÿ6 shows the class tree for the highlighting classes. Because highlighting objects are simply

another way to render the scene, Inventor highlights are derived from the SoGLRenderAction. To

create your own custom highlights, see The Inventor Toolmaker, Chapter 11.

Figure 10ÿ6 Highlight Classes

To specify which highlight to use, pass a highlight to the setGLRenderAction() method on 

SoXtRenderArea. The action will render highlights for selected objects in the scene. Note that

whenever you create a new highlight and pass it to the render area, you are responsible for deleting

the highlight after the render area is destroyed. The render area will not delete it for you.

Tip: The redraw sensor employed by the render area does not trigger a redraw when the selection
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changes. Use the redrawOnSelectionChanges() convenience method on SoXtRenderArea to ensure

that a redraw occurs when the selection changes. Pass the selection node that should be monitored for

changes.

How Highlighting Occurs

First, the highlight render action renders the scene graph. Then it renders the path for each object in

the selection list. For SoLineHighlightRenderÿ

Action, the selected objects are drawn in wireframe, with the specified color, line pattern, and line

width. The following methods are available for SoLineHighlightRenderAction:

setColor (color) specifies the highlight color

setLinePattern (pattern)

 specifies the line pattern of the highlight

setLineWidth (width)

specifies the line width of the highlight

For SoBoxHighlightRenderAction, the selected objects are drawn with a wireframe box surrounding

them, using the specified color, line pattern, and line width. Methods for 

SoBoxHighlightRenderAction are the same as for SoLineHighlightRenderAction.

Custom Highlighting

If you want highlight styles other than the line and box highlight styles provided by Inventor, you can

do either of the following:

 • Create a new subclass from SoGLRenderAction and pass it to 

renderAreaÿ>setGLRenderAction()

 • Specify NULL for addSelectionHighlight() and then use selection callback functions, described

in the following section, to add geometry, drawÿstyle, and other required nodes to the scene graph

for highlighting selected objects. A common highlighting technique is to use selection callbacks

to add a manipulator to selected objects.

See The Inventor Toolmaker, Chapter 10, for a detailed explanation of creating your own highlight.

Callback Functions for Selection Changes

The SoSelection class has several types of callback functions associated with it: selection callbacks,

deselection callbacks, a pick filter callback, start callbacks, and finish callbacks. For example, you

might write a callback function that puts a trackball around an object every time it is selected. This

function would be a selection callback function. You would probably write a second callback function

to remove the trackball when the object is deselected. This function would be a deselection callback

function. The pick filter callback function is invoked whenever an object is picked and is about to be

selected or deselected.  This function allows you to truncate the selection path at a certain object type,

such as a node kit (see Example 10ÿ8).

A start callback function is called whenever the selection is about to change, and a finish callback

function is called when the selection is finished changing. These functions are useful for

implementing undo and redo features. When the selection is about to change, you can save the current

selection in an undo buffer. To undo a change, you restore this saved information.
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Another example of a user callback function for selected objects would be a function that checks to

see if the material editor is on the screen when an object is selected. If it is, then the function finds the

material node affecting the selected object and attaches the material editor to that node. 

The following methods allow you to specify what happens when an object is selected and deselected:

addSelectionCallback(functionName, userData)

removeSelectionCallback(functionName, userData) 

 are invoked whenever an object is selected.

addDeselectionCallback(functionName, userData) 

removeDeselectionCallback(functionName, userData) 

are invoked whenever an object is deselected.

setPickFilterCallback(functionName, userData)

is invoked whenever an object is picked and is about to be selected or deselected.

This function allows you to truncate the selection path at a certain object type.

addStartCallback(functionName, userData)

removeStartCallback(functionName, userData) 

 are invoked whenever the selection list is about to

 change.

addFinishCallback(functionName, userData)

removeFinishCallback(functionName, userData) 

 are invoked when the selection list is finished changing.

These methods allow you to pass in a callback function and a pointer to user data. If you specify

NULL for the pick filter callback function, whatever is picked will be selected and deselected.

Example 10ÿ5 illustrates the use of selection callback functions. The scene graph in this example has a

sphere and a 3D text object.  A selection node is placed at the top of the scene graph. When an object

is selected, a selection callback is invoked to change the material color of that object.

Example 10ÿ5 Using Selection Callback Functions

#include <X11/Intrinsic.h>

#include <Inventor/Sb.h>

#include <Inventor/SoInput.h>

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/SoXtRenderArea.h>

#include <Inventor/nodes/SoDirectionalLight.h>

#include <Inventor/nodes/SoMaterial.h>

#include <Inventor/nodes/SoPerspectiveCamera.h>

#include <Inventor/nodes/SoPickStyle.h>

#include <Inventor/nodes/SoSelection.h>

#include <Inventor/nodes/SoSphere.h>

#include <Inventor/nodes/SoText3.h>

#include <Inventor/nodes/SoTransform.h>

// global data

SoMaterial *textMaterial, *sphereMaterial;
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static float reddish[] = {1.0, 0.2, 0.2};

static float white[] = {0.8, 0.8, 0.8};

// This routine is called when an object gets selected. 

// We determine which object was selected, and change 

// that object’s material color.

void

mySelectionCB(void *, SoPath *selectionPath)

{

   if (selectionPathÿ>getTail()ÿ>

            isOfType(SoText3::getClassTypeId())) { 

      textMaterialÿ>diffuseColor.setValue(reddish);

   } else if (selectionPathÿ>getTail()ÿ>

            isOfType(SoSphere::getClassTypeId())) {

      sphereMaterialÿ>diffuseColor.setValue(reddish);

   }

}

// This routine is called whenever an object gets deselected. 

// We determine which object was deselected, and reset 

// that object’s material color.

void

myDeselectionCB(void *, SoPath *deselectionPath)

{

   if (deselectionPathÿ>getTail()ÿ>

            isOfType(SoText3::getClassTypeId())) {

      textMaterialÿ>diffuseColor.setValue(white);

   } else if (deselectionPathÿ>getTail()ÿ>

            isOfType(SoSphere::getClassTypeId())) {

      sphereMaterialÿ>diffuseColor.setValue(white);

   }

}

void

main(int argc, char **argv)

{

   // Initialize Inventor and Xt

   Widget myWindow = SoXt::init(argv[0]);

   if (myWindow == NULL) exit(1);

   // Create and set up the selection node

   SoSelection *selectionRoot = new SoSelection;

   selectionRootÿ>ref();

   selectionRootÿ>policy = SoSelection::SINGLE;

   selectionRootÿ> addSelectionCallback(mySelectionCB);

   selectionRootÿ> addDeselectionCallback(myDeselectionCB);
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   // Create the scene graph

   SoSeparator *root = new SoSeparator;

   selectionRootÿ>addChild(root);

   SoPerspectiveCamera *myCamera = new SoPerspectiveCamera;

   rootÿ>addChild(myCamera);

   rootÿ>addChild(new SoDirectionalLight);

   // Add a sphere node

   SoSeparator *sphereRoot = new SoSeparator;

   SoTransform *sphereTransform = new SoTransform;

   sphereTransformÿ>translation.setValue(17., 17., 0.);

   sphereTransformÿ>scaleFactor.setValue(8., 8., 8.);

   sphereRootÿ>addChild(sphereTransform);

   sphereMaterial = new SoMaterial;

   sphereMaterialÿ>diffuseColor.setValue(.8, .8, .8);

   sphereRootÿ>addChild(sphereMaterial);

   sphereRootÿ>addChild(new SoSphere);

   rootÿ>addChild(sphereRoot);

   // Add a text node

   SoSeparator *textRoot = new SoSeparator;

   SoTransform *textTransform = new SoTransform;

   textTransformÿ>translation.setValue(0., ÿ1., 0.);

   textRootÿ>addChild(textTransform);

   textMaterial = new SoMaterial;

   textMaterialÿ>diffuseColor.setValue(.8, .8, .8);

   textRootÿ>addChild(textMaterial);

   SoPickStyle *textPickStyle = new SoPickStyle;

   textPickStyleÿ>style.setValue(SoPickStyle::BOUNDING_BOX);

   textRootÿ>addChild(textPickStyle);

   SoText3 *myText = new SoText3;

   myTextÿ>string = "rhubarb";

   textRootÿ>addChild(myText);

   rootÿ>addChild(textRoot);

   SoXtRenderArea *myRenderArea = new SoXtRenderArea(myWindow);

   myRenderAreaÿ>setSceneGraph(selectionRoot);

   myRenderAreaÿ>setTitle("My Selection Callback");

   myRenderAreaÿ>show();

   // Make the camera see the whole scene

   const SbViewportRegion myViewport = 

            myRenderAreaÿ>getViewportRegion();

   myCameraÿ>viewAll(root, myViewport, 2.0);
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   SoXt::show(myWindow);

   SoXt::mainLoop();

}

Pick Filter Callback (Advanced)

The pick filter callback returns a path for the new object to be selected,  deselected, or toggled:

typedef SoPath *SoSelectionPickCB( void * userData , SoDetail * d);

void setPickFilterCallback (SoSelectionPickCB * f ,

 void * userData  = NULL,

 SbBool callOnlyIfSelectable  = TRUE);

This callback can look at the picked point to see what was picked and return a path to whatever the

selection policy is to be applied to. It can truncate the picked path so that it ends in a particular type of

node. If an unselectable object is picked, the pick filter callback determines how that information is

used. When the callback is set, the application passes in a Boolean value that specifies whether the

callback is called only if the object is selectable, or is called for all objects. The pick filter callback can

then return one of the following:

 • NULLthe selection behaves as if nothing were picked (for SINGLE and SHIFT selection

policies, this clears the selection list).

 • Paththis path will be selected or deselected according to the selection policy. It must pass

through the selection node.

 • Path not passing through the selection nodethe selection ignores this pick event and no change

is made to the selection list.

 • Path containing only the selection nodeapplies the selection policy as though nothing were

picked, but continues traversal. 

Examples 10ÿ6 through 10ÿ8 illustrate sample pick filter callbacks the application could use. 

Example 10ÿ6 shows the use of the pick filter callback to implement a topÿlevel selection policy.

Rather than selecting the actual node that was picked, it always selects the topmost group beneath the

selection node. Figure 10ÿ7 shows the two viewers created by this example.
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Figure 10ÿ7 TopÿLevel Selection Policy (left) and Default Selection Policy (right)

Example 10ÿ6 Creating a TopÿLevel Selection Policy

#include <X11/StringDefs.h>

#include <X11/Intrinsic.h>

#include <Inventor/SoDB.h>

#include <Inventor/SoInput.h>

#include <Inventor/SoPath.h>

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>

#include <Inventor/actions/SoBoxHighlightRenderAction.h>

#include <Inventor/misc/SoPickedPoint.h>

#include <Inventor/nodes/SoSelection.h>

// Pick the topmost node beneath the selection node

SoPath *

pickFilterCB(void *, const SoPickedPoint *pick)

{    

   // See which child of selection got picked

   SoPath *p = pickÿ>getPath();

   int i;

   for (i = 0; i < pÿ>getLength() ÿ 1; i++) {

      SoNode *n = pÿ>getNode(i);

      if (nÿ>isOfType(SoSelection::getClassTypeId()))

         break;
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   }

   // Copy 2 nodes from the path:

   // selection and the picked child

   return pÿ>copy(i, 2);

}

void

main(int argc, char *argv[])

{

   // Initialization

   Widget mainWindow = SoXt::init(argv[0]);

   // Open the data file

   SoInput in;   

   char *datafile = "parkbench.iv";

   if (! in.openFile(datafile)) {

      fprintf(stderr, "Cannot open %s for reading.\n",

              datafile);

      return;

   }

   // Read the input file

   SoNode *n;

   SoSeparator *sep = new SoSeparator;

   while ((SoDB::read(&in, n) != FALSE) && (n != NULL))

      sepÿ>addChild(n);

   // Create two selection roots ÿ one will use the pick filter.

   SoSelection *topLevelSel = new SoSelection;

   topLevelSelÿ>addChild(sep);

   topLevelSelÿ>setPickFilterCallback(pickFilterCB);

   SoSelection *defaultSel = new SoSelection;

   defaultSelÿ>addChild(sep);

   // Create two viewers, one to show the pick filter for top

   // level selection, the other to show default selection.

   SoXtExaminerViewer *viewer1 = new

            SoXtExaminerViewer(mainWindow);

   viewer1ÿ>setSceneGraph(topLevelSel);

   viewer1ÿ>setGLRenderAction(new SoBoxHighlightRenderAction());

   viewer1ÿ>redrawOnSelectionChange(topLevelSel);

   viewer1ÿ>setTitle("Top Level Selection");

   SoXtExaminerViewer *viewer2 = new SoXtExaminerViewer();
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   viewer2ÿ>setSceneGraph(defaultSel);

   viewer2ÿ>setGLRenderAction(new SoBoxHighlightRenderAction());

   viewer2ÿ>redrawOnSelectionChange(defaultSel);

   viewer2ÿ>setTitle("Default Selection");

   viewer1ÿ>show();

   viewer2ÿ>show();

   SoXt::show(mainWindow);

   SoXt::mainLoop();

}

Example 10ÿ7 shows the use of the pick filter callback to pick through manipulators. In the complete

example, the scene graph contains the text  "Open Inventor."  Clicking the left mouse on an object

selects it and adds a manipulator to it.  Clicking again deselects it and removes the manipulator. The

pick filter is used to deselect the object rather than select the manipulator.

Example 10ÿ7 Picking through Manipulators

SoPath *

pickFilterCB(void *, const SoPickedPoint *pick)

{

   SoPath *filteredPath = NULL;

   // See if the picked object is a manipulator. 

   // If so, change the path so it points to the object the 

   // manip is attached to.

   SoPath *p = pickÿ>getPath();

   SoNode *n = pÿ>getTail();

   if (nÿ>isOfType(SoTransformManip::getClassTypeId())) {

      // Manip picked! We know the manip is attached

      // to its next sibling. Set up and return that path.

      int manipIndex = pÿ>getIndex(pÿ>getLength() ÿ 1);

      filteredPath = pÿ>copy(0, pÿ>getLength() ÿ 1);

      filteredPathÿ>append(manipIndex + 1); // get next sibling

   }

   else filteredPath = p;

   return filteredPath;

}

Example 10ÿ8 illustrates using the pick filter callback to truncate the pick path at a node kit. This filter

facilitates editing the attributes of objects because the node kit takes care of the part creation details. 

Example 10ÿ8 Selecting Node Kits

// Truncate the pick path so a nodekit is selected

SoPath *

pickFilterCB(void *, const SoPickedPoint *pick)

{    

 The Inventor Mentor:   Programming ObjectÿOriented   3D Graphics with Open Inventor  ,  Release 2 ÿ Chapter

10,  Handling Events and Selection ÿ 25



   // See which child of selection got picked

   SoPath *p = pickÿ>getPath();

   int i;

   for (i = pÿ>getLength() ÿ 1; i >= 0; iÿÿ) {

      SoNode *n = pÿ>getNode(i);

      if (nÿ>isOfType(SoShapeKit::getClassTypeId()))

         break;

   }

   // Copy the path down to the nodekit

   return pÿ>copy(0, i+1);

}



Chapter 11

File Format

Chapter Objectives

After reading this chapter, you’ll be able to do the following:

 • Write a scene graph to a file in ASCII or binary format

 • Read a file into the Inventor database

 • Use the Inventor file format as an alternative to creating scene graphs programmatically

 • Read a scene graph from a buffer in memory

This chapter describes the Inventor ASCII file format. Whenever you apply a write action to a node,

path, or path list, the output file is written in this format. You can read files that use this format into

the Inventor scene database by using the read method on the database. The file format is also used for

transferring 3D copy and paste data between processes.

Writing a Scene Graph

As described in Chapter 9, you can apply a write action to a node, path, or path list. When the write

action is applied to a node, it writes the entire subgraph rooted at that node.

SoWriteAction  writeAction;

writeAction.apply(root); //writes the entire scene graph to stdout

Reading a File into the Database

You can read a scene graph from a file into the scene database using the readAll() method on the

Inventor database. This example reads a file with the given filename and returns a separator

containing the file. It returns NULL if there is an error reading the file.

SoSeparator *

readFile(const char *filename)

{

   // Open the input file

   SoInput mySceneInput;

   if (!mySceneInput.openFile(filename)) {

      fprintf(stderr, "Cannot open file %s\n", filename);

      return NULL;

   }

   // Read the whole file into the database

   SoSeparator *myGraph = SoDB::readAll(&mySceneInput);

   if (myGraph == NULL) {

      fprintf(stderr, "Problem reading file\n");

      return NULL;

   } 

   mySceneInput.closeFile();
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   return myGraph;

}

There are two read() methods.  One method reads a graph rooted by a node, returning a pointer to that

node. The other reads a graph defined by a path. You must call the correct method, based on the

contents of the input. When you read in a model, you usually read a node.  If you are cutting and

pasting with paths, you will need to read a path.

SoDB uses the  class when reading Inventor data files. This class can also be used to read from a

buffer in memory. By default, SoInput looks for a specified file in the current directory (unless the

specification begins with /). You can add directories to the search path with the addDirectoryÿ

First()  and addDirectoryLast() methods (see the Open Inventor C++ Reference Manual on SoInput

).  Use the clearDirectories() method to clear the directory list.

You can also add a list of directories that is specified as the value of an  environment variable. Use the

following methods on SoInput:

addEnvDirectoriesFirst()

addEnvDirectoriesLast()

File Format Syntax

The following sections outline the syntax for the Inventor ASCII file format. In this file format, extra

white space created by spaces, tabs, and new lines is ignored. Comments begin with a number sign (#)

anywhere on a line and continue to the end of the line:

# this is a comment in the Inventor file format

For simplicity, this discussion focuses on writing a scene graph to a file. This same format applies to

files you create that will be read into the Inventor database.

See the Open Inventor C++ Reference Manual for descriptions of the file format for each Inventor

class.

File Header

Every Inventor data file must have a standard header to identify it. This header is the first line of the

file and has the following form:

#Inventor V2.0 ascii

or

#Inventor V2.0 binary

To determine whether a random file is an Inventor file, use the SoDB::isValidHeader() method and

pass in the beginning of the file in  question. Although the header may change from version to version

(V2.0 is the current version), it is guaranteed to  begin with a # sign, be no more than 80 characters,

and end at a newline. Therefore, the C () routine can be used. The isValidHeader() method returns

TRUE if the file contains an Inventor header. Inventor also reads older (V1.0) files and converts them.

Writing a Node

A node is written with the following elements:
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 • Name of the node (without the So prefix)

 • Open brace ( { )

 • Fields within the node (if any), followed by children of the node (if any)

 • Close brace ( } )

For example:

DrawStyle {

   style         LINES

   lineWidth     3

   linePattern   255

}

Writing Values within a Field

Fields within a node are written as the name of the field, followed by the value or values contained in

the field. If the field value has not been changed from its default value, that field is not written out.

Fields within a node can be written in any order. An example of writing field values is as follows:

Transform {

    translation      0 ÿ4 0.2

}

LightModel {

   model            BASE_COLOR

}

Material {

   ambientColor   .3 .1 .1

   diffuseColor  [.8 .7 .2,

                   1 .2 .2,

                  .2  1 .2,

                  .2 .2  1]

   specularColor  .4 .3 .1

   emissiveColor  .1  0 .1

}

Brackets surround multipleÿvalue fields, with commas separating the values, as shown for the 

diffuseColor field in the preceding example. It’s all right to have a comma after the last value as well:

[value1, value2, value3,]

Singleÿvalue () fields do not contain any brackets or commas. Multipleÿvalue () fields usually have

brackets, but they are not necessary if only one value is present:

specularColor    .4 .3 .1

or

specularColor   [.4 .3 .1]

The value that is written depends on the type of the field, as described in the following list.
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Type of Field Acceptable Formats

longs, shorts, unsigned shorts

integers, in decimal, hexadecimal, or octal; 

For example:

255

0xff

0177

floats integer or floating point number. For example: 

  13

 13.0

 13.123

 1.3eÿ2

names, strings double quotation marks ( " " ) around the name if it is more than one word, or just

the name (with no white space) if it is a single word (quotation marks are

optional). For example:

label   " front left leg " 

label   car You can have any ASCII character in the string, including

newlines and backslashes, except for double quotation marks. To include a double

quotation mark in the string, precede it with a backslash (\").

enums either the mnemonic form of the enum or the integer form. (The mnemonic form

is recommended, both for portability and readability of code.) For example:

MaterialBinding {

   value   PER_FACE

 }

bit mask one or more mnemonic flags, separated by a vertical bar (|) if there are multiple

flags. When more than one flag is used, parentheses are required:

 Cylinder {

    parts   SIDES

 }

 Cylinder {

    parts   (SIDES | TOP)

 }

vectors n floats separated by white space:

(SbVecnf, where n is

the number of 

PerspectiveCamera {

components of the    position   0 0 9.5

vector) }

colors 3 floats (RGB) separated by white space:

 BaseColor {
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    rgb   0.3 0.2 0.6

 }

rotation a 3ÿvector for the axis, followed by a float for the angle (in radians), separated by

white space:

 Transform {

    rotation   0 1 0 1.5708

    # y axis ... pi\xb9 /2 radians

 }

matrix 16 floats, separated by white space

path an SFPath has one value, a pointer to a path. To write this value, write the path

(see "Writing a Path"). An MFPath has multiple values, which are all pointers to

paths. To write this value, enclose the path list in brackets, and use commas to

separate each path:[first_path, second_path, ... nth_path]

node an SFNode has one value, a pointer to a node. To write this value, write the node.

An MFNode has multiple values, which are all pointers to nodes. To write this

value, enclose the node list in brackets, and use commas to separate each node:[

node1, node2, ... noden]

Boolean TRUE, FALSE or 0, 1:

 SoFile {

    isWriteBack   FALSE

 }

Ignore Flag

The Ignore flag for a field (see Chapter 3) is written as a tilde ( ~ ), either after or in place of the field

value or values. For example:

transparency [ .9, .1 ] ~

or

transparency ~

The first case preserves the values even though the field is ignored. The second case uses the default

value but ignores the field.

Tip: The Ignore flag applies only to properties. It is not used for cameras, lights, and shapes.

Field Connections

Connections are written as the object containing the field or output connected to the field, followed by

a period (.) and then the name of the field or output. For example:

Separator {

     DEF Trans Translation { translation  1 2 3 }

     Cube {}

 }

 Separator {

     Translation { translation 0 0 0 = USE Trans.translation }
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     Cone {}

 }

The value of a connected field (0 0 0 in this case) is optional, so the second Translation node could

be written as

Translation { translation = USE Trans.translation }

If an ignored field is connected, the connection specification follows the Ignore flag:

translation 000 ~ = USE Trans.translation

#or

translation ~ = USE Trans.translation

If a value is given as well as a connection, the value is used for the field. If a value is sent along the

connection later, it will override the value.

Global Fields

A global field needs to have at least one connection in order for it to be written out. It is written out in

this format:

GlobalField {

type

value

}

The braces contain the type and value of the field. The name of the global field is stored as the name

of the value field. For example, the Text3 node could be connected to a global field (here, 

currentFile) that stores the current file name an application is working on. The Text3 node would

then always display that current file name. Here is the ASCII file format for that connection:

Text3 {

   string "" = GlobalField {

      type SFString

      currentFile "aircar.iv"

   } . currentFile

}

Writing an Engine

The syntax for an engine definition is the same as that of a nongroup node:

EngineType {

   input_fields

}

Engines can’t be written on their own; they must be connected to at least one part of the scene graph.

A fieldÿtoÿengine connection is specified as follows:

fieldname  value = engine . outputname

Here is an example of changing a sphere’s radius using an SoOneShot engine:

Sphere {

   radius 0.5 = OneShot { duration 3.0 } . ramp
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}

For a more complex example, see "Defining and Using Shared Instances of Nodes".

Writing a Path

A path (see Chapter 3) is written with the following elements:

 • The word Path

 • Open brace ({ )

 • The entire subgraph that is rooted on the head node for the path

 • Number of indices in the rest of the path chain

 • The indices themselves

 • Close brace (})

When Inventor encounters separator groups within the subgraph, it ignores them if they do not affect

the nodes in the path chain. Written indices for the children within a group are adjusted to account for

the skipped separator groups. For example, in Figure 11ÿ1, node N is counted as child index 1 when

written, since the two previous children are separator groups that do not affect this node at all. (The

indices in the path itself remain unchanged.)
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Figure 11ÿ1 Adjusting Path Indices to Account for Separator Groups

Note: If a path contains connections to nodes that are not part of the path, these nodes are not written

out. For example, if a path contains an engine connected to a node outside the path, the engine will be

written, but the node will not be.

Example 11ÿ1 illustrates the process of writing a path to a file. First, here is the file for the scene

graph, which creates chartreuse, rust, and violet spheres.

Separator {

   PerspectiveCamera {

      position 0 0 9.53374

      aspectRatio 1.09446

      nearDistance 0.0953375

      farDistance 19.0675

      focalDistance 9.53374

   }

   DirectionalLight {

   }

   Transform {

      rotation ÿ0.189479 0.981839 ÿ0.00950093 0.102051

      center 0 0 0 

   }

   DrawStyle {

   }

   Separator {

      LightModel {

         model   BASE_COLOR

      }

      Separator {

         Transform {

            translation ÿ2.2 0 0

         }

         BaseColor {

            rgb .2 .6 .3   # chartreuse

         }

         Sphere { }

      }

      Separator {

         BaseColor {

            rgb .6 .3 .2   # rust

         }

         Sphere { }

      }
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      Separator {

         Transform {

            translation 2.2 0 0 

         }

         BaseColor {

            rgb .3 .2 .6   # violet

         }

         Sphere { }

      }

}

Figure 11ÿ2 shows the scene graph for this file.

Figure 11ÿ2 Scene Graph for a Scene with Three Spheres

If you pick the third sphere (the violet one), the pick path could be written to a file as shown in 

Example 11ÿ1. First, the subgraph under the root node is written. This description is followed by the

number of indices in the path (3), and the indices themselves (4, 1, 2), as shown in Figure 11ÿ3.

Example 11ÿ1 Writing a Path

Path {

   Separator {

      PerspectiveCamera {

         position 0 0 9.53374

         aspectRatio 1.09446

         nearDistance 0.0953375

         farDistance 19.0675
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         focalDistance 9.53374

      }

      DirectionalLight {

      }

      Transform {

         rotation ÿ0.189479 0.981839 ÿ0.00950093 0.102051

      }

      DrawStyle {

      }

      Separator {

         LightModel {

            model BASE_COLOR

         }

         Separator {

            Transform {

               translation 2.2 0 0

            }

            BaseColor {

               rgb 0.3 0.2 0.6

            }

            Sphere {

            }

         }

      }

   }

   3

   4

   1

   2

}
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Figure 11ÿ3 Pick Path for Violet Sphere

Defining and Using Shared Instances of Nodes

In the file format, the keyword DEF introduces a named instance of a node, path, or engine. It can be

referenced later with the USE keyword. For example:

// This example shows keeping a cone between two cubes using an

// InterpolateVec3f engine.

Separator {

   DEF A Translation { translation ÿ4 0 0 }

   Cube { }

}

Separator {

   DEF B Translation { translation 4 5 6 }

   Cube { }

}

Separator {

   Translation { translation 0 0 0 =

                 InterpolateVec3f {

                    input0 0 0 0 = USE A.translation

                    input1 0 0 0 = USE B.translation

                    alpha 0.5

                 } . output
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               }

   Cone { }

}

The name can be any valid SbName. In certain cases, Inventor adds some extra characters to the name

when the file is written out. For example, consider the somewhat unusual scene graph shown in 

Figure 11ÿ4. To indicate which instance of the beachball node is used by node B, the scene graph is

written out as follows:

Separator{

   Separator{

      DEF beachball+0

      DEF beachball+1

   }

   Separator{

      USE beachball+0

      USE beachball+1

   }

}

When the scene graph is read back in, the original names are preserved, but the +n notations are

discarded.
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Figure 11ÿ4 Shared Instances of Nodes

Writing a Node Kit

When a node kit is written, it includes one field for each part.  For example:

AppearanceKit {

   lightModel       LightModel { model PHONG }

   drawStyle        DrawStyle  { style LINES }

   material         Material   { diffuseColor .5 .5 .5 }

   complexity     Complexity { value .5 }

}

In this format, the name of the field (lightModel) is followed by the name of the node (LightModel ),

and then the node’s fields and values (each part is contained in an SoSFNode field). If the part has not

been created, or if it is NULL, it is not written out. However, if a part is created by default (such as the

shape part in the SoShapeKit), and if the part is explicitly set to NULL, it is written out.

This example shows nesting node kits. Here, the appearance kit is the value for the appearance field.

The appearance kit, in turn, has a material field.

SeparatorKit {

   appearance       AppearanceKit {

      material       Material { diffuseColor    1 1 1 }

   }

}

When Inventor writes out a node kit, it writes out the intermediate parts. When you enter the

information yourself, you can use a shorthand method and omit the intermediate parts. For example, if

you omit the AppearanceKit, the SeparatorKit knows to add an AppearanceKit and put the 

Material  node inside. So, you could simply enter this:

SeparatorKit {

   material       Material { diffuseColor    1 1 1 }

}

The file format for list parts within node kits is a bit more specialized. Each list part has three standard

fields:  

containerTypeName

for example, separator or switch; in string format

childTypeName an SoMFString that lists the types of children that this node is allowed to contain

containerNode the node that contains the children

For example, here is the childList  part of an instance of SoSeparatorKit:

SeparatorKit {

   childList       NodeKitListPart {

      containerTypeName    "Separator"

      childTypeNames       "SeparatorKit"

      containerNode            Separator {

         SeparatorKit {
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            transform       Transform { translation  1 0 0 }

         }

         SeparatorKit {

            transform       Transform { translation  0 1 0 }

         }

         SeparatorKit {

            transform       Transform { translation  0 0 1 }

         }

      }

   }

}

By default, Inventor does not write out the internal parts, such as separators and groups, or fields with

default values. But if the node kit is in a path, everything is written out, as the following example

shows. Generally, it writes out the parts in the reverse order they are defined in the catalog, with the

leaf nodes first:

#Inventor V2.0 ascii

SeparatorKit {

   appearance     DEF +0 AppearanceKit {

      material     DEF +1 Material {

         diffuseColor    1 0 1

      }

   }

   childList     DEF +2 NodeKitListPart {

      containerTypeName   "Separator"

      childTypeNames        "SeparatorKit"

      containerNode          DEF +3 Separator {

         ShapeKit {

            appearance        DEF +4 AppearanceKit {

               material       DEF +5 Material {}

              }

            transform      DEF +6 Transform {}

            shape      DEF +7 Cube {}

              topSeparator     Separator {

               USE +4

               USE +6

               DEF +8 Separator {

                  USE +7

               }

            }

            shapeSeparator     USE +8

        }

   }

}

topSeparator     Separator {
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   USE +0

   USE +2

   }

}

Including Other Files

To include a file within another file, use an SoFile node. This node is useful when you are building

scene graphs that include many objects.  The objects can reside in their own files, and SoFile nodes

can be used to refer to them without copying them directly into the new file. The SoFile node is

written as

File {

   name "myFile.iv"

}

where the name field is the name of the file to be included. On read, the contents of the file myFile.iv

are added as hidden children of SoFile. On write, Inventor just writes the filename (but not the

children).

The objects within an SoFile node are not editable.  You can copy the contents of an SoFile node

using the method

SoFile::copyChildren()

or you can modify the name field of the SoFile node. Whenever the value of the name field changes,

the new file is read in.  If the name is not an absolute path name, the list of directories set on SoInput

is used to search for the file (see "Reading a File into the Database").  automatically adds the directory

of the file being read to ’s list of directories to search. 

For example, suppose you have myFile.iv, which contains windmill.iv.

Contents of /usr/tmp/myFile.iv:

#Inventor V2.0 ascii

File { name "myObjects/windmill.iv" }

Contents of /usr/tmp/myObjects/windmill.iv:

#Inventor V2.0 ascii

//format to make the windmill

When /usr/tmp/myFile.iv is read in, /usr/tmp is added to the directory search list. When the SoFile

node in myFile.iv calls SoDB::read, SoInput will find /usr/tmp/myObjects/windmill.iv, and it will be

read (the directory /usr/tmp/myObjects will also be added to the list of search directories). When

reading finishes, /usr/tmp/myObjects and /usr/tmp will be removed from the search directories list.

ASCII and Binary Versions

The SoOutput object in an SoWriteAction has a setBinary() method, which sets whether the output

should be in ASCII (default) or binary format (see Chapter 9). The getOutput() method returns a

pointer to the SoOutput. When a file is written, Inventor inserts a header line that indicates whether

the file is in ASCII or binary format, as well as the Inventor version number (see "File Header").

Reading in Extender Nodes and Engines
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As described in The Inventor Toolmaker, developers can create their own nodes or engines and use

them in new applications. This section describes what happens if you read in a file with references to

extender nodes and engines whose code may or may not be accessible to your program. (In most

cases, nodes and engines are interchangeable, so the discussion refers only to nodes for simplicity.  In

cases where engines differ slightly from nodes, those differences are called out explicitly.)

When an Inventor node is read from a file, Inventor first checks to see if the node’s type has been

registered. If the name is found, an instance of that node is created and the fields for the node are read

in. This situation occurs if your program is linked with the code for the new node.

However, if your program is not linked with the code for the new node, things become slightly more

interesting.  If your system supports dynamic loading of compiled objects, Inventor can find the

compiled object and recognize the new node.  In this case, the author of the new node supplies the

compiled object for the node and places it in a directory that can be found by the system. (Check your

release notes for information on whether your system supports dynamic loading of shared objects and

how it implements searching directories for the objects.) 

File Format for Unknown Nodes and Engines

If Inventor is unable to locate the code for the new node or engine, it creates an instance of the class 

SoUnknownNode or SoUnknownEngine.  The first keyword in the file format for all new nodes is

named fields, and it is followed by the field type and name of all fields defined within the node.  For

example:

WeirdNode {

   fields [ SFFloat length, SFLong data ]

   length 5.3

   Material {}

   Cube {}

}

This unknown node has two fields, length and data.  Because the data field uses its default value, it is

not written out. The node also has two children, an SoMaterial and an SoCube, which are listed after

the fields of WeirdNode. These nodes are treated as hidden children and are not used for rendering,

picking, or searching. They are only used by the write action.

The file format for new engines contains descriptions of both the inputs and outputs for the engine, as

follows:

WeirdEngine {

   inputs [ SFFloat factor, SFFloat seed ]

   factor 100

   seed 0.5

   outputs [ SFFloat result ]

}

Since no code accompanies the node, most operations on the unknown node will not function.

However, reading, writing, and searching can still be performed on this node (but not on its children).

Alternate Representation
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The author of a new node class may also provide an alternate representation for the node, to be used in

cases where the node is treated as an unknown node.  This representation is specified in the 

alternateRep field for the node, which contains the complete scene graph for the alternate

representation.  This scene graph will be used in place of the actual node for picking, rendering, and

boundingÿbox actions. 

The following node kit provides an alternate representation:

Airplane {

   fields [ SFNode wing, SFNode fuselage, SFNode alternateRep ]

   wing Separator { ... the wing scene graph ... }

   fuselage Separator { ... the fuselage scene graph ... }

   alternateRep Separator {

      Cube {}

      Transform { translation 10 0 0 }

      Cone {}

   }

}

Reading from a String

"Reading a File into the Database" showed you how to read from a file. Example 11ÿ2 shows how you

can read from a string stored in memory. Note that when a graph is read from a buffer, you do not

need the fileÿheader string. This example creates a dodecahedron from an indexed face set.

Example 11ÿ2 Reading from a String

// Reads a dodecahedron from the following string: 

// (Note: ANSI compilers automatically concatenate 

// adjacent string literals together, so the compiler sees 

// this as one big string)

static char *dodecahedron =

   "Separator { "

      "   Material { "

   "      diffuseColor [ "

   "         1  0  0,   0 1  0,   0  0 1,   0  1  1, "

   "         1  0  1,  .5 1  0,  .5  0 1,  .5  1  1, "

   "         1 .3 .7,  .3 1 .7,  .3 .7 1,  .5 .5 .8 "

   "      ] "

   "   } "

   "   MaterialBinding { value PER_FACE } "

   "   Coordinate3 { "

   "      point [ "

   "         1.7265 0 0.618,    1 1 1, "

   "         0 0.618 1.7265,    0 ÿ0.618 1.7265, "

   "         1 ÿ1 1,    ÿ1 ÿ1 1, "

   "         ÿ0.618 ÿ1.7265 0,    0.618 ÿ1.7265 0, "

   "         1 ÿ1 ÿ1,    1.7265 0 ÿ0.618, "

   "         1 1 ÿ1,    0.618 1.7265 0, "
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   "         ÿ0.618 1.7265 0,    ÿ1 1 1, "

   "         ÿ1.7265 0 0.618,    ÿ1.7265 0 ÿ0.618, "

   "         ÿ1 ÿ1 ÿ1,    0 ÿ0.618 ÿ1.7265, "

   "         0 0.618 ÿ1.7265,    ÿ1 1 ÿ1 "

   "      ] "

   "   } "

   "   IndexedFaceSet { "

   "      coordIndex [ "

   "         1, 2, 3, 4, 0, ÿ1,  0, 9, 10, 11, 1, ÿ1, "

   "         4, 7, 8, 9, 0, ÿ1,  3, 5, 6, 7, 4, ÿ1, "

   "         2, 13, 14, 5, 3, ÿ1,  1, 11, 12, 13, 2, ÿ1, "

   "         10, 18, 19, 12, 11, ÿ1,  19, 15, 14, 13, 12, ÿ1, "

   "         15, 16, 6, 5, 14, ÿ1,  8, 7, 6, 16, 17, ÿ1, "

   "         9, 8, 17, 18, 10, ÿ1,  18, 17, 16, 15, 19, ÿ1, "

   "      ] "

   "   } "

   "}";

// Routine to create a scene graph representing a dodecahedron

SoNode *

makeDodecahedron()

{

   // Read from the string.

   SoInput in;

   in.setBuffer(dodecahedron, strlen(dodecahedron));

   SoNode *result;

   SoDB::read(&in, result);

   return result;

}



Chapter 12

Sensors

Chapter Objectives

After reading this chapter, you’ll be able to do the following:

 • Describe the different types of sensors that can be used in a scene graph and give possible uses

for each type

 • Understand how sensors are scheduled in the delay queue and the timer queue and when they are

processed

 • Write callback functions for use by data and timer sensors

 • Set the priority of a delayÿqueue sensor

This chapter describes how to add sensors to the scene graph. A sensor is an Inventor object that

watches for various types of events and invokes a userÿsupplied callback function when these events

occur. Sensors fall into two general categories: data sensors, which respond to changes in the data

contained in a node’s fields, in a node’s children, or in a path; and timer sensors, which respond to

certain scheduling conditions.

Introduction to Sensors

Sensors are a special class of objects that can be attached to the database. They respond to database

changes or to certain timer events by invoking a userÿsupplied callback function. Data sensors

(derived from SoDataSensor) monitor part of the database and inform the application when that part

changes. Timer sensors (such as SoAlarmSensor and SoTimerSensor) notify the application when

certain types of timer events occur. Note that timer "events" occur within Inventor and are not part of

the event model described in Chapter 10. See Figure 12ÿ1 for a diagram of the portion of the class tree

that includes sensors.

Figure 12ÿ1 Sensor Classes

Sensor Queues

As the class tree in Figure 12ÿ1 suggests, sensors are placed in one of two queues:
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 • Timer queue, which is called when an alarm or timer sensor is scheduled to go off

 • Delay queue, which is called whenever the CPU is idle  (that is, there are no events or timer

sensors to handle) or after a userÿspecifiable timeÿout

When processing of either queue begins, all sensors in that queue are processed once, in order (see 

"Using a Field Sensor").

Key Terms

The following discussion of data and timer sensors uses a few new terms. 

 • Triggering a sensor means calling its userÿdefined callback function and removing it from the

queue. 

 • Scheduling a sensor means adding it to a queue so that it can be triggered at some future time. If a

sensor is already scheduled, scheduling it again has no effect. Unscheduling a sensor means

removing it from the queue without processing it.

 • Notifying a data sensor means letting it know that the node (or field or path) to which it is

attached has changed. A data sensor automatically schedules itself when it is notified of a change.

Data Sensors

There are three types of data sensors:

 • SoFieldSensor, which is attached to a field

 • SoNodeSensor, which is attached to a node

 • SoPathSensor, which is attached to a path

An SoFieldSensor is notified whenever data in a particular field changes. An SoNodeSensor is

notified when data changes within a certain node, when data changes within any of the child nodes

underneath that node, or when the graph topology changes under the node. An SoPathSensor is

notified whenever data within any of the nodes in a certain path changes, or when nodes are added to

or deleted from that path. A node is considered to be in the path if traversing the path would cause the

node to be traversed.

Tip:  Setting the value of a field to the same value it had before (for example,

field.setValue(field.getValue()) )

is considered a change.  Calling the touch() method of a field or node is also considered a change.

A render area attaches a node sensor to the root of the scene graph so that it can detect when you

make any changes to the scene. It then automatically renders the scene again.

Data sensors are also useful if you want to monitor changes in part of a scene and communicate them

to another element in the scene.  For example, suppose you have a material in the scene graph with an

editor attached to it. If the material changes, the editor needs to change the values of its sliders to

reflect the new material. An SoNodeSensor supplies this feedback to the material editor. 

Tip:  Fieldÿtoÿfield connections are another way of keeping different parts of the scene graph in sync.

See Chapter 13.

General Sequence for Data Sensors
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The following sequence describes the necessary steps for setting up a data sensor:

1. Construct the sensor.

2. Set the callback function (see the next section).

3. Set the priority of the sensor (see "Priorities").

4. Attach the sensor to a field, node, or path.

5. When you are finished with the sensor, delete it.

Callback Function

Callback functions, as their name suggests, allow Inventor to call back to the application when some

predefined event occurs. A callback function usually takes a single argument of type void* that can be

used to pass extra userÿdefined data to the function. Callback functions used by sensors also have a

second argument of type SoSensor*. This argument is useful if the same callback function is used by

more than one sensor. The argument is filled with a pointer to the sensor that caused the callback.

In C++, a sensor callback function can be declared as a static member function of a class. In this case,

because static functions have no concept of this, you need to explicitly pass an instance of the class

you want to modify as user data:

colorSensorÿ>setData(this);

Nonstatic C++ member functions are not suitable for use as callback functions.

Priorities

Classes derived from SoDelayQueueSensor use   priorities to maintain sorting in the delay queue. The

following methods are used to set and obtain the priority of a given sensor:

setPriority(priority) 

assigns a priority to the sensor. All delay queue sensors have a default priority of

100. Sensors are sorted in the queue in order of their priority, with lower numbers

first.

getPriority() obtains the priority of a given sensor.

getDefaultPriority()

obtains the default priority (100) for a sensor.

A sensor with a priority of 0 has the highest priority.  It triggers as soon as the change to the scene

graph is complete. If two sensors have the same priority, there is no guarantee about which sensor will

trigger first.

The  SoXtRenderArea has a redraw data sensor with a default priority of 10000.  You can schedule

other sensors before or after the redraw by choosing appropriate priorities.  

For example, to set the priority of a sensor so that it is triggered right before redraw:

SoNodeSensor   *s;

SoRenderArea   *renderArea;

sÿ>setPriority(renderAreaÿ>getRedrawPriority() ÿ 1);
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Triggering a Data Sensor

When   data in the sensor’s field, node, or path changes, the following things happen:

1. The sensor is notified that the data changed.

2. The sensor is  scheduledthat is, it is added to the delay queue, according to its priority.

3. At some future time, the queue is processed and all sensors in it are triggered.

4. When triggered, the sensor is removed from the queue, and it invokes its callback function.

5. The callback function executes. This function can access the   trigger field, trigger node, or

trigger path responsible for the original notification (see "Using the Trigger Node and Field").

Using a Field Sensor

Example 12ÿ1 shows attaching a   field sensor to the position field of a viewer’s camera.  A callback

function reports each new camera position.

Example 12ÿ1 Attaching a Field Sensor

#include <Inventor/SoDB.h>

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>

#include <Inventor/nodes/SoCamera.h>

#include <Inventor/nodes/SoSeparator.h>

#include <Inventor/sensors/SoFieldSensor.h>

// Callback that reports whenever the viewer’s position changes.

static void

cameraChangedCB(void *data, SoSensor *)

{

   SoCamera *viewerCamera = (SoCamera *)data;

   SbVec3f cameraPosition = viewerCameraÿ>position.getValue();

   printf("Camera position: (%g,%g,%g)\n",

            cameraPosition[0], cameraPosition[1],

            cameraPosition[2]); 

}

main(int argc, char **argv)

{

   if (argc != 2) {

      fprintf(stderr, "Usage: %s filename.iv\n", argv[0]);

      exit(1);

   }

   Widget myWindow = SoXt::init(argv[0]);

   if (myWindow == NULL) exit(1);

   SoInput inputFile;
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   if (inputFile.openFile(argv[1]) == FALSE) {

      fprintf(stderr, "Could not open file %s\n", argv[1]);

      exit(1);

   }

   SoSeparator *root = SoDB::readAll(&inputFile);

   rootÿ>ref();

   SoXtExaminerViewer *myViewer =

            new SoXtExaminerViewer(myWindow);

   myViewerÿ>setSceneGraph(root);

   myViewerÿ>setTitle("Camera Sensor");

   myViewerÿ>show();

   // Get the camera from the viewer, and attach a 

   // field sensor to its position field:

   SoCamera *camera = myViewerÿ>getCamera();

   SoFieldSensor *mySensor = 

            new SoFieldSensor(cameraChangedCB, camera);

   mySensorÿ>attach(&cameraÿ>position);

   SoXt::show(myWindow);

   SoXt::mainLoop();

}

Using the Trigger Node and Field (Advanced)

You can use one of the following methods to obtain the field, node, or path that initiated the

notification of any data sensor:

 • getTriggerField()

 • getTriggerNode()

 • getTriggerPath()

These methods work only for immediate (priority 0) sensors.

The trigger path is the chain of nodes from the last node notified down to the node that initiated

notification.  To obtain the trigger path, you must first use setTriggerPathFlag() to set the

triggerÿpath flag to TRUE since it’s expensive to save the path information. You must make this call

before the sensor is notified. Otherwise, information on the trigger path is not saved and 

getTriggerPath() always returns NULL. (By default, this flag is set to FALSE.) The trigger field and

trigger node are always available. Note that getTriggerField() returns NULL if the change was not to

a field (for example, addChild() or touch() was called).

Example 12ÿ2 shows using getTriggerNode() and getTriggerField() in a sensor callback function

that prints a message whenever changes are made to the scene graph.

Example 12ÿ2 Using the Trigger Node and Field
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#include <Inventor/SoDB.h>

#include <Inventor/nodes/SoCube.h>

#include <Inventor/nodes/SoSeparator.h>

#include <Inventor/nodes/SoSphere.h>

#include <Inventor/sensors/SoNodeSensor.h>

// Sensor callback function:

static void

rootChangedCB(void *, SoSensor *s)

{

   // We know the sensor is really a data sensor:

   SoDataSensor *mySensor = (SoDataSensor *)s;

   SoNode *changedNode = mySensorÿ>getTriggerNode();

   SoField *changedField = mySensorÿ>getTriggerField();

   printf("The node named ’%s’ changed\n",

            changedNodeÿ>getName().getString());

   if (changedField != NULL) {

      SbName fieldName;

      changedNodeÿ>getFieldName(changedField, fieldName);

      printf(" (field %s)\n", fieldName.getString());

   } 

   else 

      printf(" (no fields changed)\n");

}

main(int, char **)

{

   SoDB::init();

   SoSeparator *root = new SoSeparator;

   rootÿ>ref();

   rootÿ>setName("Root");

   SoCube *myCube = new SoCube;

   rootÿ>addChild(myCube);

   myCubeÿ>setName("MyCube");

   SoSphere *mySphere = new SoSphere;

   rootÿ>addChild(mySphere);

   mySphereÿ>setName("MySphere");

   SoNodeSensor *mySensor = new SoNodeSensor;

   mySensorÿ>setPriority(0);
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   mySensorÿ>setFunction(rootChangedCB);

   mySensorÿ>attach(root);

   // Now, make a few changes to the scene graph; the sensor’s

   // callback function will be called immediately after each

   // change.

   myCubeÿ>width = 1.0;

   myCubeÿ>height = 2.0;

   mySphereÿ>radius = 3.0;

   rootÿ>removeChild(mySphere);

}

Other DelayÿQueue Sensors

In addition to data sensors, two other types of sensors are added to the delay queue: the 

SoOneShotSensor and the SoIdleSensor.

General Sequence for OneÿShot and Idle Sensors

The following sequence describes the necessary steps for setting up oneÿshot and idle sensors:

1. Construct the sensor.

2. Set the callback function (see "Callback Function").

3. Set the priority of the sensor (see "Priorities").

4. Schedule the sensor using the schedule() method.

5. When you are finished with the sensor, delete it. 

Note that these sensors must be scheduled explicitly. Use the unschedule() method to remove a

sensor from the queue.

SoOneShotSensor

An SoOneShotSensor invokes its callback once whenever the delayed sensor queue is processed.

This sensor is useful for a task that does not need to be performed immediately or for tasks that should

not be performed immediately (possibly because they are timeÿconsuming). For example, when

handling events for a device that generates events quickly (such as the mouse), you want to be able to

process each event quickly so that events don’t clog up the event queue. If you know that a certain

type of event is timeÿconsuming, you can schedule it with a oneÿshot sensor.  For example:

handleEvent(SoHandleEventAction *action)

{ 

   //Check for correct event type ...

   .

   .

   .

   // Remember information from event for later processing

   currentMousePosition = eventÿ>getPosition();
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   // Schedule a oneÿshot sensor to do hard work later

   SoOneShotSensor oneShot = new SoOneShotSensor(

         OneShotTriggerCallback, NULL);

   oneShotÿ>schedule();

}

void OneShotTriggerCallback(void *userData, SoSensor *) 

{

   // Do lengthy operation based on current mouse position;

}

Note that sensors that invoke their callback one time only, such as SoOneShotSensor, SoIdleSensor,

and SoAlarmSensor, continue to exist after their callback has been executed, but they do not trigger

again unless they are rescheduled. Use the unschedule() method to stop any sensor from invoking its

callback when it is scheduled.

The following example uses an SoOneShotSensor to delay rendering until the CPU is idle.

SoOneShotSensor *renderTask;

main() {

   ...

   renderTask = new SoOneShotSensor(doRenderCallback, NULL);

   // ... set up events, UI, which will call changeScene()

   // routine.

}

void

changeScene()

{

   // ... change scene graph ...

   renderTaskÿ>schedule();

}

void

doRenderCallback(void *userData, SoSensor *)

{

   // ... does rendering ...

}

SoIdleSensor

An SoIdleSensor invokes its callback once whenever the application is idle (there are no events or

timers waiting to be processed). Use an idle sensor for lowÿpriority tasks that should be done only

when there is nothing else to do. Call the sensor’s schedule() method in its callback function if you

want it to go off repeatedly (but beware, since this keeps the CPU constantly busy). Note that idle

sensors may never be processed if events or timers happen so often that there is no idle time; see 

"Processing the Sensor Queues" for details.

TimerÿQueue Sensors
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Timerÿqueue sensors, like data sensors, can be used to invoke userÿspecified callbacks. Instead of

attaching a timerÿqueue sensor to a node or path in the scene graph, however, you simply schedule it,

so that its callback is invoked at a specific time. (Timerÿqueue sensors are sorted within the timer

queue by time rather than by priority.) Inventor includes two types of timerÿqueue sensors: 

SoAlarmSensor and SoTimerSensor.

General Sequence for TimerÿQueue Sensors

The following sequence describes the necessary steps for setting up timerÿ

queue sensors:

1. Construct the sensor.

2. Set the callback function (see "Callback Function").

3. Set the timing parameters for the sensor.

4. Schedule the sensor using the schedule() method.

5. When you are finished with the sensor, delete it. 

Timing parameters (when and how often the sensor is triggered) should not  be changed while a

sensor is scheduled. Use the unschedule() method to remove a sensor from the queue, change the

parameter(s), and then schedule the sensor again.

SoAlarmSensor

An SoAlarmSensor, like an alarm clock, is set to go off at a specified time. When that time is reached

or passed, the sensor’s callback function is invoked. A calendar program might use an 

SoAlarmSensor, for example, to put a flag on the screen to indicate that it’s time for your scheduled 2

o’clock meeting.

Use one of the following methods to set the time for this sensor:

setTime(time) schedules a sensor to occur at time

setTimeFromNow(time)

schedules a sensor to occur at a certain amount of time from now

The time is specified using the SbTime class, which provides several different formats for time. Use

the getTime() method of SoAlarmSensor to obtain the scheduled time for an alarm sensor.

Example 12ÿ3 shows using an SoAlarmSensor to raise a flag on the screen when one minute has

passed.

Example 12ÿ3 Using an Alarm Sensor

static void

raiseFlagCallback(void *data, SoSensor *)

{

   // We know data is really a SoTransform node:

   SoTransform *flagAngleXform = (SoTransform *)data;

   // Rotate flag by 90 degrees about the z axis:
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   flagAngleXformÿ>rotation.setValue(SbVec3f(0,0,1), M_PI/2);

}

{

   ...

   SoTransform *flagXform = new SoTransform;

   // Create an alarm that will call the flagÿraising callback:

   SoAlarmSensor *myAlarm =

       new SoAlarmSensor(raiseFlagCallback, flagXform);

   myAlarmÿ>setTimeFromNow(60.0);

   myAlarmÿ>schedule();

}

SoTimerSensor

An SoTimerSensor is similar to an SoAlarmSensor, except that it is set to go off at regular intervals

like the snooze button on your alarm clock. You might use an SoTimerSensor for certain types of

animation, for example, to move the second hand of an animated clock on the screen. You can set the

interval and the base time for an SoTimerSensor using these methods:

setInterval(interval)

 schedules a sensor to occur at a given interval, for example, every minute. The

default interval is 1/30 of a second.

setBaseTime(time)

 schedules a sensor to occur starting at a given time. The default base time is right

nowthat is, when the sensor is first scheduled.

Before changing either the interval or the base time, you must first unschedule the sensor, as shown in 

Example 12ÿ4.

Example 12ÿ4 creates two timer sensors.  The first sensor rotates an object. The second sensor goes

off every 5 seconds and changes the interval of the rotating sensor.  The rotating sensor alternates

between once per second and ten times per second. (This example is provided mainly for illustration

purposes. It would be better (and easier) to use two engines to do the same thing (see Chapter 13).

Example 12ÿ4 Using a Timer Sensor

// This function is called either 10 times/second or once every

// second; the scheduling changes every 5 seconds (see below):

static void

rotatingSensorCallback(void *data, SoSensor *)

{

   // Rotate an object...

   SoRotation *myRotation = (SoRotation *)data;

   SbRotation currentRotation = myRotationÿ>rotation.getValue();

   currentRotation = SbRotation(SbVec3f(0,0,1), M_PI/90.0) *

            currentRotation;

   myRotationÿ>rotation.setValue(currentRotation);
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}

// This function is called once every 5 seconds, and

// reschedules the other sensor.

static void

schedulingSensorCallback(void *data, SoSensor *)

{

   SoTimerSensor *rotatingSensor = (SoTimerSensor *)data;

   rotatingSensorÿ>unschedule();

   if (rotatingSensorÿ>getInterval() == 1.0)

      rotatingSensorÿ>setInterval(1.0/10.0);

   else 

      rotatingSensorÿ>setInterval(1.0);

      rotatingSensorÿ>schedule();

}

{

   ...

   SoRotation *myRotation = new SoRotation;

   rootÿ>addChild(myRotation);

   SoTimerSensor *rotatingSensor =

      new SoTimerSensor(rotatingSensorCallback, myRotation);

   rotatingSensorÿ>setInterval(1.0); //scheduled once per second

   rotatingSensorÿ>schedule();

   SoTimerSensor *schedulingSensor =

   new SoTimerSensor(schedulingSensorCallback, rotatingSensor);

   schedulingSensorÿ>setInterval(5.0); // once per 5 seconds

   schedulingSensorÿ>schedule();

}

Processing the Sensor Queues (Advanced)

The following descriptions apply only to applications using the Inventor Component Library with the

Xt toolkit.  Other window system toolkits may have a different relationship between processing of the

different queues. If you aren’t interested in the details of how timers are scheduled, you can skip this

section.

The general order of processing is event queue, timer queue, delay queue. A slight deviation from this

order arises because the delay queue is also processed at regular intervals, whether or not there are

timers or events pending. The sequence can be described as follows:

SoXt main loop calls XtAppMainLoop:

BEGIN:

If there’s an event waiting:

Process all pending timers.
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Process the delay queue if the delay queue timeÿout is

         reached.

Process the event.

Go back to BEGIN.

else (no event waiting)

if there are timers,

   Process timers.

   Go back to BEGIN.

else (no timers or events pending)

Process delay queue.

Go back to BEGIN.

When the timer queue is processed, the following conditions are guaranteed:

 • All timer or alarm sensors that are scheduled to go off before or at the time processing of the

queue ends are triggered, in order.

 • When timer sensors are rescheduled, they are all rescheduled at the same time, after they have all

been triggered.

For example, in Figure 12ÿ2, at time A after the redraw, the timer queue is processed.  Three timers

have been scheduled in the queue (timers 0, 1, and 2). Timers 0 and 1 are ready to go off (their trigger

time has already passed). Timer 2 is set to go off sometime in the future.  The sequence is as follows:

1. Timer 0 is triggered.

2. Timer 1 is triggered.

3. The scheduler checks the timer queue (the time is now B) and notices that timer 2’s time has

passed as well , so it triggers timer 2.

4. Timers 0, 1, and 2 are rescheduled at time C.

5. The scheduler returns to the main event loop to check for pending events.

Figure 12ÿ2 Triggering and Rescheduling Timers

The delay queue is processed when there are no events or timer sensors pending or when the delay

queue’s timeÿout interval elapses. By default, the delay queue times out 30 times a second. You can

change this interval with the SoDB::setDelaySensorTimeout() method. Idle sensors are ignored
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when the delay sensor causes processing of the delay queue (because the CPU is not really idle under

this condition). 

When the delay queue is processed, the following conditions are guaranteed:

 • All sensors in the delay queue are triggered, in order of priority.

 • Each sensor is triggered once and only once, regardless of whether the sensor reschedules itself.



Chapter 13

Engines

Chapter Objectives

After reading this chapter, you’ll be able to do the following:

 • Connect fields in a scene graph to each other

 • Create and use global fields in the database

 • Connect a variety of engines to fields and other engines in a scene graph

 • Disable engine connections temporarily

 • Create a simple engine network

 • Animate parts of a scene using engines

 • Use the rotor, blinker, shutter, and pendulum nodes to animate parts of a scene graph

This chapter describes engines, classes of Inventor objects that can be connected to fields in the scene

graph and used to animate parts of the scene or to constrain certain elements of the scene to each

other. It also describes how fields can be connected to engines and to other fields, and how to use and

create global fields in the database.

Introduction to Engines

In earlier chapters, you’ve created scene graphs with 3D objects that responded to user events. The 3D

objects themselves were fixed, and they moved only in response to user interaction or to sensor

activity. In this chapter, you’ll learn about a new class of object, called engines, that allows you to

encapsulate both motion and geometry into a single scene graph. Just as you would connect a

realÿworld engine to other equipment to spin a flywheel or turn a fan belt, you "wire" engine objects

into the scene database to cause animated movement or other complex behavior in the scene graph.

Engines can also be connected to other engines so that they move or react in relation to each other, and

eventually make changes to the Inventor database.

As a simple example, consider a scene graph that describes the geometry for a windmill. You can

attach an engine object that describes the rotation of the windmill blades and performs an incremental

rotation of the blades in response to time. This scene graph, including the engine, can be saved in an

Inventor file. Whenever the scene graph is read in, the windmill is displayed and the blades animate.

Both the geometry and the behavior are described by the nodes and engines in the scene graph.

A more complex example would involve wiring two objects together. For example, you might create a

scene with a car whose motion is based on an engine object. A second engine could look at the car’s

motion and turn that information into camera motion so that the camera could follow the moving car.

Or you might wire two engines together so that one engine affects the activity of the other engine. In

the case of the windmill, you could connect a second engine in front of the rotation engine to filter

time so that the windmill blades rotate only between the hours of nine in the morning and five at night.

In some cases, you could use either a sensor or an engine to create a certain effect. Table 13ÿ1

compares sensors and engines to help you weigh the tradeÿoffs between the two.

Sensors   Engines
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Are part of the application (are not written  to
file)

Are part of the scene graph (can be read  from
file and written to file)

Have userÿdefined callback functions Have builtÿin functions

Allow explicit control over order of firing Are evaluated automatically

Can be attached to any kind of field (field
data sensors)

Have inputs and outputs of a fixed type

Can affect objects outside the scene graph Can affect only other nodes or engines in a
scene graph

Table 13ÿ1 Comparison of Sensors and Engines

General Uses of Engines

Engines are generally used in two different ways:

 • To animate parts of a scene

 • To constrain one part of a scene in relation to some other part of the scene

Figure 13ÿ1 and Figure 13ÿ2 show applications that use engines. In Figure 13ÿ1, four different classes

of links are createdstruts, hinges, cranks, and double struts. Engines are used to connect links

endÿtoÿend. The objects in Figure 13ÿ2 use engines to edit transform nodes that animate the animals

and objects in the scene.

Figure 13ÿ1 Mechanisms Made from a Set of Link Classes
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Figure 13ÿ2 Objects That Use Engines for Animation and Placement

As shown in Example 13ÿ1 later in this chapter, you can connect parts of a scene to a clock so that

animation in the scene occurs in relation to changes in time. Example 13ÿ6 shows an example of

constraints, where the movement of an object is constrained to a set path.

You can think of an engine as a black box that receives input values, performs some operation on

them, and then copies the results into one or more outputs. Both the inputs and the outputs of the

engine can be connected to other fields or engines in the scene graph. When an engine’s output values

change, those new values are sent to any fields or engines connected to them.

An engine, shown in Figure 13ÿ3, has inputs derived from SoField and outputs derived from 

SoEngineOutput. Each engine evaluates a builtÿin function when its input values change. The

resulting output values are then sent to all fields and engines connected to that engine. Because 

SoEngine is derived from the SoBase class, it includes methods for reading and writing to files.
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Figure 13ÿ3 Anatomy of an Engine

For example, the engine shown in Figure 13ÿ3 could represent SoComposeVec4f, an engine that

creates an SoMFVec4f object. It has four inputs of type SoMFFloat and one output of type

SoMFVec4f. This engine composes the four inputs into one SoMFVec4f output.

Types of Engines

Figure 13ÿ4 shows the class tree for engines, which can be grouped according to the kinds of

operations they perform.

Arithmetic engines are as follows:

 • SoCalculator

 • SoBoolOperation

 • SoInterpolateFloat, SoInterpolateRotation, SoInterpolateVec2f, SoInterpolateVec3f,

SoInterpolateVec4f

 • SoTransformVec3f 

 • SoComposeVec2f, SoDecomposeVec2f 

SoComposeVec3f, SoDecomposeVec3f

SoComposeVec4f, SoDecomposeVec4f

SoComposeRotation, SoDecomposeRotation

SoComposeMatrix, SoDecomposeMatrix

 • SoComputeBoundingBox 

Animation engines are as follows:

 • SoElapsedTime

 • SoOneShot

 • SoTimeCounter

Triggered engines are as follows:

 • SoCounter
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 • SoOnOff

 • SoTriggerAny

 • SoGate

Engines used for array manipulation are as follows:

 • SoSelectOne

 • SoConcatenate 

Figure 13ÿ4 Engine Class Tree

Making Field Connections
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Use the connectFrom() method on SoField to connect a field to another field or engine. When you

connect fields of different types, the value of the input field is automatically converted to the new

output field type. The syntax for connecting a field is as follows:

void connectFrom(SoField *field);

void connectFrom(SoEngineOutput *engineOutput);

For example, to connect the orientation field in an SoPerspective camera to the rotation field of an 

SoTransform:

xformÿ>rotation.connectFrom(&pCameraÿ>orientation);

To connect the SoElapsedTime engine to the string field of an SoText3 node:

yourTextÿ>string.connectFrom(&elapsedTimeÿ>timeOut);

Suppose you connect two fields as shown in Figure 13ÿ5. In this example, the top arrow indicates that 

fieldA is the source field and fieldB is the destination field. The bottom arrow indicates that fieldB is

the source field and fieldA is the destination field. Once you have set up this connection, whenever

you change fieldA, fieldB changes. When you change fieldB, fieldA changes. You may be concerned

that you’ve set up an infinite loop where the two fields continuously update each other. Actually,

when the value in fieldA changes, fieldB changes. At this point, fieldA knows that it has already been

changed and does not change again.

Figure 13ÿ5 FieldÿtoÿField Connections

Use the disconnect() method to break a field connection (on the destination field), and use the 

isConnected() method to query whether a connection exists. Methods such as setValue() can also be

called on a field that is connected from another field or engine. Whoever sets the field value last, wins.

Multiple Connections

The term engine network refers to the collection of engines and fields that are "wired together" in the

scene graph. When planning larger engine networks, you may sometimes consider having multiple

connections to a field or engine. The rule to follow is that a given field or engine can have only one

incoming connection, but it can have multiple outgoing connections. Figure 13ÿ6 illustrates this

principle.
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Figure 13ÿ6 Multiple Outputs Are Allowed

If you call connectFrom() on a field or engine that has already been connected from a different

source, the original connection is broken and the new connection is made. 

Field Conversion

When you connect fields of different types, Inventor automatically converts values from one type to

another. It performs the following conversions when necessary:

 • Any field type to String

 • String to any field type

 • Between any two of Bool, Float, Long, Short, ULong, UShort

 • Between Color and Vec3f

 • Between Float and Time

 • Between Matrix  and Rotation

 • Between Name and Enum

 • Between Rotation and Vec4f (quaternion)

 • From an MF field to its SF version, and from an SF field to its MF version
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Multipleÿstep conversions are not supportedthat is, although you can convert directly from a Vec4f

to a Rotation and a Rotation to a Matrix , you cannot convert from a Vec4f to a Matrix .

If your program tries to connect a field to a field or engine output of a different type and no

conversion between the types exists, the connection will not be made and a debugging error will

occur. See The Inventor Toolmaker for details on how to create your own field converter.

Reference Counting

Reference counting for engines is similar to that for nodes. Fieldÿtoÿfield connections, including

connections from an engine’s input to a field, do not increment any reference counts. Each

engineÿoutputÿtoÿfield connection increments the engine’s reference count by 1. Similarly, removing

an engine output’s field connection decrements its reference count. If the last connection is removed,

the reference count for that engine goes to 0 and it is deleted. To preserve the engine when you are

disconnecting it, reference it. Also, be aware that field connections are broken when the node or

engine containing the field is deleted. This, in turn, could cause a connected engine to be deleted as

well.

Disabling a Connection

To temporarily disable a field connection, call enableConnection(FALSE) on the destination field or

call enable(FALSE) on the engine output.

This method is useful when you want to temporarily disable a large engine network. If you disconnect

the field from the engine, that engine might be unreferenced to 0, and then mistakenly deleted.

Disabling a field connection does not affect the engine’s reference count. Use the 

isConnectionEnabled() method to query whether a connection has been enabled.

Updating Values

When you change one value in an engine network, you can assume that all other values that depend

on this value are updated at once. In fact, for efficiency, fields and inputs are marked when they are

out of date, but they are updated only when their values are used. A complicated engine network, for

example, could be connected to an unselected child of a switch group and never used. In this case, its

values could be marked as needing to be updated but never actually reevaluated because the engine

network is never traversed.

Some engines, such as the gate and animation engines, can selectively control when their values are

updated. Many of these engines use a field of type SoSFTrigger that updates the output value one

time only when the field is touched. See "Gate Engine" for more information.

Global Fields

Global fields are fields in the Inventor database that you can access by name and that are not

contained in any specific node or engine. One builtÿin global field is provided: the realTime global

field, which is of type SoSFTime. This field contains the current realÿclock time and can be connected

to fields or engines to create clockÿbased animation. You can create additional global fields as

required. If you were creating a keyÿframe animation editor, for example, you might want to create a

"current frame" field that could be connected to various engines. Once the field is created, you use the
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standard field methods to connect it to other parts of the scene graph.

Use the createGlobalField() method of SoDB to create a global field:

static SoField *SoDB::createGlobalField(const SbName &name, 

 SoType type);

There can be only one global field with a given name. If there is already a field with the given name

and type, it is returned. If there is already a field with the given name, but it is of an incompatible type,

NULL is returned.

The getGlobalField() method returns the global field with the given name:

static SoField *SoDB::getGlobalField(const SbName &name);

The type of the returned field can be checked using the field class’s getTypeId() method. For

example, 

if (globalFieldÿ>isOfType(SoSFFloat::getClassTypeId()) ...

An example of using the realTime global field is

engineAÿ>input1.connectFrom(SoDB::getGlobalField("realTime"));

Example 13ÿ1 creates a digital clock that connects an SoText3 string to the realTime global field. 

Figure 13ÿ7 shows the scene graph for this example. Figure 13ÿ8 shows the digital clock.

Example 13ÿ1 Using the RealÿTime Global Field

#include <Inventor/SoDB.h>

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/SoXtRenderArea.h>

#include <Inventor/nodes/SoDirectionalLight.h>

#include <Inventor/nodes/SoMaterial.h>

#include <Inventor/nodes/SoPerspectiveCamera.h>

#include <Inventor/nodes/SoSeparator.h>

#include <Inventor/nodes/SoText3.h>
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Figure 13ÿ7 Scene Graph for the Digital Clock Example
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Figure 13ÿ8 Digital Clock That Uses the RealÿTime Global Field

main(int , char **argv)

{

   // Initialize Inventor and Xt

   Widget myWindow = SoXt::init(argv[0]);  

   if (myWindow == NULL) 

      exit(1);     

   SoSeparator *root = new SoSeparator;

   rootÿ>ref();

   // Add a camera, light, and material

   SoPerspectiveCamera *myCamera = new SoPerspectiveCamera;

   rootÿ>addChild(myCamera);

   rootÿ>addChild(new SoDirectionalLight);

   SoMaterial *myMaterial = new SoMaterial;

   myMaterialÿ>diffuseColor.setValue(1.0, 0.0, 0.0);   

   rootÿ>addChild(myMaterial);

   // Create a Text3 object, and connect to the realTime field

   SoText3 *myText = new SoText3;

   rootÿ>addChild(myText);
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   myTextÿ>string.connectFrom(SoDB::getGlobalField("realTime"));

   SoXtRenderArea *myRenderArea = new SoXtRenderArea(myWindow);

   myCameraÿ>viewAll(root, myRenderAreaÿ>getSize());

   myRenderAreaÿ>setSceneGraph(root);

   myRenderAreaÿ>setTitle("Date & Time");

   myRenderAreaÿ>show();

   SoXt::show(myWindow);

   SoXt::mainLoop();

}

Animation Engines

The following engines can be used to animate objects in the scene graph. Each of these engines has a

timeIn field, which is connected automatically to the realTime global field when the engine is

constructed. This field can, however, be connected to any other time source.

 • SoElapsedTimefunctions as a stopwatch; outputs the time that has elapsed since it started

running.

 • SoOneShotruns for a preset amount of time, then stops.

 • SoTimeCountercycles from a minimum count to a maximum count at a given frequency.

ElapsedÿTime Engine

The elapsedÿtime engine is a basic controllable time source. You can start, stop, reset, pause, and

control the speed of this engine. If you pause it (by setting the pause field to TRUE), it stops updating

its timeOut field, but it keeps counting internally. When you turn off the pause, it jumps to its current

position without losing time.

Example 13ÿ2 uses the output from an elapsed time engine to control the translation of a figure. The

resulting effect is that the figure slides across the scene. Figure 13ÿ9 shows the scene graph for this

example. The timeOut output of the elapsed time engine (myCounter) is connected to an 

SoComposeVec3f engine (slideDistance). This second engine inserts the timeOut value into the x slot

of a vector. Once the value is in vector format, it can be connected to the translation field of the 

slideTranslation node. 

Note that the timeOut value is an SoSFTime, but the SoComposeVec3f engine requires inputs of type

SoSFFloat.  Inventor performs this conversion automatically for you, converting the time to a number

of seconds.
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Figure 13ÿ9 Scene Graph for ElapsedÿTime Engine Example

Example 13ÿ2 Using an ElapsedÿTime Engine

   // Set up transformations

   SoTranslation *slideTranslation = new SoTranslation;

   rootÿ>addChild(slideTranslation);

   SoTransform *initialTransform = new SoTransform;

   initialTransformÿ>translation.setValue(ÿ5., 0., 0.);

   initialTransformÿ>scaleFactor.setValue(10., 10., 10.);

   initialTransformÿ>rotation.setValue(SbVec3f(1,0,0), M_PI/2.);

   rootÿ>addChild(initialTransform);

   // Read the figure object from a file and add to the scene

   SoInput myInput;

   if (!myInput.openFile("jumpyMan.iv")) 

      return (1);

   SoSeparator *figureObject = SoDB::readAll(&myInput);

   if (figureObject == NULL) 

      return (1);

   rootÿ>addChild(figureObject);

   // Make the X translation value change over time.

   SoElapsedTime *myCounter = new SoElapsedTime;

   SoComposeVec3f *slideDistance = new SoComposeVec3f;

   slideDistanceÿ>x.connectFrom(&myCounterÿ>timeOut);

   slideTranslationÿ>translation.connectFrom(

            &slideDistanceÿ>vector);

OneÿShot Engine

The SoOneShot engine is started when its trigger input is touched (with either touch() or setValue()).
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It runs for the specified duration , updating its timeOut field until it reaches the duration time. The 

ramp output, a float value from 0.0 (when the trigger starts) to 1.0 (when the duration is reached), is

provided as a convenience. For example, the ramp output of a oneÿshot engine could be connected to

the alpha input of a rotation interpolation to make a door open. 

This engine has two flags stored in an SoSFBitMask field. The Retriggerable flag specifies whether to

start the cycle over if a trigger occurs in the middle of a cycle. If this flag is not set (the default), the

trigger is ignored and the cycle is finished. If this flag is set, the cycle restarts when a trigger occurs.

The Hold_Final flag specifies what happens at the end of the cycle.  If this flag is not set (the default),

all outputs return to 0 when the cycle finishes. If this flag is set, the isActive output returns to 0, but 

ramp and timeOut stay at their final values.

TimeÿCounter Engine

The SoTimeCounter engine counts from a minimum count (min) to a maximum count (max). The

value for step indicates how the timer counts (the default is in increments of 1). The frequency input

specifies the number of minÿtoÿmax cycles per second. 

Unlike the oneÿshot and elapsedÿtime engines, the timeÿcounter engine does not output a time; it

outputs the current count. Each time the time counter starts a cycle, it triggers its syncOut output. This

output can be used to synchronize one of the triggered engines with some other event.

Example 13ÿ3 uses the output from two timeÿcounter engines to control the horizontal and vertical

motion of a figure.  The resulting effect is that the figure jumps across the screen.

This example creates three engines, as shown in Figure 13ÿ10. The output of the jumpWidthCounter (a

time counter engine) is connected to the x input of the jump engine (an SoComposeVec3f engine).

The output of the jumpHeightCounter (another time counter engine) is connected to the y input of the 

jump engine.  The jump engine composes a vector using the x and y inputs, and then feeds this vector

into the translation field of the jumpTranslation node. Figure 13ÿ11 shows scenes from this example.
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Figure 13ÿ10 Scene Graph for the TimeÿCounter Example

Example 13ÿ3 Using TimeÿCounter Engines

// Set up transformations

SoTranslation *jumpTranslation = new SoTranslation;

rootÿ>addChild(jumpTranslation);

SoTransform *initialTransform = new SoTransform;

initialTransformÿ>translation.setValue(ÿ20., 0., 0.);

initialTransformÿ>scaleFactor.setValue(40., 40., 40.);

initialTransformÿ>rotation.setValue(SbVec3f(1,0,0), M_PI/2.);

rootÿ>addChild(initialTransform);

// Read the man object from a file and add to the scene

SoInput myInput;

if (!myInput.openFile("jumpyMan.iv")) 

   return (1);

SoSeparator *manObject = SoDB::readAll(&myInput);

if (manObject == NULL) 

   return (1);

rootÿ>addChild(manObject);
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Figure 13ÿ11 Controlling an Object’s Movement Using TimeÿCounter Engines

// Create two counters, and connect to X and Y translations.

// The Y counter is small and high frequency.

// The X counter is large and low frequency.

// This results in small jumps across the screen,

// left to right, again and again and again.

SoTimeCounter *jumpHeightCounter = new SoTimeCounter;

SoTimeCounter *jumpWidthCounter = new SoTimeCounter;

SoComposeVec3f *jump = new SoComposeVec3f;

jumpHeightCounterÿ>max = 4;

jumpHeightCounterÿ>frequency = 1.5;

jumpWidthCounterÿ>max = 40;

jumpWidthCounterÿ>frequency = 0.15;

jumpÿ>x.connectFrom(&jumpWidthCounterÿ>output);

jumpÿ>y.connectFrom(&jumpHeightCounterÿ>output);

jumpTranslationÿ>translation.connectFrom(&jumpÿ>vector);

Gate Engine

This section discusses the gateengine, which provides a convenient mechanism for selectively

copying values from input to output. It also introduces the enable field and the trigger field, used by

other engines.

By default, each time a value in an engine network changes, the new value propagates through the

network. If a value is constantly changing, however, you may not want this change to propagate

continuously through the scene graph. In this case, you might want to sample the value at regular

intervals, or update the value only when a certain event occurs. Use the gate engine to control when

such values are sent to the rest of the scene graph.

When you construct the gate engine, you pass in the type of its input and output fields. This type must

be the type of a multipleÿvalue field. (If you want to gate a singleÿvalue field, just pass in the

corresponding multipleÿ

value type and Inventor will automatically convert it.) Other engines with similar constructors are 

SoSelectOne and SoConcatenate.

SoGate has these two inputs:

 The Inventor Mentor:   Programming ObjectÿOriented   3D Graphics with Open Inventor  ,  Release 2 ÿ Chapter

13,  Engines ÿ 16



enable (SoSFBool) allows continuous flow of updated values

trigger (SoSFTrigger)

copies a single value

When the enable field is TRUE, data is allowed to be copied to the engine output each time a new

value is received as input. To send only one value to the engine output, set the enable field to FALSE

and use the trigger field to send the value. When the trigger field is touched, one value is sent. The 

trigger field is touched by calling either touch() or setValue() on it. Example 13ÿ4 connects an

elapsed time engine (myCounter) to a gate engine (myGate). Pressing the mouse button enables and

disables the gate engine, which in turn controls the motion of a duck in the scene. The scene graph for

this example is shown in Figure 13ÿ12.

Figure 13ÿ12 Scene Graph for Gate Engine Example

Example 13ÿ4 Using a Gate Engine

// Duck group

SoSeparator *duck = new SoSeparator;

rootÿ>addChild(duck);

// Read the duck object from a file and add to the group

SoInput myInput;

if (!myInput.openFile("duck.iv")) 

   return (1);

SoSeparator *duckObject = SoDB::readAll(&myInput);

if (duckObject == NULL) 

   return (1);
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// Set up the duck transformations

SoRotationXYZ *duckRotXYZ = new SoRotationXYZ;

duckÿ>addChild(duckRotXYZ);

SoTransform *initialTransform = new SoTransform;

initialTransformÿ>translation.setValue(0., 0., 3.);

initialTransformÿ>scaleFactor.setValue(6., 6., 6.);

duckÿ>addChild(initialTransform);

duckÿ>addChild(duckObject);

// Update the rotation value if the gate is enabled.

SoGate *myGate = new SoGate(SoMFFloat::getClassTypeId());

SoElapsedTime *myCounter = new SoElapsedTime;

myGateÿ>inputÿ>connectFrom(&myCounterÿ>timeOut); 

duckRotXYZÿ>axis = SoRotationXYZ::Y;  // rotate about Y axis

duckRotXYZÿ>angle.connectFrom(myGateÿ>output);

// Add an event callback to catch mouse button presses.

// Each button press will enable or disable the duck motion.

SoEventCallback *myEventCB = new SoEventCallback;

myEventCBÿ>addEventCallback(

         SoMouseButtonEvent::getClassTypeId(),

         myMousePressCB, myGate);

rootÿ>addChild(myEventCB);

...

// This routine is called for every mouse button event.

void

myMousePressCB(void *userData, SoEventCallback *eventCB)

{

   SoGate *gate = (SoGate *) userData;

   const SoEvent *event = eventCBÿ>getEvent();

   // Check for mouse button being pressed

   if (SO_MOUSE_PRESS_EVENT(event, ANY)) {

      // Toggle the gate that controls the duck motion

      if (gateÿ>enable.getValue()) 

         gateÿ>enable.setValue(FALSE);

      else 

         gateÿ>enable.setValue(TRUE);

      eventCBÿ>setHandled();

   } 

}
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Arithmetic Engines

By convention, all inputs and outputs for the arithmetic engines in Inventor are multipleÿvalue (MF)

fields. If you supply a value of type SoSF, it is automatically converted to an MF field. Another

important feature is that if you supply an array of values for one of the inputs, the output will also be

an array (an MF value). If an engine has more than one input, some inputs may have more values than

others. For example, input1 might have five values and input2 might have only three values. In such

cases, the last value of the field with fewer values is repeated as necessary to fill out the array. (Here,

the third value of input2 would be repeated two more times.)

Boolean Engine

As shown in Figure 13ÿ13, the Boolean engine, SoBoolOperation, has two Boolean inputs (a and b)

and one SoSFEnum input (operation) that describes the operation to be performed. 

Figure 13ÿ13 SoBoolOperation Engine

The value for operation can be one of the following:
Operation Output Is TRUE If

CLEA
R

never TRUE

SET always TRUE

A A is TRUE

NOT_A A is FALSE

B B is TRUE

NOT_B B is FALSE

A_OR_B A is TRUE or B is TRUE

NOT_A_OR_B A is FALSE or B is TRUE

A_OR_NOT_B A is TRUE or B is FALSE

NOT_A_OR_NOT_B A is FALSE or B is FALSE

A_AND_B A and B are TRUE

NOT_A_AND_B A is FALSE and B is TRUE

A_AND_NOT_B A is TRUE and B is FALSE
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NOT_A_AND_NOT_B A and B are FALSE

A_EQUALS_B A equals B

A_NOT_EQUALS_B A does not equal B

This engine has two outputs, output and inverse. The inverse field is TRUE if output is FALSE, and

vice versa. If either of the inputs contains an array of values (they are of type SoMFBool), the output

will also contain an array of values.

Example 13ÿ5 modifies Example 13ÿ4 and adds a Boolean engine to make the motion of the smaller

duck depend on the motion of the larger duck. The smaller duck moves when the larger duck is still. 

Figure 13ÿ14 shows an image created by this example.

Figure 13ÿ14 Swimming Ducks Controlled by a Boolean Engine

Example 13ÿ5 Using a Boolean Engine

// Bigger duck group

SoSeparator *bigDuck = new SoSeparator;

rootÿ>addChild(bigDuck);

SoRotationXYZ *bigDuckRotXYZ = new SoRotationXYZ;

bigDuckÿ>addChild(bigDuckRotXYZ);

SoTransform *bigInitialTransform = new SoTransform;

bigInitialTransformÿ>translation.setValue(0., 0., 3.5);

bigInitialTransformÿ>scaleFactor.setValue(6., 6., 6.);

 The Inventor Mentor:   Programming ObjectÿOriented   3D Graphics with Open Inventor  ,  Release 2 ÿ Chapter

13,  Engines ÿ 20



bigDuckÿ>addChild(bigInitialTransform);

bigDuckÿ>addChild(duckObject);

// Smaller duck group

SoSeparator *smallDuck = new SoSeparator;

rootÿ>addChild(smallDuck);

SoRotationXYZ *smallDuckRotXYZ = new SoRotationXYZ;

smallDuckÿ>addChild(smallDuckRotXYZ);

SoTransform *smallInitialTransform = new SoTransform;

smallInitialTransformÿ>translation.setValue(0., ÿ2.24, 1.5);

smallInitialTransformÿ>scaleFactor.setValue(4., 4., 4.);

smallDuckÿ>addChild(smallInitialTransform);

smallDuckÿ>addChild(duckObject);

// Use a gate engine to start/stop the rotation of 

// the bigger duck.

SoGate *bigDuckGate = 

         new SoGate(SoMFFloat::getClassTypeId());

SoElapsedTime *bigDuckTime = new SoElapsedTime;

bigDuckGateÿ>inputÿ>connectFrom(&bigDuckTimeÿ>timeOut); 

bigDuckRotXYZÿ>axis = SoRotationXYZ::Y;

bigDuckRotXYZÿ>angle.connectFrom(bigDuckGateÿ>output);

// Each mouse button press will enable/disable the gate 

// controlling the bigger duck.

SoEventCallback *myEventCB = new SoEventCallback;

myEventCBÿ>addEventCallback(

         SoMouseButtonEvent::getClassTypeId(),

         myMousePressCB, bigDuckGate);

rootÿ>addChild(myEventCB);

// Use a Boolean engine to make the rotation of the smaller

// duck depend on the bigger duck.  The smaller duck moves

// only when the bigger duck is still.

SoBoolOperation *myBoolean = new SoBoolOperation;

myBooleanÿ>a.connectFrom(&bigDuckGateÿ>enable);

myBooleanÿ>operation = SoBoolOperation::NOT_A;

SoGate *smallDuckGate = new

         SoGate(SoMFFloat::getClassTypeId());

SoElapsedTime *smallDuckTime = new SoElapsedTime;

smallDuckGateÿ>inputÿ>connectFrom(&smallDuckTimeÿ>timeOut); 

smallDuckGateÿ>enable.connectFrom(&myBooleanÿ>output); 

smallDuckRotXYZÿ>axis = SoRotationXYZ::Y;

smallDuckRotXYZÿ>angle.connectFrom(smallDuckGateÿ>output);

Calculator Engine
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The calculator engine, SoCalculator, is similar to the Boolean engine, but it handles a wider range of

operations and has more inputs and outputs. As shown in Figure 13ÿ13, this engine has the following

inputs and outputs:

Inputs SoMFFloat a, b, c, d, e, f, g, h

SoMFVec3f A, B, C, D, E, F, G, H

SoMFString expression

Outputs SoEngineOutput oa, ob, oc, od (SoMFFloat)

SoEngineOutput oA, oB, oC, oD (SoMFVec3f)

The expression input, shown at the bottom of the engine, is of type SoMFString and is of the form:

"lhs = rhs"

lhs (lefthand side) can be any one of the outputs or a temporary variable. This engine provides eight

temporary floatingÿpoint variables (ta - th) and eight temporary vector variables (tA - tH).

rhs (righthand side) supports the following operators:
Type of Operator Example

Binary operators +  ÿ  *  /  <  >  >=  <=  ==  !=  &&  ||

Unary operators ÿ  !

Ternary operator cond  ?  trueexpr  : falseexpr

Parentheses ( expr )

Vector indexing vec  [int]

Functions func( expr, ... )

Terms integer or floatingÿpoint constants; named
constants such as MAXFLOAT,
MINFLOAT, M_LOG2E, M_PI; the names
of the calculator engine’s inputs, outputs,  and
temporary variables (a, b, A, B, oa, ob,  ta, tb,
tA, tB, and so on)
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Figure 13ÿ15 SoCalculator Engine

See the Open Inventor C++ Reference Manual for detailed information on using these operators.

Here is a simple example of using the calculator engine. It uses the following inputs and outputs:
Inputs Outputs

2 vectors (A, B) oA (f times the negation of the cross  product
of A and B)

2 scalars (a, f) oa (convert a from degrees to radians)

To specify the expression for a calculator engine called calc, the code would be

calcÿ>expression.set1Value(0, "oa = a * M_PI / 180");

calcÿ>expression.set1Value(1, "oA = ÿf * cross(A, B)");
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Multiple expressions are evaluated in order, so a variable assigned a value in an earlier expression can

be used in the righthand side of a later expression. Several expressions can be specified in one string,

separated by semicolons.

The expressions can also operate on arrays. If one input contains fewer values than another input, the

last value is replicated as necessary to fill out the array. All the expressions will be applied to all

elements of the arrays. For example, if input a contains multiple values and input b contains the value

1.0, then the expression "oa = a + b" will add 1 to all of the elements in a.

Using the Calculator to Constrain Object Behavior

Example 13ÿ6 shows using the calculator engine to move a flower along a path. The calculator engine

computes a closed, planar curve. The output of the engine is connected to the translation applied to a

flower object, which then moves along the path of the curve. Figure 13ÿ16 shows the scene graph for

this example. The dancing flower is shown in Figure 13ÿ17.
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Figure 13ÿ16 Scene Graph for Calculator Engine Example

Example 13ÿ6 Using a Calculator Engine

// Flower group

SoSeparator *flowerGroup = new SoSeparator;

rootÿ>addChild(flowerGroup);

// Read the flower object from a file and add to the group

if (!myInput.openFile("flower.iv")) 

   exit(1);

SoSeparator *flower= SoDB::readAll(&myInput);

if (flower == NULL) 

   exit(1);

// Set up the flower transformations

SoTranslation *danceTranslation = new SoTranslation;

SoTransform *initialTransform = new SoTransform;

flowerGroupÿ>addChild(danceTranslation);

initialTransformÿ>scaleFactor.setValue(10., 10., 10.);

initialTransformÿ>translation.setValue(0., 0., 5.);

flowerGroupÿ>addChild(initialTransform);

flowerGroupÿ>addChild(flower);

Figure 13ÿ17 Using a Calculator Engine to Constrain an Object’s Movement

// Set up an engine to calculate the motion path:

// r = 5*cos(5*theta); x = r*cos(theta); z = r*sin(theta)

// Theta is incremented using a time counter engine,

// and converted to radians using an expression in

// the calculator engine.

SoCalculator *calcXZ = new SoCalculator; 

SoTimeCounter *thetaCounter = new SoTimeCounter;

thetaCounterÿ>max = 360;

thetaCounterÿ>step = 4;

thetaCounterÿ>frequency = 0.075;
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calcXZÿ>a.connectFrom(&thetaCounterÿ>output);    

calcXZÿ>expression.set1Value(0, "ta=a*M_PI/180");   // theta

calcXZÿ>expression.set1Value(1, "tb=5*cos(5*ta)");  // r

calcXZÿ>expression.set1Value(2, "td=tb*cos(ta)");   // x 

calcXZÿ>expression.set1Value(3, "te=tb*sin(ta)");   // z 

calcXZÿ>expression.set1Value(4, "oA=vec3f(td,0,te)"); 

danceTranslationÿ>translation.connectFrom(&calcXZÿ>oA);

Nodes Used for Animation
Engines are usually connected to nodes.  You can, though, create a node class that has builtÿin engines

automatically connected to it.  Here are some examples that Inventor provides. These nodes provide a

convenient mechanism for adding animation to a scene graph:

 • SoRotor is a transformation node that spins the rotation angle while keeping the axis constant.

 • SoPendulum is a transformation node that oscillates between two rotations.

 • SoShuttle is a transformation node that oscillates between two translations.

 • SoBlinker is a switch node that cycles through its children.

Let’s look at examples of rotor and blinker nodes.

Rotor Node

The SoRotor  node, derived from SoRotation, changes the angle of rotation at a specified speed. You

can use an SoRotor node any place you would use an SoRotation. It has these fields:

rotation (SoSFRotation)

specifies the rotation (axis and initial angle). The angle changes when the rotor

spins.

speed (SoSFFloat) specifies the number of cycles per second.

on (SoSFBool) TRUE to run, FALSE to stop. The default is TRUE.

The number of times a second it is updated depends on the application. This node contains an engine

that is connected to the realÿtime global field. Example 13ÿ7 illustrates how you could use this node to

rotate the vanes of a windmill.  It specifies the rotation and speed for the rotor node and adds it to the

scene graph before the windmill vanes, as shown in Figure 13ÿ18. The rotation axis of the windmill

vanes is (0.0, 0.0, 1.0) and the initial angle is 0.0. This rotation angle is updated automatically by the

rotor node.

Example 13ÿ7 A Spinning Windmill Using an SoRotor Node

#include <Inventor/SoDB.h>

#include <Inventor/SoInput.h>

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>

#include <Inventor/nodes/SoSeparator.h>

#include <Inventor/nodes/SoRotor.h>
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SoSeparator *

readFile(const char *filename)

{

   // Open the input file

   SoInput mySceneInput;

   if (!mySceneInput.openFile(filename)) {

      fprintf(stderr, "Cannot open file %s\n", filename);

      return NULL;

   }

Figure 13ÿ18 Scene Graph for Rotor Node Example

   // Read the whole file into the database

   SoSeparator *myGraph = SoDB::readAll(&mySceneInput);

   if (myGraph == NULL) {

      fprintf(stderr, "Problem reading file\n");

      return NULL;

   } 

   mySceneInput.closeFile();

   return myGraph;

}

main(int, char **argv)

{

   // Initialize Inventor and Xt

   Widget myWindow = SoXt::init(argv[0]);

   SoSeparator *root = new SoSeparator;
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   rootÿ>ref();

   // Read in the data for the windmill tower

   SoSeparator *windmillTower = 

            readFile("windmillTower.iv");

   rootÿ>addChild(windmillTower);

   // Add a rotor node to spin the vanes

   SoRotor *myRotor = new SoRotor;

   myRotorÿ>rotation.setValue(SbVec3f(0, 0, 1), 0); // z axis

   myRotorÿ>speed = 0.2;

   rootÿ>addChild(myRotor);

   // Read in the data for the windmill vanes

   SoSeparator *windmillVanes = 

            readFile("windmillVanes.iv");

   rootÿ>addChild(windmillVanes);

   // Create a viewer

   SoXtExaminerViewer *myViewer = 

            new SoXtExaminerViewer(myWindow);

   // Attach and show viewer

   myViewerÿ>setSceneGraph(root);

   myViewerÿ>setTitle("Windmill");

   myViewerÿ>show();

   // Loop forever

   SoXt::show(myWindow);

   SoXt::mainLoop();

}

Blinker Node

The SoBlinker node, derived from SoSwitch, cycles among its children by changing the value of the 

whichChild field.  This node has the following fields:

whichChild (SoSFLong)

index of the child to be traversed.

speed (SoSFFloat) cycles per second.

on (SoSFBool) TRUE to run, FALSE to stop. The default is TRUE.

When it has only one child, SoBlinker cycles between that child (0) and SO_SWITCH_NONE. 

Example 13ÿ8 shows how you could make the text string "Eat at Josie’s" flash on and off.
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Figure 13ÿ19 Flashing Sign Controlled by a Blinker Node

Example 13ÿ8 Using a Blinker Node to Make a Sign Flash

// Add the nonÿblinking part of the sign to the root

rootÿ>addChild(eatAt);

// Add the fastÿblinking part to a blinker node

SoBlinker *fastBlinker = new SoBlinker;

rootÿ>addChild(fastBlinker);

fastBlinkerÿ>speed = 2;  // blinks 2 times a second

fastBlinkerÿ>addChild(josie);

// Add the slowÿblinking part to another blinker node

SoBlinker *slowBlinker = new SoBlinker;

rootÿ>addChild(slowBlinker);

slowBlinkerÿ>speed = 0.5;  // 2 secs per cycle; 1 on, 1 off

slowBlinkerÿ>addChild(frame);



Chapter 14

Node Kits

Chapter Objectives

After reading this chapter, you’ll be able to do the following:

 • Use node kits in a scene graph, selecting the required parts and setting their values

 • Explain the difference between a path, a full path, and a nodeÿkit path

 • Create a simple motion hierarchy using node kits

This chapter describes node kits, which are a convenient mechanism for creating groupings of

Inventor nodes. When you create a shape node such as an indexed triangle strip set, you usually also

need at least a coordinate node, a material node, and a transform node. You may also want to specify

drawing style and a material binding. Instead of creating each of these nodes individually, specifying

values for their fields, and then arranging them into a subgraph, you can simply use an SoShapeKit,

which already contains information on how these nodes should be arranged in the subgraph. You then

use a special set of convenience methods to specify which nodes you want to use and to set and get the

values of these nodes. This chapter introduces the concepts of node kits, nodeÿkit catalogs, catalog

entries, and hidden children.

Why Node Kits?

Node kits offer a convenient way to create both simple and complex graphs of nodes. Node kits can

contain other node kits, a feature that allows you to build hierarchies of kits relative to each other.

Some of the advantages of node kits include the following:

 • Node kits organize a number of Inventor nodes into a subgraph that has a higherÿlevel meaning

for you. An SoShapeKit, for example, can describe a shape that can move and has a particular

appearance. The shape and its properties are all packaged into one node kit. You do not need to

worry about how the nodes are placed into the graph because the node kit takes care of this

organization for you.

 • Node kits are flexible, allowing you to create complex subgraphs that use many Inventor

features, or simple subgraphs that use only a few features.

 • Node kits create collections of nodes efficiently. They create only the nodes needed for a

particular instance.

 • Node kits provide shortcut routines for creating nodes and setting values in them. Your code is

short and easy to read.

 • Through subclassing, you can design your own node kits that are tailored to the kinds of

groupings used in your particular application. (See The Inventor Toolmaker, Chapter 7.)

Hidden Children and SoNodeKitPath

A node kit contains a collection of nodes. The node kit manages these nodes and how they are

arranged in its subgraph. You can create and remove these nodes, or parts, of the node kit.  But,

because the node kit is actually managing these parts, you do not have direct access to them. These
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parts are referred to as the hidden children of the node kit. Although a node kit is a grouping of nodes,

it is not subclassed from SoGroup; methods such as addChild() do not exist for node kits.

Whenever you perform a pick or a search action, a path may be returned.  The default path returned, 

SoPath, stops at the first node in the path that has hidden children (often a node kit).  If you need more

detailed information about what is in the path underneath the node kit, you can cast the SoPath to an 

SoFullPath, which includes hidden children as well as public children. If, for example, you search for

spheres in a given scene graph, you may get a path to a node kit with hidden children, one of which is

a sphere. The SoPath returned by the search action ends in the node kit.  In most cases, you can

probably ignore the hidden children.  But if you need information about them, you can cast this path to

an SoFullPath.

You will probably use node kit paths more often than you use full paths.  If you use full paths with

node kits, take care not to change the node kit’s structure.

Tip: When you cast a path (not a pointer) to a full path, be sure to cast a pointer; otherwise a new

instance of the path is created. For example, you can do this: 

   SoPath &pathRef;

   ((SoFullPath *) &pathRef)ÿ>getLength();

   But don’t do this:

   length = ((SoFullPath) pathRef).getLength();

Another kind of path is the SoNodeKitPath, which contains only the node kits and leaves out the

intermediate nodes in the path. You might use a nodeÿkit path if you are looking at a motion hierarchy

(see Example 14ÿ3) and you want to think of each kit as an object. Figure 14ÿ1 shows a path, a full

path, and a nodeÿkit path for the same subgraph. The shaded circles are node kits, and the light circles

are not.
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Figure 14ÿ1 Different Types of Paths

NodeÿKit Classes

Figure 14ÿ2 shows the class tree for node kits, which are all derived from SoBaseKit.

See the entry for SoBaseKit in the Open Inventor C++ Reference Manual for a complete list of the

methods for getting and setting parts in node kits.
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Figure 14ÿ2 NodeÿKit Classes

NodeÿKit Catalog

Each nodeÿkit class shown in Figure 14ÿ2 has an associated catalog. The catalog lists  all the parts

(nodes) available in this kit, in the same way as an electronics or software catalog lists all the items

available for sale. Just as you order items selectively from a software catalog, you can choose nodes

selectively from a nodeÿkit catalog. In addition to simply listing the available parts, a nodeÿkit catalog

also describes how the nodes are arranged into a subgraph when you select them.

For example, the catalog for an SoShapeKit is shown in Figure 14ÿ3.

When you first create an SoShapeKit, you get the "base model," shown in Figure 14ÿ4. By default, the

"shape" part is a cube. You can change this shape and also add options as you need them.

 The Inventor Mentor:   Programming ObjectÿOriented   3D Graphics with Open Inventor  ,  Release 2 ÿ Chapter

14,  Node Kits ÿ 4



Figure 14ÿ3 Catalog for SoShapeKit

Figure 14ÿ4 Basic Version of an SoShapeKit
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A nodeÿkit catalog contains a separate entry to describe each part. The SoShapeKit catalog shown in 

Figure 14ÿ3 has 24 entries. Each catalog entry contains the following pieces of information:

 • Name of the part

 • Type of node

 • Default type (used if Type is an abstract class)

 • Whether this part is created by default

 • Name of this part’s parent 

 • Name of the right sibling of this part 

 • Whether this part is a list 

 • If the part is a list, the type of group node that is used to contain the list items

 • If the part is a list, the permissible node types for entries in this list 

 • Whether this part is public

The following list shows several sample catalog entries from SoShapeKit.
Information Sample Entry 1 Sample Entry 2

Name "callbackList" "transform"

Type SoNodeKitListPart SoTransform

Default Type (Not Applicable) (Not Applicable)

Created by Default? FALSE FALSE

Parent Name "this" "topSeparator"

Right Sibling "topSeparator" "texture2Transform"

Is It a List? TRUE FALSE

List Container Type SoSeparator (Not Applicable)

List Element Type SoCallback (Not Applicable)

SoEventCallback

Is It Public? TRUE TRUE

An SoShapeKit contains another node kit, "appearance," which is an SoAppearanceKit. The catalog

for SoAppearanceKit is shown in

Figure 14ÿ5.
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Figure 14ÿ5 Catalog for SoAppearanceKit

Parts Created by Default

The following constructor creates an instance of an SoShapeKit:

SoShapeKit *myShapeKit = new SoShapeKit();

When an instance of a node kit is created, certain nodes are created by default.  In the kits provided,

the SoShapeKit, SoLightKit , and SoCameraKit create the parts "shape," "light," and "camera,"

respectively. The default types for these parts are SoCube, SoDirectionalLight, and 

SoPerspectiveCamera.

When the shape kit is constructed, it automatically creates the cube node as well as the top separator

and shape separator nodes for the group. (Internal nodes, such as the separator node, are automatically

created when you add a node lower in the node kit structure.) At this point, the scene graph would

look like Figure 14ÿ4. The shape kit now consists of four nodes: the SoShapeKit node itself, the top

separator node, the shape separator (used for caching even when the transform or material is

changing) and the cube node. The other nodes in the shapeÿkit catalog are not created until you

explicitly request them, as described below.
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Figure 14ÿ6 Creating an Instance of SoShapeKit

Selecting Parts and Setting Values

Next you can use the set() method, a method for SoBaseKit that is inherited by all node kits. Use the 

set() method to create a part and specify field values in the new node. This method has two different

forms:

set(nameValuePairListString);  // uses braces to separate

 // part names from value pairs

or

set(partNameString, parameterString); // does not use braces

An example of the first form of set(), which makes a material node and 

sets the diffuse color field to purple is as follows:

myShapeÿ>set("material { diffuseColor 1 0 1 }");

An example of the second form of set(), which does the same thing, is as follows:

myShapeÿ>set("material", "diffuseColor 1 0 1");
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The scene graph for this instance of the shape kit now looks like Figure 14ÿ7. Note that the 

SoAppearanceKit node is created automatically when you request the material node. Also note that

the node is created only if it does not yet exist. Subsequent calls to set() edit the fields of the material

node rather than recreate it.

Figure 14ÿ7 Adding the Material Node

Now suppose you want to make the cube wireframe rather than solid, and twice its original size:

myShapeÿ>set("drawStyle { style LINES }

             transform { scaleFactor 2.0 2.0 2.0 } ");

The scene graph now looks like Figure 14ÿ8.
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Figure 14ÿ8 Adding DrawÿStyle and Transform Nodes

Note that you can use the set() method to create the nodes in any order. The node kit automatically

inserts the nodes in their correct positions in the scene graph, as specified by the nodeÿkit catalog.

This instance of the shape kit now contains eight nodes, as shown in Figure 14ÿ8.

Other Methods: getPart() and setPart()

Two other useful methods of SoBaseKit() are getPart() and setPart().

The getPart() Method

The getPart() method returns the requested node (part):

getPart(partName, makeIfNeeded); 

If makeIfNeeded is TRUE and no node is present, the node is created. In addition, if any extra nodes

are needed to connect the node to the top node ("this") of the node kit, those nodes are created as well.

For example:

xf = (SoTransform *) myKitÿ>getPart("transform", TRUE);

looks for "transform" and either returns it (if found) or makes it (if not found). It then assigns this node

to xf. If you specify FALSE for makeIfNeeded and the node kit has no "transform"  yet, the method

returns NULL without creating the node. If the catalog for the type of node kit you are using does not
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have an entry for a part named "transform," the getPart() method returns NULL.

The setPart() Method

The setPart() method inserts the given node as a new part in the 

node kit:

setPart(partName, node); 

If extra nodes are required to connect the part into the nodeÿkit structure, those nodes are created as

well. For example, suppose you want another node kit to share the transform node (xf) created in the

previous example:

myOtherKitÿ>setPart("transform", xf);

If the given node is not derived from the type of that part, as described in the nodeÿkit catalog, the part

will not be set. If you have linked with the debugging library, an error message will print.

To delete the transform node entirely, use a NULL argument for the node pointer:

myOtherKitÿ>setPart("transform", NULL);

To change the "shape" in SoShapeKit from the default cube to a cone:

myShapeÿ>setPart("shape", new SoCone);

And, of course, setPart() will do nothing if there is no part with the specified name in the catalog.

Macros for Getting Parts

Instead of using the getPart() method, you can use the macros SO_GET_PART() and

SO_CHECK_PART(). If you compile with the debugging version of the Inventor library, these

macros perform casting and type check the result for you.  (If you link with the optimized version of

Inventor, no typeÿchecking is performed.)

The SO_GET_PART() Macro

The syntax for SO_GET_PART() is as follows:

SO_GET_PART(kitContainingPart, partName, partClassName);

This macro does the typeÿcasting for you and is equivalent to

(partClassName *) kitContainingPartÿ>getPart(partName, TRUE);

Since the makeIfNeeded argument is TRUE in this macro, the part is created if it is not already in the

node kit.

For example:

xf = SO_GET_PART(myKit, "transform", SoTransform);

The SO_CHECK_PART() Macro

The syntax for SO_CHECK_PART() is as follows:

SO_CHECK_PART(kitContainingPart, partName, partClassName);

This macro does the typeÿcasting for you and is equivalent to

 The Inventor Mentor:   Programming ObjectÿOriented   3D Graphics with Open Inventor  ,  Release 2 ÿ Chapter

14,  Node Kits ÿ 11



(partClassName *) kitContainingPartÿ>getPart(partName, FALSE);

Since the makeIfNeeded argument is FALSE in this macro, the part is not created if it is not already in

the node kit.

For example:

xf = SO_CHECK_PART(myKit, "transform", SoTransform);

if (xf == NULL)

   printf("Transform does not exist in myKit.");

else 

   printf("Got it!");

Specifying Part Names

Suppose you have created the three nodeÿkit classes shown in Figure 14ÿ9 (see The Inventor

Toolmaker, Chapter 7, for information on how to subclass node kits): 

 • An SoGoonKit, which defines the complete creature, a goon. This goon consists of an 

SoAppearanceKit, two instances of SoLegKit for leg1 and leg2, and an SoCone for body.

 • An SoLegKit, which defines a leg for a goon. This class contains an SoAppearanceKit, an 

SoFootKit, and an SoCylinder for thigh.

 • An SoFootKit, which defines a foot for a goon. This class contains an SoAppearanceKit, an 

SoCube for toe1, and an SoCube for toe2.

After creating an instance of SoGoonKit (myGoon), you can be very specific when asking for the

parts. For example:

myCube = SO_GET_PART(myGoon, "toe1", SoCube);

first looks in the catalog of myGoon for toe1. If it doesn’t find toe1 and some children in the catalog

are node kits, it looks inside the leaf node kits for toe1 and uses the first match it finds. Here, the

match would be found in the foot of leg1. But what if you really want toe1 in leg2? In that case, you

may specify:

myCube = SO_GET_PART(myGoon, "leg2.toe1", SoCube);

which returns toe1 in leg2. This is equivalent to leg2.foot.toe1.

You can also refer to parts by indexing into any part that is defined as a list in the catalogfor

example, "childList[0]" or "callbackList[2]."

The following excerpts illustrate three different ways to create nodeÿkit parts and set their values.

These excerpts assume you have subclassed to create your own class, derived from SoBaseKit, an 

SoGoonKit (see The Inventor Toolmaker, Chapter 7). This goon has a body, legs, and feet, as

described earlier.

This fragment shows setting each part individually:

SoGoonKit *myGoon = new SoGoonKit();

myGoonÿ>set("body.material", "diffuseColor [1 0 0 ]");

    // makes body red

myGoonÿ>set("leg2.toe1", "width 2 height 3 depth 1");

    // creates toe with proper dimensions
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Figure 14ÿ9   Three NodeÿKit Classes for Making "Goons"

This fragment shows getting parts and editing them:

SoGoonKit *myGoon = new SoGoonKit();

SoMaterial *bodyMtl;

SoCube     *toe;

bodyMtl = SO_GET_PART(myGoon, "body.material", SoMaterial);

 bodyMtlÿ>diffuseColor.setValue(1, 0, 0);

toe = SO_GET_PART(myGoon, "leg2.toe1", SoCube);

 toeÿ>width.setValue(2);

 toeÿ>height.setValue(3);

 toeÿ>depth.setValue(1);

This fragment shows setting both parts in one command:

SoGoonKit *myGoon = new SoGoonKit();

myGoonÿ>set(    "body.material { diffuseColor [ 1 0 0 ] }

                 leg2.toe1     { width 2

                                 height 3

                                 depth 1 }");

Creating Paths to Parts

Sometimes you will need a path down to one of the node kit partsfor instance, to replace a part with

a manipulator as described in Chapter 15. Use the createPathToPart() method to obtain the path to

the desired node for the manipulator.

createPathToPart ( partName , makeIfNeeded ,  pathToExtend );

For example, after picking a node kit, replace the transform part with a trackball manipulator:

SoPath *pickPath = myPickActionÿ>getPath();

if((pickPath != NULL) &&

(pickPathÿ>getTail()ÿ>isOfType(SoBaseKit::getClassTypeId())){

SoTrackballManip *tb = new SoTrackball;

SoBaseKit *kit = (SoBaseKit *) pickPathÿ>getTail();

   // extends the pick path all the way down

     // to the transform node

SoPath *attachPath = kitÿ>createPathToPart("transform",

                          TRUE, pickPath);

  tbÿ>replaceNode(attachPath);

Note that using replaceNode() does more work for you than simply calling

setPart("transform", tb)

Field values are copied from the existing "transform" part into the trackball manipulator’s fields.

If the pathToExtend parameter is NULL or missing, createPathToPart() simply returns the path from

the top of the node kit to the specified part (see Figure 14ÿ10):
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SoPath *littlePath;

littlePath = myKitÿ>createPathToPart("transform", TRUE);

Since makeIfNeeded is TRUE, the "transform" part will be created if it does not already exist.

However, if makeIfNeeded is FALSE and the part does not exist, createPathToPart returns NULL.

Tip:  If you want to view the full path, including hidden children, be sure to cast the SoPath to an 

SoFullPath.

Figure 14ÿ10 Obtaining the Path to a Given Part

If the pathToExtend parameter is used, createPathToPart() extends the path provided all the way

down to the specified part within the node kit (here, the "transform" node). (See Figure 14ÿ11.) If the

path provided as input (in this case, pickPath) does not include the specified node kit, bigPath equals

NULL. If the path given as input extends past the specified node kit, the path will first be truncated at

the node kit before extending it to reach the part.

bigPath = myKitÿ>createPathToPart("transform", TRUE, pickPath);

To create a path to a child within a list part, use the same indexing notation as you would for setPart()

or getPart():
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pathToListElement = createPathToPart("callbackList[0]", TRUE);

Figure 14ÿ11 Extending a Given Path to the Desired Part
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Using List Parts

Some nodeÿkit parts are actually lists of parts. These lists, of type  SoNodeKitListPart, are a special

type of group that restricts its children to certain classes of nodes.  Examples are "childList" (found in 

SoSeparatorKit and SoSceneKit) and "cameraList" and "lightList" (both found in SoSceneKit).

Whenever you add a child to a nodeÿkit list, the group checks to see if that child is legitimate. If the

child is not legitimate, it is not added (and if you are using the debugging library, an error is printed).

Use getPart() to obtain the requested list, then use any of the standard group methods for adding,

removing, replacing, and inserting children in the parts list.  (But remember that each of these

methods is redefined to check the types of children before adding them.) For example:

SoPointLight *myLight = new SoPointLight;

ls = (SoNodeKitListPart *) kÿ>getPart("lightList", TRUE);

lsÿ>addChild(myLight);

Using Separator Kits to Create 
Motion Hierarchies

SoSeparatorKit is a class of node kit.  All classes derived from separator kit inherit a part called

"childList," of type SoNodeKitListPart. Through use of the "childList," separator kits allow you to

think in terms of how parts of an object move relative to each other. Each element of the child list is,

in turn, an SoSeparatorKit and may contain its own transform node. By nesting separator kits,

multiple levels of relative motion can be achieved. 

Figure 14ÿ12 shows how you might group individual parts that move together. Assume you have

already made an individual SoSeparatorKit for each part in a balance scale, shown in Figure 14ÿ12.

You want tray1 and string1 to move as a unit, and tray2 and string2 to move as a unit. But when the

beam moves, both trays and both strings move with it.

As you arrange these group kits into a hierarchy, you don’t need to think in terms of the individual

parts each group kit contains ("material," "complexity," and so on). You can think of the objects

themselves (beam, strings, trays) and how they move relative to each other. The childList  for 

SoSeparatorKit can contain any node derived from SoSeparatorKit, so any type of separator kit is

permissible as an entry in this list.

The following code constructs the hierarchy shown in Figure 14ÿ12. A working version of this model

is provided in Example 14ÿ3 at the end of this chapter.

scaleÿ>setPart("childList[0]", support);

scaleÿ>setPart("childList[1]", beam);

beamÿ>setPart("childList[0]", string1);

beamÿ>setPart("childList[1]", string2);

string1ÿ>setPart("childList[0]", tray1);

string2ÿ>setPart("childList[0]", tray2);
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Figure 14ÿ12 Hierarchical Motion Relationships

Examples

This section includes three examples of node kits. The first example uses two SoShapeKits. The

second example, with detailed comments, uses an SoWrapperKit and an SoSceneKit that contains an

SoLightKit  and an SoCameraKit. The third example uses various node kits as well as an 

SoEventCallback with an associated function for animating the balance scale.

Simple Use of Node Kits

Example 14ÿ1 uses node kits to create two 3D words and shows use of node kit methods to access the

fields of the "material" and "transform" parts of the shape kits. It uses a calculator engine and an

elapsed time engine to make the words change color and fly around the screen. Figure 14ÿ13 shows

two images from this example.

Example 14ÿ1 Simple Use of Node Kits

#include <Inventor/engines/SoCalculator.h>

#include <Inventor/engines/SoElapsedTime.h>

#include <Inventor/nodekits/SoShapeKit.h>

#include <Inventor/nodes/SoMaterial.h>

#include <Inventor/nodes/SoSeparator.h>

#include <Inventor/nodes/SoText3.h>

#include <Inventor/nodes/SoTransform.h>

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>

main(int , char **argv)
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{

   Widget myWindow = SoXt::init(argv[0]);

   if (myWindow == NULL) exit(1);

   SoSeparator *root = new SoSeparator;

   rootÿ>ref();

   // Create shape kits with the words "HAPPY" and "NICE"

   SoShapeKit *happyKit = new SoShapeKit;

   rootÿ>addChild(happyKit);

   happyKitÿ>setPart("shape", new SoText3);

   happyKitÿ>set("shape { parts ALL string \"HAPPY\"}");

   happyKitÿ>set("font { size 2}");

   SoShapeKit *niceKit = new SoShapeKit;

   rootÿ>addChild(niceKit);

   niceKitÿ>setPart("shape", new SoText3);

   niceKitÿ>set("shape { parts ALL string \"NICE\"}");

   niceKitÿ>set("font { size 2}");

   // Create the Elapsed Time engine

   SoElapsedTime *myTimer = new SoElapsedTime;

   myTimerÿ>ref();

Figure 14ÿ13 Using an SoShapeKit with Engines

   // Create two calculators ÿ one for HAPPY, one for NICE.

   SoCalculator *happyCalc = new SoCalculator;

   happyCalcÿ>ref();

   happyCalcÿ>a.connectFrom(&myTimerÿ>timeOut);

   happyCalcÿ>expression = "ta=cos(2*a); tb=sin(2*a);\

      oA = vec3f(3*pow(ta,3),3*pow(tb,3),1);         \
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      oB = vec3f(fabs(ta)+.1,fabs(.5*fabs(tb))+.1,1);\

      oC = vec3f(fabs(ta),fabs(tb),.5)";

   // The second calculator uses different arguments to

   // sin() and cos(), so it moves out of phase.

   SoCalculator *niceCalc = new SoCalculator;

   niceCalcÿ>ref();

   niceCalcÿ>a.connectFrom(&myTimerÿ>timeOut);

   niceCalcÿ>expression = "ta=cos(2*a+2); tb=sin(2*a+2);\

      oA = vec3f(3*pow(ta,3),3*pow(tb,3),1);            \

      oB = vec3f(fabs(ta)+.1,fabs(.5*fabs(tb))+.1,1);   \

      oC = vec3f(fabs(ta),fabs(tb),.5)";

   // Connect the transforms from the calculators...

   SoTransform *happyXf

      = (SoTransform *) happyKitÿ>getPart("transform",TRUE);

   happyXfÿ>translation.connectFrom(&happyCalcÿ>oA);

   happyXfÿ>scaleFactor.connectFrom(&happyCalcÿ>oB);

   SoTransform *niceXf

      = (SoTransform *) niceKitÿ>getPart("transform",TRUE);

   niceXfÿ>translation.connectFrom(&niceCalcÿ>oA);

   niceXfÿ>scaleFactor.connectFrom(&niceCalcÿ>oB);

   // Connect the materials from the calculators...

   SoMaterial *happyMtl

      = (SoMaterial *) happyKitÿ>getPart("material",TRUE);

   happyMtlÿ>diffuseColor.connectFrom(&happyCalcÿ>oC);

   SoMaterial *niceMtl

      = (SoMaterial *) niceKitÿ>getPart("material",TRUE);

   niceMtlÿ>diffuseColor.connectFrom(&niceCalcÿ>oC);

   SoXtExaminerViewer *myViewer = new

            SoXtExaminerViewer(myWindow);

   myViewerÿ>setSceneGraph(root);

   myViewerÿ>setTitle("Frolicking Words");

   myViewerÿ>viewAll();

   myViewerÿ>show();

   SoXt::show(myWindow);

   SoXt::mainLoop();

}

Using Node Kits with Editors

Example 14ÿ2 reads in a desk from a file and puts it in the "contents" part of an SoWrapperKit. It adds

a directional light editor to the light in the scene and a material editor to the desk, as shown in Figure

14ÿ14. The scene is organized using an SoSceneKit, which contains lists for grouping lights

("lightList"), cameras ("cameraList"), and objects ("childList") in a scene.
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Example 14ÿ2 Using Node Kits and Editors

#include <Inventor/SoDB.h>

#include <Inventor/SoInput.h>

#include <Inventor/nodekits/SoCameraKit.h>

#include <Inventor/nodekits/SoLightKit.h>

#include <Inventor/nodekits/SoSceneKit.h>

#include <Inventor/nodekits/SoWrapperKit.h>

#include <Inventor/nodes/SoMaterial.h>

#include <Inventor/nodes/SoPerspectiveCamera.h>

#include <Inventor/nodes/SoSeparator.h>

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/SoXtDirectionalLightEditor.h>

#include <Inventor/Xt/SoXtMaterialEditor.h>

#include <Inventor/Xt/SoXtRenderArea.h>

Figure 14ÿ14 Using an SoSceneKit with Directional Light and Material Editors

main(int , char **argv)

{

   // Initialize Inventor and Xt

   Widget myWindow = SoXt::init(argv[0]);

   if (myWindow == NULL) exit(1);

   // SCENE!
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   SoSceneKit *myScene = new SoSceneKit;

   mySceneÿ>ref();

   // LIGHTS! Add an SoLightKit to the "lightList." The 

   // SoLightKit creates an SoDirectionalLight by default.

   mySceneÿ>setPart("lightList[0]", new SoLightKit);

   // CAMERA!! Add an SoCameraKit to the "cameraList." The 

   // SoCameraKit creates an SoPerspectiveCamera by default.

   mySceneÿ>setPart("cameraList[0]", new SoCameraKit);

   mySceneÿ>setCameraNumber(0);

   // Read an object from file. 

   SoInput myInput;

   if (!myInput.openFile("desk.iv")) 

      return (1);

   SoSeparator *fileContents = SoDB::readAll(&myInput);

   if (fileContents == NULL) return (1);

   // OBJECT!! Create an SoWrapperKit and set its contents to

   // be what you read from file.

   SoWrapperKit *myDesk = new SoWrapperKit();

   myDeskÿ>setPart("contents", fileContents);

   mySceneÿ>setPart("childList[0]", myDesk);

   // Give the desk a good starting color

   myDeskÿ>set("material { diffuseColor .8 .3 .1 }");

   // MATERIAL EDITOR!!  Attach it to myDesk’s material node.

   // Use the SO_GET_PART macro to get this part from myDesk.

   SoXtMaterialEditor *mtlEditor = new SoXtMaterialEditor();

   SoMaterial *mtl = SO_GET_PART(myDesk,"material",SoMaterial);

   mtlEditorÿ>attach(mtl);

   mtlEditorÿ>setTitle("Material of Desk");

   mtlEditorÿ>show();

   // DIRECTIONAL LIGHT EDITOR!! Attach it to the 

   // SoDirectionalLight node within the SoLightKit we made.

   SoXtDirectionalLightEditor *ltEditor = 

                 new SoXtDirectionalLightEditor();

   SoPath *ltPath = mySceneÿ>createPathToPart(

      "lightList[0].light", TRUE);

   ltEditorÿ>attach(ltPath);

   ltEditorÿ>setTitle("Lighting of Desk");

   ltEditorÿ>show();

   SoXtRenderArea *myRenderArea = new SoXtRenderArea(myWindow);

   // Set up Camera with ViewAll...
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   // ÿÿ use the SO_GET_PART macro to get the camera node.

   // ÿÿ viewall is a method on the ’camera’ part of 

   //    the cameraKit, not on the cameraKit itself.  So the part

   //    we ask for is not ’cameraList[0]’ (which is of type 

   //    SoPerspectiveCameraKit), but 

   //    ’cameraList[0].camera’ (which is of type 

   //    SoPerspectiveCamera).

   SoPerspectiveCamera *myCamera = SO_GET_PART(myScene,

      "cameraList[0].camera", SoPerspectiveCamera);

   SbViewportRegion myRegion(myRenderAreaÿ>getSize());

   myCameraÿ>viewAll(myScene, myRegion);

   myRenderAreaÿ>setSceneGraph(myScene);

   myRenderAreaÿ>setTitle("Main Window: Desk In A Scene Kit");

   myRenderAreaÿ>show();

   SoXt::show(myWindow);

   SoXt::mainLoop();

}

Creating a Motion Hierarchy

Example 14ÿ3 creates a balance scale using node kits and their motion hierarchies. Figure 14ÿ15

shows the balance scale created by this example.
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Figure 14ÿ15 A Balance Scale Created with Node Kits

Example 14ÿ3 Using Node Kits to Create a Motion Hierarchy

// This example illustrates the creation of motion hierarchies

// using nodekits by creating a model of a balanceÿstyle scale.

// It adds an SoEventCallback to the "callback" list in the 

// nodekit called ’support.’

// The callback will have the following response to events:

// Pressing right arrow key == lower the right pan

// Pressing left arrow key  == lower the left pan

// The pans are lowered by animating three rotations in the 

// motion hierarchy.

// Use an SoText2Kit to print instructions to the user as part

// of the scene.

#include <Inventor/events/SoKeyboardEvent.h>

#include <Inventor/nodekits/SoCameraKit.h>

#include <Inventor/nodekits/SoLightKit.h>

#include <Inventor/nodekits/SoSceneKit.h>

#include <Inventor/nodekits/SoShapeKit.h>

#include <Inventor/nodes/SoCone.h>

#include <Inventor/nodes/SoCube.h>

#include <Inventor/nodes/SoCylinder.h>

#include <Inventor/nodes/SoEventCallback.h>

#include <Inventor/nodes/SoText2.h>

#include <Inventor/nodes/SoTransform.h>

#include <Inventor/nodes/SoPerspectiveCamera.h>

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/SoXtRenderArea.h>

// Callback Function for Animating the Balance Scale.

// ÿÿused to make the balance tip back and forth

// ÿÿNote: this routine is only called in response to KeyPress

//   events since the call ’setEventInterest(KeyPressMask)’ is

//   made on the SoEventCallback node that uses it.

// ÿÿThe routine checks if the key pressed was left arrow (which

//   is XK_Left in Xÿwindows talk), or right arrow (which is

//   XK_Right)

// ÿÿThe balance is made to tip by rotating the beam part of the

//   scale (to tip it) and then compensating (making the strings

//   vertical again) by rotating the string parts in the opposite

//   direction.

void

tipTheBalance(
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   void *userData, // The nodekit representing ’support’, the

                   // fulcrum of the balance. Passed in during

                   // main routine, below. 

   SoEventCallback *eventCB)

{

   const SoEvent *ev = eventCBÿ>getEvent();

   // Which Key was pressed?

   // If Right or Left Arrow key, then continue...

   if (SO_KEY_PRESS_EVENT(ev, RIGHT_ARROW) || 

        SO_KEY_PRESS_EVENT(ev, LEFT_ARROW)) {

      SoShapeKit  *support, *beam1, *string1, *string2;

      SbRotation  startRot, beamIncrement, stringIncrement;

      // Get the different nodekits from the userData.

      support = (SoShapeKit *) userData;

    // These three parts are extracted based on knowledge of

    // the motion hierarchy (see the diagram in the main

    // routine.

      beam1   = (SoShapeKit *)supportÿ>getPart("childList[0]",TRUE);

      string1 = (SoShapeKit *)  beam1ÿ>getPart("childList[0]",TRUE);

      string2 = (SoShapeKit *)  beam1ÿ>getPart("childList[1]",TRUE);

      //Set angular increments to be .1 Radians about the ZÿAxis

      //The strings rotate opposite the beam, and the two types

      //of key press produce opposite effects.

      if (SO_KEY_PRESS_EVENT(ev, RIGHT_ARROW)) {

         beamIncrement.setValue(SbVec3f(0, 0, 1), ÿ.1);

         stringIncrement.setValue(SbVec3f(0, 0, 1), .1);

      } 

      else {

         beamIncrement.setValue(SbVec3f(0, 0, 1), .1);

         stringIncrement.setValue(SbVec3f(0, 0, 1), ÿ.1);

      }

      // Use SO_GET_PART to find the transform for each of the 

      // rotating parts and modify their rotations.

      SoTransform *xf;

      xf = SO_GET_PART(beam1, "transform", SoTransform);

      startRot = xfÿ>rotation.getValue();

      xfÿ>rotation.setValue(startRot *  beamIncrement);

      xf = SO_GET_PART(string1, "transform", SoTransform);

      startRot = xfÿ>rotation.getValue();

      xfÿ>rotation.setValue(startRot *  stringIncrement);
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      xf = SO_GET_PART(string2, "transform", SoTransform);

      startRot = xfÿ>rotation.getValue();

      xfÿ>rotation.setValue(startRot *  stringIncrement);

      eventCBÿ>setHandled();

   }

}

main(int , char **argv)

{

   Widget myWindow = SoXt::init(argv[0]);

   if (myWindow == NULL) exit(1);

   SoSceneKit *myScene = new SoSceneKit;

   mySceneÿ>ref();

   mySceneÿ>setPart("lightList[0]", new SoLightKit);

   mySceneÿ>setPart("cameraList[0]", new SoCameraKit);

   mySceneÿ>setCameraNumber(0);

   // Create the Balance Scale ÿÿ put each part in the 

   // childList of its parent, to build up this hierarchy:

   //

   //                    myScene

   //                       |

   //                     support

   //                       |

   //                     beam

   //                       |

   //                   ÿÿÿÿÿÿÿÿ

   //                   |       |

   //                string1  string2

   //                   |       |

   //                tray1     tray2

   SoShapeKit *support = new SoShapeKit();

   supportÿ>setPart("shape", new SoCone);

   supportÿ>set("shape { height 3 bottomRadius .3 }");

   mySceneÿ>setPart("childList[0]", support);

   SoShapeKit *beam = new SoShapeKit();

   beamÿ>setPart("shape", new SoCube);

   beamÿ>set("shape { width 3 height .2 depth .2 }");

   beamÿ>set("transform { translation 0 1.5 0 } ");

   supportÿ>setPart("childList[0]", beam);
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   SoShapeKit *string1 = new SoShapeKit;

   string1ÿ>setPart("shape", new SoCylinder);

   string1ÿ>set("shape { radius .05 height 2}");

   string1ÿ>set("transform { translation ÿ1.5 ÿ1 0 }");

   string1ÿ>set("transform { center 0 1 0 }");

   beamÿ>setPart("childList[0]", string1);

   SoShapeKit *string2 = new SoShapeKit;

   string2ÿ>setPart("shape", new SoCylinder);

   string2ÿ>set("shape { radius .05 height 2}");

   string2ÿ>set("transform { translation 1.5 ÿ1 0 } ");

   string2ÿ>set("transform { center 0 1 0 } ");

   beamÿ>setPart("childList[1]", string2);

   SoShapeKit *tray1 = new SoShapeKit;

   tray1ÿ>setPart("shape", new SoCylinder);

   tray1ÿ>set("shape { radius .75 height .1 }");

   tray1ÿ>set("transform { translation 0 ÿ1 0 } ");

   string1ÿ>setPart("childList[0]", tray1);

   SoShapeKit *tray2 = new SoShapeKit;

   tray2ÿ>setPart("shape", new SoCylinder);

   tray2ÿ>set("shape { radius .75 height .1 }");

   tray2ÿ>set("transform { translation 0 ÿ1 0 } ");

   string2ÿ>setPart("childList[0]", tray2);

   // Add EventCallback so Balance Responds to Events

   SoEventCallback *myCallbackNode = new SoEventCallback;

   myCallbackNodeÿ>addEventCallback(

        SoKeyboardEvent::getClassTypeId(), 

             tipTheBalance, support); 

   supportÿ>setPart("callbackList[0]", myCallbackNode);

   // Add Instructions as Text in the Scene...

   SoShapeKit *myText = new SoShapeKit;

   myTextÿ>setPart("shape", new SoText2);

   myTextÿ>set("shape { string \"Press Left or Right Arrow Key\"

 }");

   myTextÿ>set("shape { justification CENTER }");

   myTextÿ>set("font { name \"HelveticaÿBold\" }");

   myTextÿ>set("font { size 16.0 }");

   myTextÿ>set("transform { translation 0 ÿ2 0 }");

   mySceneÿ>setPart("childList[1]", myText);

   SoXtRenderArea *myRenderArea = new SoXtRenderArea(myWindow);

   // Get camera from scene and tell it to viewAll...
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   // Get camera from scene and tell it to viewAll...

   SbViewportRegion myRegion(myRenderAreaÿ>getSize());

   SoPerspectiveCamera *myCamera = SO_GET_PART(myScene,

      "cameraList[0].camera", SoPerspectiveCamera);

   myCameraÿ>viewAll(myScene, myRegion);

   myRenderAreaÿ>setSceneGraph(myScene);

   myRenderAreaÿ>setTitle("Balance Scale Made of Nodekits");

   myRenderAreaÿ>show();

   SoXt::show(myWindow);

   SoXt::mainLoop();

}



Chapter 15

Draggers and Manipulators

Chapter Objectives

After reading this chapter, you’ll be able to do the following:

 • Connect draggers to fields or engines in the scene graph

 • Explain the difference between a dragger and a manipulator

 • Write callback functions that are performed when interaction starts or finishes, when the mouse

moves, or when the value in a dragger’s field changes

 • Use manipulators in your application to allow the user to edit nodes in the scene graph directly

 • Customize the appearance of a dragger

This chapter describes how to use draggers and manipulators, which are special objects in the scene

graph that have a user interface and respond to events. Manipulators, such as the handle box,

trackball, and directional light manipulator, are nodes that employ draggers to enable the user to

interact with them and edit them. For information on how draggers receive and respond to events, see 

Chapter 10.

What Is a Dragger?

A dragger is a node in the scene graph with specialized behavior that enables it to respond to user

events. All Inventor draggers have a builtÿin user interface, and they insert geometry into the scene

graph that is used for picking and user feedback. Figure 15ÿ1 shows the class tree for dragger classes.

Types of Draggers

For all draggers subclassed from SoDragger, the user employs a clickÿdragÿrelease motion with the

mouse. Table 15ÿ1 indicates the use of each dragger subclassed from SoDragger. For example, the

dragÿpoint dragger responds to dragging by translating in three dimensions.

Subclasses of SoDragger fall into two general categories: simple draggers and compound draggers. In

general, simple draggers perform only one operation, such as a scale or a translation. Compound

draggers perform several operations and are composed of multiple simple draggers. Simple draggers

can be used in three ways:

 • You can connect the field of a simple dragger to other fields or to engines in the scene graph.

This is a simple way to set up dependencies within the scene graph.

 • You can write callback functions that are performed when interaction starts or finishes, whenever

the mouse moves, or when the value in the dragger’s field changes.

 • You can use the simple draggers as building blocks to create more complex draggers.

Compound draggers are similar to simple draggers, except that they have more parts because they are

comprised of two or more draggers. The SoTransformBoxDragger, for example, uses a scale

dragger, three rotators, and six translators.
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Figure 15ÿ1 Dragger Classes

Dragger Use
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SoCenterballDragger rotation, center

SoDirectionalLightDragger rotation

SoDragPointDragger translation

SoHandleBoxDragger translation, scale

SoJackDragger rotation, translation, uniform scale (three
dimensions)

SoPointLightDragger translation

SoRotateCylindricalDragger rotation

SoRotateDiscDragger rotation

SoRotateSphericalDragger rotation

SoScale1Dragger scale (one dimension)

SoScale2Dragger scale (two dimensions)

SoScaleUniformDragger uniform scale (three dimensions)

SoScale2UniformDragger uniform scale (two dimensions)

SoSpotLightDragger translation, rotation, cone angle

SoTabBoxDragger scale, translation

SoTabPlaneDragger scale (two dimensions), translation (two
dimensions)

SoTrackballDragger rotation, scale

SoTransformBoxDragger rotation, translation, scale

SoTranslate1Dragger translation (one dimension)

SoTranslate2Dragger translation (two dimensions)

Table 15ÿ1 Uses of Draggers

Manipulators versus Draggers

Manipulators are subclasses of other nodes (such as SoTransform or SoDirectionalLight) that employ

draggers (as hidden children) to respond to user events and edit themselves. Figure 15ÿ2 shows the

portions of the class tree that contain manipulator classes. Each manipulator contains a dragger that

responds directly to user events and in turn modifies the fields of the manipulator. A manipulator

inserts geometry into the scene that provides feedback to the user; this geometry is provided by the

manipulator’s dragger. An SoHandleBoxManip, for example, inserts cubes and lines into the scene

that allow the user to edit the scale and translate fields of an SoTransform node by moving the mouse

in various ways (see Figure 15ÿ3). This geometry is part of the SoHandleBoxDragger contained

within the SoHandleBoxManip manipulator. An SoTrackballManip  allows the user to edit the

rotation field of an SoTransform node by inserting a sphere surrounded by three ribbons into the

scene (see Figure 15ÿ4). The user can then rotate or scale the object inside this trackball.

A dragger moves only itself when it responds to user events. A manipulator, on the other hand, moves

itself and affects other objects in the scene graph because, as a subclass of SoTransform or SoLight,

it functions as a transform or light node and modifies the traversal state. A dragger supplies geometry

and a user interface for a manipulator. A manipulator uses the values it receives from the dragger and

copies them into its own fields. When interaction finishes and the manipulator is removed from the

scene graph, it copies its values into the transform or light node it was replacing.

 The Inventor Mentor:   Programming ObjectÿOriented   3D Graphics with Open Inventor  ,  Release 2 ÿ Chapter

15,  Draggers and Manipulators ÿ 3



Figure 15ÿ2 Manipulator Classes

A manipulator replaces a node in the scene graph, substituting an editable version of that node for the

original. When interaction finishes, the original (nonÿeditable) node can be restored. Each manipulator

contains a dragger that allows the user to edit its fields. Manipulators derived from SoTransform are

as follows:

SoCenterBallManip

SoHandleBoxManip

SoJackManip

SoTabBoxManip

SoTrackballManip

SoTransformBoxManip

Other manipulators include the SoPointLightManip , derived from SoPointLight, and the 

SoDirectionalLightManip , derived from SoDirectionalLight.
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Figure 15ÿ3 HandleÿBox Manipulator
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Figure 15ÿ4 Trackball Manipulator

Simple Draggers

A simple dragger moves in 3D space in response to clickÿdragÿrelease mouse events. Its position in

space is determined by its position in the scene graph. Each simple dragger has a field that reflects the

current state of the dragger. For example, the SoRotateDiscDragger has a rotation field that indicates

its current rotation value. This field can be connected to other fields in the scene graph or to the input

field of an engine (see the following section). Callback functions can also be used with simple

draggers, as described in "Callback Functions".

Field Connections

A convenient way to use a dragger is to connect its fields to other fields or engines in the scene graph.

For example, the SoTranslate1Dragger has a translation field that could be used in a variety of

ways. Figure 15ÿ5 shows how this field could be used to edit the radius of a cone node. Since the

dragger’s translation field is an SoSFVec3f, you need to use an SoDecomposeVec3f engine to

extract the x value of the dragger’s 

translation. This x value is then fed into the bottomRadius field of the cone node. Now, whenever the

dragger is translated, the radius of the cone changes.
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Figure 15ÿ5 Connecting a Dragger’s Field to Another Field in the Scene Graph

Example 15ÿ1 shows the code for connecting these fields and engines. Figure 15ÿ6 shows an image

created by this example.

Example 15ÿ1 Using a Simple Dragger

   // Create myDragger with an initial translation of (1,0,0)

   SoTranslate1Dragger *myDragger = new SoTranslate1Dragger;

   rootÿ>addChild(myDragger);

   myDraggerÿ>translation.setValue(1,0,0);

   // Place an SoCone below myDragger

   SoTransform *myTransform = new SoTransform;

   SoCone *myCone = new SoCone;

   rootÿ>addChild(myTransform);

   rootÿ>addChild(myCone);

   myTransformÿ>translation.setValue(0,3,0);

 The Inventor Mentor:   Programming ObjectÿOriented   3D Graphics with Open Inventor  ,  Release 2 ÿ Chapter

15,  Draggers and Manipulators ÿ 7



   // SoDecomposeVec3f engine extracts myDragger’s xÿcomponent

   // The result is connected to myCone’s bottomRadius.

   SoDecomposeVec3f *myEngine = new SoDecomposeVec3f;

   myEngineÿ>vector.connectFrom(&myDraggerÿ>translation);

   myConeÿ>bottomRadius.connectFrom(&myEngineÿ>x);

Figure 15ÿ6 Using a Dragger and Engine to Edit the Radius of a Cone

Callback Functions

Any dragger or manipulator can use callback functions to pass data back to the application. This

callback mechanism can be used to augment the default functionality of the dragger or manipulator.

Several lists of callback functions and associated data, of class SoCallbackList, are automatically

created when a dragger is constructed. You can add functions to and remove functions from these lists

and pass a pointer to the user callback data. Draggers use these lists of callback functions:

 • Start callbackscalled when manipulation starts

 • Motion callbackscalled after each mouse movement during manipulation

 • Valueÿchanged callbackscalled when any of the dragger’s fields change

 • Finish callbackscalled when manipulation finishes

The following methods add functions to and remove functions from these callback lists:

addStartCallback(functionName, userData)

removeStartCallback(functionName, userData)

addMotionCallback(functionName, userData)

removeMotionCallback(functionName, userData)

addValueChangedCallback(functionName, userData)

removeValueChangedCallback(functionName, userData)

addFinishCallback(functionName, userData)

removeFinishCallback(functionName, userData)

These methods are called on SoDragger. To call one of these methods on the manipulator, call 
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getDragger() first, then call the callback list method. 

For example, you could write a start callback function that would turn an object to wireframe during

manipulation and a finish callback function that would turn it back to filled drawing style when

manipulation finishes. You could write a valueÿchanged callback to find out when the value being

manipulated has changed, and then use the getValue() method to obtain the field’s new value. 

Using Multiple Draggers

Example 15ÿ2 uses three translate1Draggers to change the x, y, and z components of a translation that

affects some 3D text. Figure 15ÿ7 shows two images created by this program.

Figure 15ÿ7 A Slider Box That Uses Draggers and Engines to Move Text

Example 15ÿ2 Using Multiple Draggers

//  Uses 3 translate1Draggers to change the x, y, and z 

//  components of a translation. A calculator engine assembles 

//  the components.

//  Arranges these draggers along edges of a box containing the

//  3D text to be moved.

//  The 3D text and the box are made with SoShapeKits

#include <Inventor/engines/SoCalculator.h>

#include <Inventor/nodekits/SoShapeKit.h>

#include <Inventor/nodes/SoCube.h>

#include <Inventor/nodes/SoSeparator.h>

#include <Inventor/nodes/SoText3.h>

#include <Inventor/nodes/SoTransform.h>

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>

#include <Inventor/draggers/SoTranslate1Dragger.h>

main(int , char **argv)
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{

   Widget myWindow = SoXt::init(argv[0]);

   if (myWindow == NULL) exit(1);

   SoSeparator *root = new SoSeparator;

   rootÿ>ref();

   // Create 3 translate1Draggers and place them in space.

   SoSeparator *xDragSep = new SoSeparator;

   SoSeparator *yDragSep = new SoSeparator;

   SoSeparator *zDragSep = new SoSeparator;

   rootÿ>addChild(xDragSep);

   rootÿ>addChild(yDragSep);

   rootÿ>addChild(zDragSep);

   // Separators will each hold a different transform

   SoTransform *xDragXf = new SoTransform;

   SoTransform *yDragXf = new SoTransform;

   SoTransform *zDragXf = new SoTransform;

   xDragXfÿ>set("translation 0 ÿ4 8");

   yDragXfÿ>set("translation ÿ8 0 8 rotation 0 0 1 1.57");

   zDragXfÿ>set("translation ÿ8 ÿ4 0 rotation 0 1 0 ÿ1.57");

   xDragSepÿ>addChild(xDragXf);

   yDragSepÿ>addChild(yDragXf);

   zDragSepÿ>addChild(zDragXf);

   // Add the draggers under the separators, after transforms

   SoTranslate1Dragger *xDragger = new SoTranslate1Dragger;

   SoTranslate1Dragger *yDragger = new SoTranslate1Dragger;

   SoTranslate1Dragger *zDragger = new SoTranslate1Dragger;

   xDragSepÿ>addChild(xDragger);

   yDragSepÿ>addChild(yDragger);

   zDragSepÿ>addChild(zDragger);

   // Create shape kit for the 3D text

   // The text says ’Slide Arrows To Move Me’

   SoShapeKit *textKit = new SoShapeKit;

   rootÿ>addChild(textKit);

   SoText3 *myText3 = new SoText3;

   textKitÿ>setPart("shape", myText3);

   myText3ÿ>justification = SoText3::CENTER;

   myText3ÿ>string.set1Value(0,"Slide Arrows");

   myText3ÿ>string.set1Value(1,"To");

   myText3ÿ>string.set1Value(2,"Move Me");

   textKitÿ>set("font { size 2}");

   textKitÿ>set("material { diffuseColor 1 1 0}");

   // Create shape kit for surrounding box.
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   // It’s an unpickable cube, sized as (16,8,16)

   SoShapeKit *boxKit = new SoShapeKit;

   rootÿ>addChild(boxKit);

   boxKitÿ>setPart("shape", new SoCube);

   boxKitÿ>set("drawStyle { style LINES }");

   boxKitÿ>set("pickStyle { style UNPICKABLE }");

   boxKitÿ>set("material { emissiveColor 1 0 1 }");

   boxKitÿ>set("shape { width 16 height 8 depth 16 }");

   // Create the calculator to make a translation

   // for the text. The x component of a translate1Dragger’s 

   // translation field shows how far it moved in that 

   // direction. So our text’s translation is:

   // (xDragTranslate[0],yDragTranslate[0],zDragTranslate[0])

   SoCalculator *myCalc = new SoCalculator;

   myCalcÿ>ref();

   myCalcÿ>A.connectFrom(&xDraggerÿ>translation);

   myCalcÿ>B.connectFrom(&yDraggerÿ>translation);

   myCalcÿ>C.connectFrom(&zDraggerÿ>translation);

   myCalcÿ>expression = "oA = vec3f(A[0],B[0],C[0])";

   // Connect the the translation in textKit from myCalc

   SoTransform *textXf = (SoTransform *)

            textKitÿ>getPart("transform",TRUE);

   textXfÿ>translation.connectFrom(&myCalcÿ>oA);

   SoXtExaminerViewer *myViewer = new

            SoXtExaminerViewer(myWindow);

   myViewerÿ>setSceneGraph(root);

   myViewerÿ>setTitle("Slider Box");

   myViewerÿ>viewAll();

   myViewerÿ>show();

   SoXt::show(myWindow);

   SoXt::mainLoop();

}

Manipulators

You can use manipulators in your application in various ways:

 • You can use the replaceNode() method to replace certain kinds of nodes in the scene graph with

an editable version. When the user is finished manipulating the node, use the replaceManip()

method to restore the original node to the scene graph.

 • You can write your own callback functions to use the field values of the manipulator. The

callback functions described in "Callback Functions" can be used for any manipulator. (Recall

that these functions belong to the dragger, so you need to call getDragger() before using them.)
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You can also combine use of these two techniques. For example, you can use replaceNode() to

replace an SoTransform with a manipulator. Then you can use a valueÿchanged callback to notify the

application when any of the manipulator’s dragger fields changes, and the application can use this new

value, if desired. 

The following sections describe both of these techniques in more detail.

Replacing a Node with a Manipulator

To use any manipulator in an application, follow these basic steps:

1. Construct the manipulator.

2. Reference it if you plan on reusing it.

3. Replace the node in the scene graph with the manipulator. Manipulators derived from 

SoTransform, such as the handle box and trackball, replace an SoTransform node. An 

SoDirectionalLightÿ

Manip replaces an SoDirectionalLight node, an SoPointLightManip  replaces an SoPointLight

node, and so on.

Replacing a Node

The replaceNode() method takes a path as an argument:

replaceNode (SoPath * p)

The path is supplied by the application. For example, Figure 15ÿ8 shows the path to a target 

SoTransform node. When a transform manipulator replaces this node, editing the manipulator will

affect cube2 in the scene graph.

Manipulators subclassed from SoTransformManip use special nodes to maintain their shape (so that

the trackball remains spherical, for example) and to ensure that they surround the shape objects they

affect. These nodes are described in The Inventor Toolmaker.

 The Inventor Mentor:   Programming ObjectÿOriented   3D Graphics with Open Inventor  ,  Release 2 ÿ Chapter

15,  Draggers and Manipulators ÿ 12



Figure 15ÿ8 Specifying the Path to the Target Node

Removing the Manipulator

To remove the manipulator from the scene graph:

1. Use the replaceManip() method to restore the original node to the scene graph. In the example,

the field values from the manipulator are copied into the transform node.

2. Use unref() on the manipulator so that it will be deleted.

Because the manipulator methods replaceManip() and replaceNode() exchange the new node for the

tail of the given path, you can reuse the path for subsequent calls to these methods.

For example, if we begin with:

myManip = new SoTrackballManip;
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myPathToTransform = createPathtoTransform(pickPath);

Then we can call:

myManipÿ>replaceNode(myPathToTransform);

to put the manipulator at the end of the path.

Later, we can call

myManipÿ>replaceManip(myPathToTransform, new SoTransform);

to remove the manipulator and replace it with a transform.

1.

Using the replaceNode() Method

Example 15ÿ3 displays a cube, a sphere, and a lamp. The lamp is read from a file and inserted as the

"contents" part of an SoWrapperKit. When the user picks  the cube, a trackball replaces the

transform node that affects the cube. When the user picks the sphere, a handle box replaces the

transform node that affects the sphere. When the user picks the lamp, a transform box replaces the

"transform" part of the wrapper kit containing the lamp. Figure 15ÿ9 shows an image created by this

program. This example shows the following techniques:

 • Using replaceNode() and replaceManip() to make certain nodes in the scene graph editable and

to restore the original nodes when manipulation finishes

 • Using selection callbacks (see Chapter 10)

Example 15ÿ3 Using Manipulators to Transform Objects

// Note that for illustration purposes, the

// cube and SoWrapperKit already have transform nodes 

// associated with them; the sphere does not. In all cases, 

// the routine createTransformPath() is used to find the 

// transform node that affects the picked object.

#include <Inventor/SoDB.h>

#include <Inventor/SoInput.h>

#include <Inventor/manips/SoHandleBoxManip.h>

#include <Inventor/manips/SoTrackballManip.h>

#include <Inventor/manips/SoTransformBoxManip.h>

#include <Inventor/nodekits/SoWrapperKit.h>

#include <Inventor/nodes/SoCamera.h>

#include <Inventor/nodes/SoCube.h>

#include <Inventor/nodes/SoGroup.h>

#include <Inventor/nodes/SoLight.h>
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Figure 15ÿ9 Adding Manipulators to a Scene

#include <Inventor/nodes/SoMaterial.h>

#include <Inventor/nodes/SoSelection.h>

#include <Inventor/nodes/SoSphere.h>

#include <Inventor/nodes/SoTransform.h>

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>

// function prototypes

void selectionCallback(void *, SoPath *);

void deselectionCallback(void *, SoPath *);

void dragStartCallback(void *, SoDragger *);

void dragFinishCallback(void *, SoDragger *);

// global data

SoSeparator *root;

SoHandleBoxManip    *myHandleBox;

SoTrackballManip    *myTrackball;

SoTransformBoxManip *myTransformBox;

SoPath *handleBoxPath    = NULL;

SoPath *trackballPath    = NULL;

SoPath *transformBoxPath = NULL;
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main(int, char **argv)

{

   // Initialize Inventor and Xt

   Widget myWindow = SoXt::init(argv[0]);

   if (myWindow == NULL) exit(1);

   // Create and set up the selection node

   SoSelection *selectionRoot = new SoSelection;

   selectionRootÿ>ref();

   selectionRootÿ>

      addSelectionCallback(selectionCallback, NULL);

   selectionRootÿ>

      addDeselectionCallback(deselectionCallback, NULL);

   // Create the scene graph

   root = new SoSeparator;

   selectionRootÿ>addChild(root);

   // Read a file into contents of SoWrapperKit 

   // Translate it to the right.

   SoWrapperKit *myWrapperKit = new SoWrapperKit;

   rootÿ>addChild(myWrapperKit);

   SoInput myInput;

   if (!myInput.openFile("luxo.iv")) 

      return (1);

   SoSeparator *objectFromFile = SoDB::readAll(&myInput);

   if (objectFromFile == NULL) return (1);

   myWrapperKitÿ>setPart("contents",objectFromFile);

   myWrapperKitÿ>set("transform { translation 3 ÿ1 0 }");

   SoMaterial *wrapperMat 

      = (SoMaterial *) myWrapperKitÿ>getPart("material",TRUE);

   wrapperMatÿ>diffuseColor.setValue(.8, .8, .8);

   // Create a cube with its own transform.

   SoSeparator *cubeRoot = new SoSeparator;

   SoTransform *cubeXform = new SoTransform;

   cubeXformÿ>translation.setValue(ÿ4, 0, 0);

   rootÿ>addChild(cubeRoot);

   cubeRootÿ>addChild(cubeXform);

   SoMaterial *cubeMat = new SoMaterial;

   cubeMatÿ>diffuseColor.setValue(.8, .8, .8);

   cubeRootÿ>addChild(cubeMat);

   cubeRootÿ>addChild(new SoCube);

   // Add a sphere node without a transform

   // (one will be added when we attach the manipulator)
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   // (one will be added when we attach the manipulator)

   SoSeparator *sphereRoot = new SoSeparator;

   SoMaterial *sphereMat = new SoMaterial;

   rootÿ>addChild(sphereRoot);

   sphereRootÿ>addChild(sphereMat);

   sphereRootÿ>addChild(new SoSphere);

   sphereMatÿ>diffuseColor.setValue(.8, .8, .8);

   // Create the manipulators

   myHandleBox = new SoHandleBoxManip;

   myHandleBoxÿ>ref();

   myTrackball = new SoTrackballManip;

   myTrackballÿ>ref();

   myTransformBox = new SoTransformBoxManip;

   myTransformBoxÿ>ref();

   // Get the draggers and add callbacks to them. Note

   // that you don’t put callbacks on manipulators. You put

   // them on the draggers which handle events for them. 

   SoDragger *myDragger;

   myDragger = myTrackballÿ>getDragger();

   myDraggerÿ>addStartCallback(dragStartCallback,cubeMat);

   myDraggerÿ>addFinishCallback(dragFinishCallback,cubeMat);

   myDragger = myHandleBoxÿ>getDragger();

   myDraggerÿ>addStartCallback(dragStartCallback,sphereMat);

   myDraggerÿ>addFinishCallback(dragFinishCallback,sphereMat);

   myDragger = myTransformBoxÿ>getDragger();

   myDraggerÿ>addStartCallback(dragStartCallback,wrapperMat);

   myDraggerÿ>addFinishCallback(dragFinishCallback,wrapperMat);

   SoXtExaminerViewer *myViewer 

      = new SoXtExaminerViewer(myWindow);

   myViewerÿ>setSceneGraph(selectionRoot);

   myViewerÿ>setTitle("Attaching Manipulators");

   myViewerÿ>show();

   myViewerÿ>viewAll();

   SoXt::show(myWindow);

   SoXt::mainLoop();

}

// Is this node of a type that is influenced by transforms?

SbBool

isTransformable(SoNode *myNode)

{
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   if (myNodeÿ>isOfType(SoGroup::getClassTypeId())

      || myNodeÿ>isOfType(SoShape::getClassTypeId())

      || myNodeÿ>isOfType(SoCamera::getClassTypeId())

      || myNodeÿ>isOfType(SoLight::getClassTypeId()))

      return TRUE;

   else 

      return FALSE;

}

//  Create a path to the transform node that affects the tail

//  of the input path.  Three possible cases:

//   [1] The pathÿtail is a node kit. Just ask the node kit for

//       a path to the part called "transform"

//   [2] The pathÿtail is NOT a group.  Search siblings of path

//       tail from right to left until you find a transform. If

//       none is found, or if another transformable object is 

//       found (shape,group,light,or camera), then insert a 

//       transform just to the left of the tail. This way, the 

//       manipulator only affects the selected object.

//   [3] The pathÿtail IS a group.  Search its children left to

//       right until a transform is found. If a transformable

//       node is found first, insert a transform just left of 

//       that node.  This way the manip will affect all nodes

//       in the group.

SoPath *

createTransformPath(SoPath *inputPath)

{

   int pathLength = inputPathÿ>getLength();

   if (pathLength < 2) // Won’t be able to get parent of tail

      return NULL;

   SoNode *tail = inputPathÿ>getTail();

   // CASE 1: The tail is a node kit.

   // Nodekits have built in policy for creating parts.

   // The kit copies inputPath, then extends it past the 

   // kit all the way down to the transform. It creates the

   // transform if necessary.

   if (tailÿ>isOfType(SoBaseKit::getClassTypeId())) {

      SoBaseKit *kit = (SoBaseKit *) tail;

      return kitÿ>createPathToPart("transform",TRUE,inputPath);

   }

   SoTransform *editXf = NULL;

   SoGroup     *parent;

   SbBool      existedBefore = FALSE;
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   // CASE 2: The tail is not a group.

   SbBool isTailGroup;

   isTailGroup = tailÿ>isOfType(SoGroup::getClassTypeId());

   if (!isTailGroup) {

      // ’parent’ is node above tail. Search under parent right

      // to left for a transform. If we find a ’movable’ node

      // insert a transform just left of tail.  

      parent = (SoGroup *) inputPathÿ>getNode(pathLength ÿ 2);

      int tailIndx = parentÿ>findChild(tail);

      for (int i = tailIndx; (i >= 0) && (editXf == NULL);iÿÿ){

         SoNode *myNode = parentÿ>getChild(i);

         if (myNodeÿ>isOfType(SoTransform::getClassTypeId()))

            editXf = (SoTransform *) myNode;

         else if (i != tailIndx && (isTransformable(myNode)))

            break;

      }

      if (editXf == NULL) {

         existedBefore = FALSE;

         editXf = new SoTransform;

         parentÿ>insertChild(editXf, tailIndx);

      }

      else

         existedBefore = TRUE;

   }

   // CASE 3: The tail is a group.

   else {

      // Search the children from left to right for transform 

      // nodes. Stop the search if we come to a movable node

      // and insert a transform before it.

      parent = (SoGroup *) tail;

      for (int i = 0;

         (i < parentÿ>getNumChildren()) && (editXf == NULL); 

         i++) {

         SoNode *myNode = parentÿ>getChild(i);

         if (myNodeÿ>isOfType(SoTransform::getClassTypeId()))

            editXf = (SoTransform *) myNode;

         else if (isTransformable(myNode))

            break;

      }

      if (editXf == NULL) {

         existedBefore = FALSE;

         editXf = new SoTransform;

         parentÿ>insertChild(editXf, i);

      }

      else 

         existedBefore = TRUE;
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   }

   // Create ’pathToXform.’ Copy inputPath, then make last

   // node be editXf.

   SoPath *pathToXform = NULL;

   pathToXform = inputPathÿ>copy();

   pathToXformÿ>ref();

   if (!isTailGroup) // pop off the last entry.

      pathToXformÿ>pop();

   // add editXf to the end

   int xfIndex   = parentÿ>findChild(editXf);

   pathToXformÿ>append(xfIndex);

   pathToXformÿ>unrefNoDelete();

   return(pathToXform);

}

// This routine is called when an object

// gets selected. We determine which object

// was selected, then call replaceNode()

// to replace the object’s transform with

// a manipulator.

void

selectionCallback(

   void *, // user data is not used

   SoPath *selectionPath)

{

   // Attach the manipulator.

   // Use the convenience routine to get a path to

   // the transform that affects the selected object.

   SoPath *xformPath = createTransformPath(selectionPath);

   if (xformPath == NULL) return;

   xformPathÿ>ref();

   // Attach the handle box to the sphere,

   // the trackball to the cube

   // or the transformBox to the wrapperKit

   if (selectionPathÿ>getTail()ÿ>isOfType(

        SoSphere::getClassTypeId())) {

      handleBoxPath = xformPath;

      myHandleBoxÿ>replaceNode(xformPath);

   }

   else if (selectionPathÿ>getTail()ÿ>

        isOfType(SoCube::getClassTypeId())) {

      trackballPath = xformPath;

      myTrackballÿ>replaceNode(xformPath);
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   }

   else if (selectionPathÿ>getTail()ÿ>

        isOfType(SoWrapperKit::getClassTypeId())) {

      transformBoxPath = xformPath;

      myTransformBoxÿ>replaceNode(xformPath);

   }

}

// This routine is called whenever an object gets

// deselected. It detaches the manipulator from

// the transform node, and removes it from the 

// scene graph that will not be visible.

void

deselectionCallback(

   void *, // user data is not used

   SoPath *deselectionPath)

{

   if (deselectionPathÿ>getTail()ÿ>

        isOfType(SoSphere::getClassTypeId())) {

      myHandleBoxÿ>replaceManip(handleBoxPath,NULL);

      handleBoxPathÿ>unref();

   }

   else if (deselectionPathÿ>getTail()ÿ>

        isOfType(SoCube::getClassTypeId())) {

      myTrackballÿ>replaceManip(trackballPath,NULL);

      trackballPathÿ>unref();

   }

   else if (deselectionPathÿ>getTail()ÿ>

        isOfType(SoWrapperKit::getClassTypeId())) {

      myTransformBoxÿ>replaceManip(transformBoxPath,NULL);

      transformBoxPathÿ>unref();

   }

}

// This is called when a manipulator is

// about to begin manipulation.

void

dragStartCallback(

   void *myMaterial, // user data

   SoDragger *)         // callback data not used

{

   ((SoMaterial *) myMaterial)ÿ>diffuseColor=SbColor(1,.2,.2);

}

// This is called when a manipulator is

// done manipulating.

void

 The Inventor Mentor:   Programming ObjectÿOriented   3D Graphics with Open Inventor  ,  Release 2 ÿ Chapter

15,  Draggers and Manipulators ÿ 21



dragFinishCallback(

   void *myMaterial, // user data

   SoDragger *)    // callback data not used

{

   ((SoMaterial *) myMaterial)ÿ>diffuseColor=SbColor(.8,.8,.8);

}

Customizing a Dragger (Advanced)
This section describes how to modify the appearance of a dragger. This customization is performed

either by changing the default geometry for a part or by changing the part after an instance of a

dragger has been built. Although the look and feel of a dragger can be changed or removed in this

manner, no new functionality can be added. 

Using the SoTrackballDragger as an example, this section describes the parts of a dragger and how

they combine to make the whole dragger. It explains how the geometry for each part can be changed

or removed, and how that can affect the functionality of the dragger. Example 15ÿ4 illustrates how

parts of an SoTranslate1Dragger can be changed after it has been built.

Parts of a Dragger

Every dragger is a node kit that is constructed out of parts. A part is simply a piece of the dragger that

has some task associated with it. Often, two parts act as a pair. One part is displayed when it is in use

(or active), and the other is displayed when that part is not in use (or inactive). For example, for the 

trackball’s inactive "XRotator" part, a white stripe is displayed, and for its active "XRotatorActive"

part, a yellow stripe is displayed.

Each dragger has a resource file associated with it that contains an Inventor scene graph describing

the default geometry for each part. By creating a new resource file, you can override the default and

give the part a new shape or new properties such as color or drawing style. In the resource file, scene

graphs are labeled with their unique resource names.

Many classes of draggers use the same part names. For example, the trackball, rotateÿdisc,

rotateÿcylindrical, and rotateÿspherical draggers each have a part named "rotator." Since the default

parts are stored in the global dictionary, each part in each class must have a unique resource name. In

all cases, the class name (without the "So" or "Dragger") is prepended to the part name. Table 15ÿ2

shows how the resource names and part names relate.

For example, the SoTrackballDragger has twelve parts. Table 15ÿ2 lists the resource and part names

of eight of these parts (for brevity, the "userRotator" and "userAxis" parts are omitted). When you

interact with a trackball dragger, you are actually interacting with its parts. For example, if the mouse

goes down over the trackball’s "XRotator" part, a rotation about the xÿaxis is initiated.

Resource Names Part Names Task

trackballRotator 
trackball RotatorActive

rotator
rotatorActive

Free rotation 

trackballXRotator
trackballXRotatorActive

XRotator
XRotatorActive

Rotation about xÿaxis

trackballYRotator
trackballYRotatorActive

YRotator
YRotatorActive

Rotation about yÿaxis

trackballZRotator ZRotator Rotation about zÿaxis
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trackballZRotatorActive ZRotatorActive

Table 15ÿ2 Selected Parts of the SoTrackballDragger

Changing a Part after Building the Dragger

To change the part of a dragger that has already been built, use the setPart()  or setPartAsPath()

method provided by SoInteractionKit . The setPart() method takes the root of a scene graph as a

parameter, while setPartAsPath() accepts an SoPath.

For example, to change the "rotator" part of myDragger:

myDraggerÿ>setPart("rotator", myNewRotatorSceneGraph);

To change the "rotator" part of a dragger within a manipulator:

myManipÿ>getDragger()ÿ>setPart("rotator",

                             myNewRotatorSceneGraph);

You can also provide setPartAsPath() with the path to a particular instance of an object in the scene

graph.  The dragger then uses that object for the part. For example, if you have an arrow used as a

weather vane mounted on a post, you could provide the path to the arrow and rotate the arrow itself.

(Note the difference here between specifying a node and specifying a path. If you specify the arrow 

node using setPart(), a new instance of that node is created and two copies of the same geometry

appear on the screen. If you specify the path to the arrow using setPartAsPath(), the dragger actually

uses the existing arrow node and waits for the user to press the mouse on the same weather vane that

is sitting on the barn.)

myRotateManipÿ>getDragger()ÿ>setPartAsPath("rotator",

                           pathToMyWeatherVaneArrow);

Example 15ÿ4 shows how to change the geometry of the draggers in Example 15ÿ2. The "translator"

and "translatorActive" parts are now cubes instead of arrows. The setPart() method is used to replace

the default parts with the new scene graphs specified here. Figure 15ÿ10 shows the new dragger

geometry.

Figure 15ÿ10 Changing the Dragger Parts to Cubes

Example 15ÿ4 Changing Parts after Building a Dragger
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// Create myTranslator and myTranslatorActive.

// These are custom geometry for the draggers.

SoSeparator *myTranslator = new SoSeparator;

SoSeparator *myTranslatorActive = new SoSeparator;

myTranslatorÿ>ref();

myTranslatorActiveÿ>ref();

// Materials for the dragger in regular and active states

SoMaterial *myMtl = new SoMaterial;

SoMaterial *myActiveMtl = new SoMaterial;

myMtlÿ>diffuseColor.setValue(1,1,1);

myActiveMtlÿ>diffuseColor.setValue(1,1,0);

myTranslatorÿ>addChild(myMtl);

myTranslatorActiveÿ>addChild(myActiveMtl);

// Same shape for both versions.

SoCube *myCube = new SoCube;

myCubeÿ>set("width 3 height .4 depth .4");

myTranslatorÿ>addChild(myCube);

myTranslatorActiveÿ>addChild(myCube);

// Now, customize the draggers with the pieces we created.

xDraggerÿ>setPart("translator",myTranslator);

xDraggerÿ>setPart("translatorActive",myTranslatorActive);

yDraggerÿ>setPart("translator",myTranslator);

yDraggerÿ>setPart("translatorActive",myTranslatorActive);

zDraggerÿ>setPart("translator",myTranslator);

zDraggerÿ>setPart("translatorActive",myTranslatorActive);

Changing the Default Geometry for a Part

Every class of dragger has a resource file associated with it that contains Inventor scene graphs

defining default geometry for that class. The default geometry for a given class is also compiled in, so

that if the dragger resource files are lost, the dragger will still operate.

Where a Dragger Looks for Defaults

When a dragger is constructed, it checks whether a resource file for overriding the defaults has been

created. When reading from this file (if found), if the dragger encounters a second definition of a

particular geometry, the new geometry replaces any previously defined geometry of the same name. 

Inventor will look for files only if the environment variable SO_DRAGGER_DIR has been set. If it

has, Inventor will look in that directory.

In all cases, a given dragger class will read only files of its same name: the SoTranslate1Dragger

class reads only resource files named translate1Dragger.iv, the SoTrackballDragger class reads only

files named trackballDragger.iv. 

Changing the default geometry of a dragger part is a simple matter of creating a new file that contains

a scene graph defining the new resource. When encountered, this new definition overrides the default
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definitions of that resource. The next two sections show how to do this using the 

SoTrackballDragger as a foundation.

How to Edit Your File

To change the default geometry of a part, you merely redefine the scene graph for the geometry used

by the part. When creating new resource files, it is necessary to define only the geometry that you

wish to change. Other geometry will use the default values.

Keep in mind that you should never edit the resource files in Inventor/resources. If you want your

application to use alternate resources, put your files in a convenient place and set the

SO_DRAGGER_DIR environment variable to point there.

As an example, let’s replace the trackballRotator  resource of the trackball with a cube. (For more

information on the  Inventor file format, see Chapter 11.) Looking at the default geometry file for the

trackball, we see that the trackballRotator  resource is defined by this scene graph:

# default geometry for SoTrackballDragger’s "rotator" part

 (inactive)

DEF trackballRotator Separator {

   DrawStyle { style INVISIBLE }

   Sphere {}

}

# default geometry for SoTrackballDragger’s "rotatorActive" part

DEF trackballRotatorActive Separator {

   DrawStyle { style INVISIBLE }

   Sphere {}

}

Note that, in the case of the trackball, the resources specify that the rotator  and rotatorActive  parts

have the same geometry, an invisible sphere. Although this is common, some draggers may have

completely different geometry for when they are inactive and active (and most manipulators have

more complicated scene graphs than just a sphere).

To change the trackballRotator  and trackballRotatorActive  resources from an invisible sphere to a

visible cube, you simply replace the sphere with a cube in both scene graphs:

# default geometry for the SoTrackballDragger’s "rotator" part

DEF trackballRotator Separator {

   BaseColor {

      rgb 1. 1. 1.        #white

   }

   Cube {}

}

# default geometry for the SoTrackballDragger’s "rotatorActive" part

DEF trackballRotatorActive Separator {

   BaseColor {

      rgb .5 .5  0.        #yellow

   }

   Cube {}

}
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Using this mechanism, you can not only change the geometry of a given part, but also remove the

functionality of that part entirely. For example, to disable the trackball’s "rotator"  part but still leave

the cube visible, you can make the cube unpickable:

# default geometry for the SoTrackballDragger’s "rotator" part

DEF trackballRotator Separator {

   BaseColor {

      rgb 1. 1. 1.        #white

   }

   PickStyle {

      style UNPICKABLE

   }

   Cube {}

}

# default geometry for the SoTrackballDragger’s "rotatorActive" part

DEF trackballRotatorActive Separator {

   BaseColor {

      rgb .5 .5  0.        #yellow

   }

   PickStyle {

      style UNPICKABLE

   }

   Cube {}

}

To remove the trackball’s rotator part altogether, leaving a trackball that can only rotate about its x, y,

and z axes, you could redefine its geometry to be an empty scene graph:

# default geometry for SoTrackballDragger’s "rotator" part

DEF trackballRotator Separator {

}

# default geometry for SoTrackballDragger’s "rotatorActive" part

DEF trackballRotatorActive Separator {

}

You can also read the geometry from a file instead of defining it inline:

DEF trackballRotator Separator {

   File { name "myCustomRotator.iv" }

}

DEF trackballRotatorActive Separator {

   File { name "myCustomRotatorActive.iv" }

}

Note:  Never set a dragger part to NULL. Internal methods require a node to be present, even if it’s

simply an empty separator as shown in the previous example. (Often, the dragger parts are the

children of a switch node. Changing a node to NULL could result in an incorrect ordering of the

switch node’s children.)



Chapter 16

Inventor Component Library

Chapter Objectives

After reading this chapter, you’ll be able to do the following:

 • Construct, build, and use an SoXtRenderArea

 • Use the Inventor utility functions provided for initialization and window management with the Xt

Intrinsics

 • Render a simple scene graph in the overlay planes

 • Construct and build Inventor components and manage them as Xt widgets

 • Attach a component directly to a scene graph and pass data to the application

 • Use callback functions to pass data from a component to the application

 • Add your own application buttons to a standard Inventor viewer

 • Use the Inventor clipboard to copy and paste data

This chapter describes the Inventor Component Library, which includes utility functions, a render

area, and a set of Xt components. Components are reusable modules with a builtÿin user interface for

changing the scene graph interactively. Designed for easy integration into your program, each

component is built from Motifÿstyle Xt widgets and can be used alone or in combination with other

widgets. Important concepts introduced in this chapter include the two types of components, editors

and viewers, and the steps for constructing and building components and for managing them as Xt

widgets. Since all components are interactive and are used to edit parts of the 3D scene, this chapter

also describes how different types of components pass data back to the application.

Introduction to Components

The Inventor Component Library consists of three major parts:

 • Xt utility functions for initialization and window management

 • An Xt render area for static display of a scene graph

 • A set of Xt components, which include their own render area and a user interface for changing

the displayed scene

The following sections describe each part in more detail. This chapter assumes you have already read 

Chapter 10, which describes the relationship between the Xt library and the Open Inventor toolkit,

which is windowÿsystem-independent.

Xt Utility Functions

This section outlines the basic sequence for initializing Inventor for use with the Xt Intrinsics, a

library built on top of the X Window System library. An Xt widget contains an X window, along with

extra functions for controlling the widget behavior. Because they contain a window, widgets can

receive events from the X server.
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The SoXt::init()  routine returns an Xt widget that serves as the application’s main shell window. In

the following example, the widget is named myWindow. An SoXtRenderArea is later put into this

window.

The basic steps are as follows:

1. Initialize Inventor for use with the Xt Intrinsics (SoXt::init() ).

2. Create the SoXtRenderArea.

3. Build other Inventor objects and Xt widgets.

4. Show the render area and Xt widgets (myRenderAreaÿ>show(); SoXt::show()).

5. Enter the event loop (SoXt::mainLoop()).

Here is an example that follows this sequence:

#include <X11/Intrinsic.h>

#include <Inventor/So.h>

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/SoXtRenderArea.h>

main(int argc, char **argv)

{

   // Initialize Inventor and Xt

   Widget myWindow = SoXt::init(argv[0]);

   SoXtRenderArea *myRenderArea = 

         new SoXtRenderArea(myWindow);

   SoSeparator *root = new SoSeparator;

   // Build other Inventor objects and Xt widgets 

   // and set up the root

   // ...

   myRenderAreaÿ>setSceneGraph(root);

   myRenderAreaÿ>setTitle("Simple Xt");

   myRenderAreaÿ>show(); // this calls XtManageChild

   SoXt::show(myWindow); // this calls XtRealizeWidget

   // Realize other Xt widgets

   // ...

   // Go into main event loop

   SoXt::mainLoop();

}

Tip:  Be sure your program calls show() for the child widgets before it calls show() for the shell

widget. If you try to show the shell widget first, you receive this error: "Shell widget x has zero width

and/or height." 
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Render Area

The SoXtRenderArea is an Xt widget that performs OpenGL rendering. When it receives X events, it

translates them into SoEvents, which are then passed to the scene manager for handling. 

Methods

The scene graph to be rendered is set into the render area with the setSceneGraph() method. (This

method increments the root’s reference count.) The getSceneGraph() method returns the root node of

this scene graph. 

Other useful methods on SoXtRenderArea include the following:

setTransparencyType()

specifies how transparent objects are rendered (see the section on the render

action in Chapter 9 for details).

setAntialiasing() specifies the antialiasing methods.

setBorder() shows or hides the window border.

setBackgroundColor()

specifies the window background color.

The render area attaches a node sensor to the root of the scene graph and automatically redraws the

scene whenever the scene graph changes. Use the following method to change the priority of the

redraw sensor:

setRedrawPriority()

 specifies the priority of the redraw sensor (default priority is 10000)

Use the following two methods if you wish to disable automatic redrawing:

setAutoRedraw() enables or disables the redraw sensor on the render area.

render() redraws the scene immediately. If AutoRedraw is TRUE, you don’t need to make

this call.

See the Open Inventor C++ Reference Manual on SoXtRenderArea for more information on these

methods.

Xt Devices

If you use the default values when you create an SoXtRenderArea, mouse and keyboard events are

handled automatically. The constructor for SoXtRenderArea is

SoXtRenderArea(Widget parent = NULL,

 const char * name = NULL,

 SbBool buildInsideParent = TRUE,

 SbBool getMouseInput = TRUE, 

 SbBool getKeyboardInput = TRUE);

To disable input from either the mouse or the keyboard, specify FALSE for the getMouseInput or 

getKeyboardInput variable. For example, to disable mouse input:

SoXtRenderArea *renderArea = new SoXtRenderArea(parent,

         "myRenderArea", TRUE, FALSE, TRUE);
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Inventor defines three Xt devices:

 • SoXtKeyboard

 • SoXtMouse

 • SoXtSpaceball

Use the registerDevice() method to register additional devices, such as the spaceball, with the render

area. When this method is called, the render area registers interest in events generated by that device.

When it receives those events, it translates them into SoEvents and passes them to the scene manager

for handling. For information on creating your own device, see The Inventor Toolmaker.

Using the Overlay Planes (Advanced)

The overlay planes are a separate set of bitplanes that can be used for special purposes in Inventor.

(Check your release notes for the number of overlay planes, which is implementationÿdependent.)

The overlay planes are typically used for objects in the scene that appear on top of the main image and

are redrawn independently. Although you are limited with respect to color and complexity of the

scene graph placed in the overlay planes, using them enables you to quickly redraw a simple scene

graph without having to redraw the "complete" scene graph. The overlay planes provide a useful

mechanism for providing user feedbackfor example, for rapidly drawing geometry that follows the

cursor. 

Use the following methods to place a scene graph in the overlay planes:

setOverlaySceneGraph()

 sets the scene graph to render in the overlay planes

setOverlayColorMap()

sets the colors to use for the overlay bit planes; the overlay planes usually use

colorÿindex mode

setOverlayBackgroundIndex()

sets the index of the background color for the overlay image (the default is 0, the

clear color)

The overlay scene graph has its own redraw sensor and is similar to the "regular" scene graph, with

these restrictions:

 • If you have a small number of overlay planes (for example, two), specify BASE_COLOR for the 

model field of SoLightModel. (If your implementation has more than two overlay planes, you

may be able to obtain crude lighting effects by using the SoMaterialIndex node; otherwise, use

the SoColorIndex node to specify color indices.)

 • Keep the scene graph simple. Use line drawÿstyle, rectangles, and 2D text that draws quickly. Do

not use textures. Because the overlay planes are singleÿbuffered, the redraw will flash if the scene

is too complex.

 • Be sure to load the color map. There is no default color map for the overlay planes.

The color map for the overlay planes contains a limited number of colors. Color 0 is clear and cannot

be changed. With two bitplanes, you can use indices 1 through 3 for colors. The syntax for 

setOverlayColorMap() is as follows:
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setOverlayColorMap(int startIndex, int num, const SbColor *colors);

To render a shape with a particular color, use an SoColorIndex node to set the current color index.

Do not use an SoMaterial node or SoBaseColor node to set colors when you are in colorÿindex mode

(they are ignored).

Example 16ÿ1 illustrates use of the overlay planes with a viewer component. By default, color 0 is

used for the overlay plane’s background color (the clear color), so this example uses color 1 for the

object. 

Example 16ÿ1 Using the Overlay Planes

#include <Inventor/SoDB.h>

#include <Inventor/SoInput.h>

#include <Inventor/nodes/SoNode.h>

#include <Inventor/nodes/SoCone.h>

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>

static char *overlayScene = "\

#Inventor V2.0 ascii\n\

\

Separator { \

   OrthographicCamera { \

      position 0 0 5 \

      nearDistance 1.0 \

      farDistance 10.0 \

      height 10 \

   } \

   LightModel { model BASE_COLOR } \

   ColorIndex { index 1 } \

   Coordinate3 { point [ ÿ1 ÿ1 0, ÿ1 1 0, 1 1 0, 1 ÿ1 0] } \

   FaceSet {} \

} ";

main(int , char **argv)

{

   // Initialize Inventor and Xt

   Widget myWindow = SoXt::init(argv[0]);

   // Read the scene graph in

   SoInput in;

   SoNode *scene;

   in.setBuffer((void *)overlayScene, (size_t)

         strlen(overlayScene));

   if (! SoDB::read(&in, scene) || scene == NULL) {

      printf("Couldn’t read scene\n");

      exit(1);

   }
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   }

   // Allocate the viewer, set the overlay scene and

   // load the overlay color map with the wanted color.

   SbColor color(.5, 1, .5);

   SoXtExaminerViewer *myViewer = new

         SoXtExaminerViewer(myWindow);

   myViewerÿ>setSceneGraph(new SoCone);

   myViewerÿ>setOverlaySceneGraph(scene);

   myViewerÿ>setOverlayColorMap(1, 1, &color);

   myViewerÿ>setTitle("Overlay Plane");

   // Show the viewer and loop forever

   myViewerÿ>show();

   XtRealizeWidget(myWindow);

   SoXt::mainLoop();

}

Xt Components

Components are widgets that provide some 3Dÿrelated editing function. All components in the

Inventor Component Library return an Xt widget handle for standard Motifÿstyle layout and control.

The render area is an example of a simple component. Viewer components are derived from 

SoXtRenderArea.

Each component contains a user interface with such things as buttons, menus, and sliders that allow

the user to change the scene graph interactively. One example of a component is the material editor,

used in Examples 16ÿ2, 16ÿ3, and 16ÿ4. With this editor, the user can customize objects shown in the

Inventor window by interactively changing values for ambient, diffuse, specular, transparent,

emissive, and shininess elements and immediately see the effects of those changes. Another example

is the examiner viewer, which enables the user to move the camera through the scene, providing

realÿtime changes in how the scene is viewed. Figure 16ÿ1 shows the component class tree.

An SoXtComponent is an Inventor C++ wrapper around a Motifÿcompliant widget. This means that

you can layer components in a window with other Motif widgets using standard layout schemes such

as bulletin boards, form widgets, and row/column widgets. The material editor itself is an 

SoXtComponent made up of other components and Motifÿstyle widgets. (Its color sliders are derived

from SoXtComponent, and the radio buttons, toggle buttons, and menu are Motifÿstyle widgets.) You

can pass in a widget name to each component, which can then be used in resource files as the Motif

name of the widget.

Components fall into two general classes, viewers and editors, depending on which part of the scene

graph they affect. Viewers affect the camera node in the scene, and editors affect other nodes and

fields in the scene, such as SoMaterial nodes and SoDirectionalLight nodes.
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Figure 16ÿ1 Component Classes

General Model

Follow these general steps to use any component in your program. (Additional considerations for

specific components are outlined in the following sections.)

1. Create the component using its constructor. Pass in the parent widget, the widget name, and

whether it should build itself inside the parent widget. 

2. Show or hide the component. 

3. Pass data from the component to the application. 

Construct the Component

Create the component using its constructor. The constructor has the form:

SoXtComponent(Widget parent = NULL,

 const char * name = NULL,

 SbBool buildInsideParent = TRUE,

 SbBool getMouseInput = TRUE, 

 SbBool getKeyboardInput = TRUE);

For example:

SoXtMaterialEditor *editor = new

         SoXtMaterialEditor(parentWidget);

This step initializes local variables and structures and builds the component. You supply the parent

widget you want the component to appear in. If you do not supply a parent widget, or if you pass

FALSE for the buildInsideParent parameter, the component is created inside its own shell. An

important side effect is that if the component is put in its own window, it can resize itself when

necessary. If the component is built into the widget tree, it cannot resize itself. If you do not supply a

name, the name is the class name"SoXtMaterialEditor," in this case.

If you specify FALSE for the buildInsideParent parameter, the component is built inside its own shell,

but it uses the passed parent as part of the widget hierarchy for X resource lookup.
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Show and Hide the Component

The show() and hide() methods are routines that allow you to manage the component widget. In

summary, the show() method is used to make the component visible. The hide() method is used to

make the component invisible. However, in Motifÿcompliant applications, the topmost parent of the

widget tree must be realized before its children are displayed. Additionally, only the children that are 

managed are displayed. 

If the Inventor component is a topÿlevel shell widget (that is, no parent widget was passed to the

constructor), the show() method causes the component to call XtRealizeWidget() on itself, and 

XtManageChild() on its children.

If the component is not a topÿlevel shell widget, the show() method causes

the component to call XtManageChild() on itself and all its children. These widgets won’t be visible,

though, until XtRealizeWidget() is called on the topÿlevel widget.

The show() and hide() methods on SoXtComponent do some additional work that the component

relies on. When you use a component, be sure to call its show() method, not XtManage() or 

XtRealize(), and hide(), not XtUnmanage() and XtUnrealize(). For instance:

SoXtRenderArea *ra = new SoXtRenderArea();

raÿ>show();

Each component also has a series of specialized methods for changing its behavior while the program

is running. (See SoXtComponent in the Open Inventor C++ Reference Manual.) These methods

include the following:

setTitle() places a title in the title bar of a component that is a topÿlevel shell widget

setSize() sizes the component (uses XtSetValue())

getSize() returns the size of the component (uses XtGetValue())

isVisible() returns TRUE if the component is currently mapped and realized on the display

Passing Data to the Application

There are two ways for a component to pass data back to the application:

 • Use a callback list to inform the application when certain changes occur in the component (see 

Example 16ÿ2). Callbacks are useful when you want to affect more than one node (you can attach

a component to only one node at a time).

 • Attach the component to a node (or field) in the scene graph (see Example 16ÿ3). For viewers,

this is the only way to pass data back to the application; viewers are attached to an entire scene

graph. 

Using Callbacks

Editor components such as the material editor can also use callback functions to pass data back to the

application. Example 16ÿ2 illustrates the use of a callback procedure with the material editor.

A list of callback functions and associated data, SoCallbackList, is automatically created when a

component is constructed. You can add functions to and remove functions from this list and pass a

pointer to the callback data.
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Some widgets, such as viewers, use lists of callback functions:

 • Start callbackscalled when interaction starts (for example, on a mouse down event)

 • Finish callbackscalled when interaction finishes (for example, on a mouseÿup event)

The following methods add functions to and remove functions from these callback lists:

addStartCallback(functionName, userData)

removeStartCallback(functionName, userData)

addFinishCallback(functionName, userData)

removeFinishCallback(functionName, userData)

The material editor invokes its callbacks or updates the nodes it is attached to according to a

programmable update frequency. Use the setUpdateFrequency() method to specify this frequency.

Choices are as follows:

CONTINUOUS continuously update the field as the value changes (the default)

AFTER_ACCEPT update the field only when the user hits the accept button

Example 16ÿ2 builds a render area in a window supplied by the application and a material editor in its

own window.  It uses callbacks for the component to report new values.

Example 16ÿ2 Using a Callback Function

#include <Inventor/SoDB.h> 

#include <Inventor/Xt/SoXt.h> 

#include <Inventor/Xt/SoXtMaterialEditor.h>

#include <Inventor/Xt/SoXtRenderArea.h> 

#include <Inventor/nodes/SoDirectionalLight.h> 

#include <Inventor/nodes/SoMaterial.h> 

#include <Inventor/nodes/SoPerspectiveCamera.h> 

#include <Inventor/nodes/SoSeparator.h> 

// This is called by the Material Editor when a value changes

void

myMaterialEditorCB(void *userData, const SoMaterial *newMtl)

{

   SoMaterial *myMtl = (SoMaterial *) userData;

   myMtlÿ>copyFieldValues(newMtl);

}

main(int , char **argv)

{

   // Initialize Inventor and Xt

   Widget myWindow = SoXt::init(argv[0]);

   // Build the render area in the applications main window

   SoXtRenderArea *myRenderArea = new SoXtRenderArea(myWindow);

   myRenderAreaÿ>setSize(SbVec2s(200, 200));
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   // Build the Material Editor in its own window

   SoXtMaterialEditor *myEditor = new SoXtMaterialEditor;

   // Create a scene graph

   SoSeparator *root = new SoSeparator;

   SoPerspectiveCamera *myCamera = new SoPerspectiveCamera;

   SoMaterial *myMaterial = new SoMaterial;

   rootÿ>ref();

   myCameraÿ>position.setValue(0.212482, ÿ0.881014, 2.5);

   myCameraÿ>heightAngle = M_PI/4; 

   rootÿ>addChild(myCamera);

   rootÿ>addChild(new SoDirectionalLight);

   rootÿ>addChild(myMaterial);

   // Read the geometry from a file and add to the scene

   SoInput myInput;

   if (!myInput.openFile("dogDish.iv")) 

      exit (1);

   SoSeparator *geomObject = SoDB::readAll(&myInput);

   if (geomObject == NULL) 

      exit (1);

   rootÿ>addChild(geomObject);

   // Add a callback for when the material changes

   myEditorÿ>addMaterialChangedCallback(

         myMaterialEditorCB, myMaterial); 

   // Set the scene graph

   myRenderAreaÿ>setSceneGraph(root);

   // Show the main window and the Material Editor

   myRenderAreaÿ>setTitle("Editor Callback");

   myRenderAreaÿ>show();

   SoXt::show(myWindow);

   myEditorÿ>show();

   // Loop forever

   SoXt::mainLoop();

}

Attaching a Component to a Scene Graph

One way to affect a scene graph directly is to attach an editor component to a node in the scene graph.

Example 16ÿ3 shows using the attach() method to attach the material editor to a material node:

myEditorÿ>attach(myMaterial);

The syntax for attach() here is
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attach(SoMaterial *material, int index = 0);

material the node to edit

index for multipleÿvalue materials, the index within the node of the material to edit 

In the same way, viewers are "attached" to the scene graph whose camera they edit. For example:

SoXtFlyViewer *spaceShip = new SoXtFlyViewer;

spaceShipÿ>setSceneGraph(root);

See "Viewers" for a detailed description of what happens when a viewer is attached to a scene graph.

Example 16ÿ3 builds a render area in a window supplied by the application and a material editor in its

own window.  It attaches the editor to the material of an object. Figure 16ÿ2 shows the image created

by this example.

Example 16ÿ3 Attaching a Material Editor

#include <Inventor/SoDB.h> 

#include <Inventor/Xt/SoXt.h> 

#include <Inventor/Xt/SoXtMaterialEditor.h>

#include <Inventor/Xt/SoXtRenderArea.h> 

#include <Inventor/nodes/SoDirectionalLight.h>

#include <Inventor/nodes/SoMaterial.h>

#include <Inventor/nodes/SoPerspectiveCamera.h>

#include <Inventor/nodes/SoSeparator.h>

main(int , char **argv)

{

   // Initialize Inventor and Xt

   Widget myWindow = SoXt::init(argv[0]);
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Figure 16ÿ2 Material Editor and Render Area Created in Separate Windows

   // Build the render area in the applications main window

   SoXtRenderArea *myRenderArea = new SoXtRenderArea(myWindow);

   myRenderAreaÿ>setSize(SbVec2s(200, 200));

   // Build the material editor in its own window

   SoXtMaterialEditor *myEditor = new SoXtMaterialEditor;

   // Create a scene graph

   SoSeparator *root = new SoSeparator;

   SoPerspectiveCamera *myCamera = new SoPerspectiveCamera;

   SoMaterial *myMaterial = new SoMaterial;

   rootÿ>ref();

   myCameraÿ>position.setValue(0.212482, ÿ0.881014, 2.5);

   myCameraÿ>heightAngle = M_PI/4;

   rootÿ>addChild(myCamera);

   rootÿ>addChild(new SoDirectionalLight);

   rootÿ>addChild(myMaterial);

   // Read the geometry from a file and add to the scene

   SoInput myInput;

   if (!myInput.openFile("dogDish.iv"))
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      exit (1);

   SoSeparator *geomObject = SoDB::readAll(&myInput);

   if (geomObject == NULL)

      exit (1);

   rootÿ>addChild(geomObject);

   // Set the scene graph

   myRenderAreaÿ>setSceneGraph(root);

   // Attach material editor to the material

   myEditorÿ>attach(myMaterial);

   // Show the application window and the material editor

   myRenderAreaÿ>setTitle("Attach Editor");

   myRenderAreaÿ>show();

   SoXt::show(myWindow);

   myEditorÿ>show();

   // Loop forever

   SoXt::mainLoop();

}

Example 16ÿ4 builds a render area and a material editor in a window supplied by the application. It

uses a Motifÿcompliant form widget to lay both components inside the same window. The editor is

attached to the material of an object. Figure 16ÿ3 shows how this example initially looks on the screen.

Example 16ÿ4 Placing Two Components in the Same Window

#include <Xm/Form.h>

#include <Inventor/SoDB.h> 

#include <Inventor/Xt/SoXt.h> 

#include <Inventor/Xt/SoXtMaterialEditor.h>

#include <Inventor/Xt/SoXtRenderArea.h> 

#include <Inventor/nodes/SoDirectionalLight.h>

#include <Inventor/nodes/SoMaterial.h>

#include <Inventor/nodes/SoPerspectiveCamera.h>

#include <Inventor/nodes/SoSeparator.h> 

main(int , char **argv)

{

   // Initialize Inventor and Xt

   Widget myWindow = SoXt::init(argv[0]);

   // Build the form to hold both components

   Widget myForm = XtCreateWidget("Form", 

            xmFormWidgetClass, myWindow, NULL, 0);

   // Build the render area and Material Editor

   SoXtRenderArea *myRenderArea = new SoXtRenderArea(myForm);
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   myRenderAreaÿ>setSize(SbVec2s(200, 200));

   SoXtMaterialEditor *myEditor = 

            new SoXtMaterialEditor(myForm);

   // Lay out the components within the form

   Arg args[8];

   XtSetArg(args[0], XmNtopAttachment, XmATTACH_FORM);

   XtSetArg(args[1], XmNbottomAttachment, XmATTACH_FORM);

   XtSetArg(args[2], XmNleftAttachment, XmATTACH_FORM); 

   XtSetArg(args[3], XmNrightAttachment, XmATTACH_POSITION);

   XtSetArg(args[4], XmNrightPosition, 40);

   XtSetValues(myRenderAreaÿ>getWidget(), args, 5);

   XtSetArg(args[2], XmNrightAttachment, XmATTACH_FORM); 

   XtSetArg(args[3], XmNleftAttachment, XmATTACH_POSITION);

   XtSetArg(args[4], XmNleftPosition, 41); 

   XtSetValues(myEditorÿ>getWidget(), args, 5);

   // Create a scene graph

   SoSeparator *root = new SoSeparator;

   SoPerspectiveCamera *myCamera = new SoPerspectiveCamera;

   SoMaterial *myMaterial = new SoMaterial;

   rootÿ>ref();

   myCameraÿ>position.setValue(0.212482, ÿ0.881014, 2.5);

   myCameraÿ>heightAngle = M_PI/4;

Figure 16ÿ3 Using the Material Editor Component to Edit a Scene

   rootÿ>addChild(myCamera);

   rootÿ>addChild(new SoDirectionalLight);

   rootÿ>addChild(myMaterial);

   // Read the geometry from a file and add to the scene

   SoInput myInput;

   if (!myInput.openFile("dogDish.iv"))

      exit (1);
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   SoSeparator *geomObject = SoDB::readAll(&myInput);

   if (geomObject == NULL)

      exit (1);

   rootÿ>addChild(geomObject);

   // Make the scene graph visible

   myRenderAreaÿ>setSceneGraph(root);

   // Attach the material editor to the material in the scene

   myEditorÿ>attach(myMaterial);

   // Show the main window

   myRenderAreaÿ>show();

   myEditorÿ>show();

   SoXt::show(myForm); // this calls XtManageChild

   SoXt::show(myWindow); // this calls XtRealizeWidget

   // Loop forever

   SoXt::mainLoop();

}

Viewers

Viewers, such as the examiner viewer and the fly viewer, change the camera position and thus affect

how a scene is viewed. The examiner viewer uses a virtual trackball to rotate the scene graph around a

point of interest. With the fly viewer, mouse movements have the effect of tilting the viewer’s head

up, down, to the left, and to the right, as well as moving in the direction the viewer is facing.

All viewers have the following elements built into them:

 • A render area in which the scene is being displayed

 • Thumbwheel and slider trim at the sides, which function differently for each viewer

 • A popÿup menu controlled by the right mouse button

 • Viewer icons in the upper right corner that are shortcuts for some of the popÿup menu operations

 • Optional application icons in the upper left corner

Figure 16ÿ4 shows an example of the examiner viewer.

Constructing a Viewer

When you construct a viewer, you can specify whether the viewer is a browser viewer (BROWSER;

the default) or an editor viewer (EDITOR). If the browser creates a camera node (see the following

section), this camera node is removed from the scene graph when the viewer is detached. If an editor

viewer creates a camera node, the camera node is retained when the viewer is detached.

The constructor for each viewer takes an additional parameter that specifies what to build. By default,

the decoration and popÿup menu are created. For example, the constructor for the examiner viewer is

as follows:
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SoXtExaminerViewer(Widget parent = NULL,

 const char * name = NULL,

 SbBool buildInsideParent = TRUE,

 SoXtFullViewer::BuildFlag buildFlag = BUILD_ALL, 

 SoXtViewer::Type type  = BROWSER);

The buildFlag can be one of the following values:

BUILD_NONE the decoration and popÿup menu are not created

BUILD_DECORATION

only the decoration is created

BUILD_POPUP only the popÿup menu is created

BUILD_ALL the decoration and popÿup menu are created

Tip: If the user doesn’t need the viewer decoration, you can disable the creation of the decoration at

construction time using the buildFlag; this will improve performance.

Specifying the Scene Graph for the Viewer

When you call setSceneGraph() for a viewer, several things happen automatically. First, the viewer

searches the scene graph for a camera. If it finds one, it uses that camera. If it doesn’t find a camera, it

adds one. Second, it adds headlight, drawÿstyle, and lightingÿmodel nodes to the scene graph. (The

following paragraphs describe these steps in detail.) 

Call setSceneGraph(NULL) to disconnect the scene graph from the viewer component. If the viewer

created a camera and the viewer is a browser, it removes the camera. If the viewer is an editor, it

leaves the camera, since the view is saved along with the scene graph. For both types of viewers, the

headlight group is removed when the scene graph is removed.
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Figure 16ÿ4 Examiner Viewer

Cameras

All viewers search from the scene graph root downward for the first camera. If the viewer finds a

camera, it uses it. If it doesn’t find one, it creates a camera (of class SoPerspectiveCamera by

default). If the viewer is an editor, it inserts the camera under the scene graph root, as shown in Figure

16ÿ5. When you save the scene graph, this new camera is saved with it. If the viewer is a browser, it

inserts the camera above the scene graph, as shown in Figure 16ÿ6. This camera is not saved with the

scene graph and is removed when the viewer is detached.
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Figure 16ÿ5 Inserting a Camera for an Editor Viewer
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Figure 16ÿ6 Inserting a Camera for a Browser Viewer

Lights

Viewer components by default also add a directional light source to the scene. The viewer

continuously changes the position of this light so that it tracks the camera and functions as a headlight

shining on the camera’s field of view. This headlight group is added just after the camera in the scene

graph. To write the scene graph to a file without the headlight, you can either detach the viewer or turn

off the headlight (see the setHeadlight() method for SoXtViewer in the Open Inventor C++

Reference Manual).

Viewer DrawÿStyle

All viewers include a popÿup menu that allows you to change the drawÿstyle of the entire scene.

Sometimes, when the viewer changes the drawÿstyle, it also changes the lighting model (for example,

wireframe drawÿstyle uses baseÿcolor lighting). When a viewer is attached, it inserts drawÿstyle and

lightingÿmodel nodes above the scene graph, as shown in Figure 16ÿ7. The following list describes the

choices for drawÿstyle and the accompanying changes in lighting model:

VIEW_AS_IS ignores viewer’s drawÿstyle and lightingÿmodel nodes (the default).

VIEW_HIDDEN_LINE
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forces all shapes to be wireframe and changes lighting to BASE_COLOR. This

style displays only the edges of frontÿfacing polygons (back lines are hidden).

VIEW_NO_TEXTURE

forces all shapes to be rendered without textures.

VIEW_LOW_COMPLEXITY

forces all shapes to be rendered with a low complexity and no textures.

VIEW_LINE forces all shapes to be wireframe and changes the lighting model to

BASE_COLOR.

VIEW_POINT forces all shapes to be points and changes the lighting model to BASE_COLOR

and the point size to 3.0.

VIEW_BBOX forces all shapes to be rendered as bounding boxes.

Figure 16ÿ7 Inserting Drawing Style and Lighting Model Nodes

Viewer DrawÿType

The drawÿstyles above can affect the scene while the camera is still, or while the user is interactively

moving the camera. When the drawÿstyle is set, you can choose between two settings, STILL and

INTERACTIVE, to show which state should be affected. Use the setDrawStyle() method for 

SoXtViewer to specify the draw style and draw type:

setDrawStyle(SoXtViewer::DrawType type,

 SoXtViewer::DrawStyle style)

For example:

setDrawStyle(SoXtViewer::INTERACTIVE,

 SoXtViewer::VIEW_LINE);

The viewer popÿup menu, shown in Figure 16ÿ8, lists the drawÿstyle choices for STILL, the choices

for INTERACTIVE, and the choices for buffering type.
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Figure 16ÿ8 Viewer Popÿup Menu

Methods for SoXtViewer

Use the setBufferingType() method for SoXtViewer to specify whether the viewer should use single

buffering, double buffering, or a combination. The default buffering type is double buffering.  Double

buffering provides smoother redraws, but offers fewer colors. Buffering types are as follows:

SoXtViewer::BUFFER_SINGLE

uses only one buffer; the image flickers between redraws

SoXtViewer::BUFFER_DOUBLE

redraws in the back buffer and then swaps buffers
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SoXtViewer::BUFFER_INTERACTIVE

uses double buffering only when the user is doing interactive work; otherwise,

uses single buffering

Other useful methods for SoXtViewer include the following:

setHeadlight() turns the headlight on and off. The headlight is ON by default.

setViewing() allows you to turn the viewer on and off. When the viewer is turned off, events

over the render area are sent to the scene graph.

viewAll() automatically views the entire scene graph. 

setAutoClipping() turns autoclipping on and off. When ON, the near and far camera clipping planes

are continuously adjusted around the scene’s bounding box to minimize clipping.

Autoclipping is ON by default.

saveHomePosition()

saves the current camera values so that the camera can quickly be reset to this

position later.

resetToHomePosition()

sets the camera position to the previously saved home position.

setStereoViewing()

renders the scene twice, offsetting the camera in between. Stereo glasses must be

used when this scene is viewed. (This feature is hardwareÿdependent. See your

release notice for information on whether this feature is supported.)

setSteroOffset() sets the spacing between the eyes for stereo viewing.

See SoXtViewer in the Open Inventor C++ Reference Manual for further details.

Methods for SoXtFullViewer

The SoXtFullViewer class, derived from SoXtViewer, is the abstract base class for all viewers that

include decoration around the render area. This decoration is made up of thumbwheels, sliders, and

push buttons. The setDecoration() method allows you to show or hide the component trims. The 

setPopupMenuEnabled()  method allows you to enable or disable the viewer popÿup menu. 

You can add optional application icons to the upper left corner of the component. Use the following

methods to add these icons:

addAppPushButton()

adds a push button for the application to the end of the button list

insertAppPushButton()

 places a push button at the specified index in the button list

removeAppPushButton()

 removes a push button from the button list

See SoXtFullViewer in the Open Inventor C++ Reference Manual for further details.

Example 16ÿ5 creates a simple scene graph with a material and a dish. It then creates a browser

examiner viewer and attaches it to the scene graph. The camera and light in the scene are

automatically created by the viewer.
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Example 16ÿ5 Using a Browser Examiner Viewer

#include <Inventor/SoDB.h> 

#include <Inventor/Xt/SoXt.h> 

#include <Inventor/Xt/viewers/SoXtExaminerViewer.h> 

#include <Inventor/nodes/SoSeparator.h>

main(int , char **argv)

{

   // Initialize Inventor and Xt

   Widget myWindow = SoXt::init(argv[0]);

   // Build the viewer in the application’s main window

   SoXtExaminerViewer *myViewer = 

      new SoXtExaminerViewer(myWindow);

   // Read the geometry from a file and add to the scene

   SoInput myInput;

   if (!myInput.openFile("dogDish.iv"))

      exit (1);

   SoSeparator *geomObject = SoDB::readAll(&myInput);

   if (geomObject == NULL)

      exit (1);

   // Attach the viewer to the scene graph

   myViewerÿ>setSceneGraph(geomObject);

   // Show the main window

   myViewerÿ>show();

   SoXt::show(myWindow);

   // Loop forever

   SoXt::mainLoop();

}

Using the 3D Clipboard

This section describes the convenience routines provided by Inventor for exchanging Inventor data

between applications. Inventor’s copy and paste methods conform to the X Consortium’s InterÿClient

Communication Conventions Manual (ICCCM), July 1989, which presents guidelines on how

processes communicate with each other when exchanging data. 

Inventor currently supports two data types, Inventor and string. If you need to copy and paste

additional data types, or if you need more control over copy and paste functions than is provided by

Inventor’s convenience routines, you can use the Motif or Xt dataÿexchange routines directly. For

more information, see the X Toolkit Intrinsics Programming Manual by Adrian Nye and Tim

O’Reilly (Sebastopol, Ca.: O’Reilly & Associates, 1990).
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The SoXtClipboard class handles the details of exchanging data according to the ICCCM guidelines.

This class includes a constructor, as well as copy() and paste() methods.

Creating an Instance of SoXtClipboard

The constructor for SoXtClipboard has the following syntax:

SoXtClipboard(Widget w, Atom selectionAtom = _XA_CLIPBOARD_);

The clipboard is associated with a particular widget, such as a render area widget or a topÿlevel

widget. For example, you could pass in

renderAreaÿ>getWidget() 

as the first parameter of this constructor.

The X Toolkit supports several types of selections (primary, secondary, and clipboard; these are also

referred to as selection atoms). By default, Inventor supports the clipboard selection

(_XA_CLIPBOARD_). If you need to perform data transfers from the primary or secondary

selections, you can specify the selection type in the constructor for SoXtClipboard. In most cases,

however, you use the default selection type.

Copying Data onto the Clipboard

Use one of Inventor’s three copy() methods to copy data onto the SoXtClipboard. You can specify a

node, a path, or a path list to copy:

copy(SoNode *node, Time eventTime);

copy(SoPath *path, Time eventTime);

copy(SoPathList &pathList, Time eventTime);

The copy() and paste() methods require an event time, which is the time stamp from the user event

that triggered the copy or paste request. This event could be a keyboard press event or a menu pick

event, for example, and is used by the X server to synchronize copy and paste requests. Behind the

scenes, the data is copied into a bytestream and made available to any X client that requests it. 

Pasting Data from the Clipboard

The paste() method also requires a callback function that is invoked with

the paste data. The paste data is always a path list, regardless of what was copied originally:

paste(Time eventTime, SoXtClipboardPasteCB pasteDoneFunc,

 void userData = NULL);

The paste() method requests data from the X server and calls the pasteDoneFunc when the data is

ready. A paste is asynchronous. It simply makes a request to the X server for data to paste and then

returns. When the data is delivered, the pasteDoneFunc is called and passed the user data along with a

list of paths that were pasted. If no data is delivered, the pasteDoneFunc is never called. It is up to the

application to delete the path list for the paste data when the application is finished with it.

Tip: SoXtClipboard can easily be used along with SoSelection. You can obtain a path list from the

selection node and then tell the clipboard to copy that path list.



Chapter 17

Using Inventor with OpenGL

Chapter Objectives

After reading this chapter, you’ll be able to do the following:

 • Create Inventor callback nodes that include calls to the OpenGL Library

 • Explain how Inventor uses and affects OpenGL state variables

 • Write a program that combines use of Inventor and OpenGL and uses the SoGLRenderAction

 • Use color index mode

(Advanced)

This chapter describes how to combine calls to the Inventor and OpenGL libraries in the same

window. It includes several examples of programs that combine use of Inventor and OpenGL in

different ways. Table 17ÿ1 through Table 17ÿ9 show how Inventor affects and is affected by OpenGL

state. This entire chapter can be considered advanced material.

Introduction

This chapter is for the experienced OpenGL programmer and is not intended as an introduction to

OpenGL. Before you read this chapter, be sure to read at least Chapters 1 through 5 and Chapter 9 of

this programming guide. You’ll need a basic understanding of the Inventor database (Chapter 1

through Chapter 4), Inventor actions (Chapter 9), and Inventor event handling (Chapter 10) before you

begin combining features of OpenGL with Inventor.

The preferred way to combine use of OpenGL and Inventor is by subclassing. When you subclass,

you create a new node that makes calls to OpenGL. This process, which is beyond the scope of this

chapter and is described in detail in The Inventor Toolmaker, allows you to build on an existing node.

Another advantage of subclassing is that your new class has access to Inventor reading and writing

(callback nodes, described in this chapter, do not read and write detailed information to a file).

It is important to note that Inventor inherits state from OpenGL for rendering only. Additional

Inventor features, such as picking, computing bounding boxes, and writing to a file, do not use

OpenGL and are unaware of changes made directly to the OpenGL state variables. For example, it is

possible to send a viewing matrix directly to OpenGL and then use Inventor to draw a scene without a

camera. However, if you then try to pick an object, Inventor will not know what viewing

transformation to use for picking, since it doesn’t use OpenGL for picking.

You can combine Inventor with OpenGL in several ways. An easy way to add custom OpenGL

rendering to a scene database is to add a callback node (SoCallback; see Example 17ÿ2). This node

allows you to set a callback function that is invoked for each of the various actions that nodes perform

(rendering, picking, boundingÿbox calculation). The SoCallback node differs from the event callback

node in that it provides callbacks for all scene operations rather than just for event handling.

A second way to combine Inventor with OpenGL is to create a GLX window, make OpenGL and

Inventor calls, and then apply an SoGLRenderAction, as shown in Example 17ÿ3. For instance, you

could create a GLX window, clear the background, do some initial rendering into the window, set up

the viewing matrix, and then use Inventor to draw a scene by applying a GL render action to the scene
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graph. Or, you could use Inventor to set up the camera, lights, and materials, and then use OpenGL

code to draw the scene. As long as you follow the general rules described in the following section on

OpenGL state usage, you can mix OpenGL and Inventor rendering as you wish. (Note that this is an

advanced feature, not for the faint of heart.)

OpenGL State Variables and Inventor

If you need to combine Inventor and OpenGL calls, Table 17ÿ1 through Table 17ÿ9 list the OpenGL

state variables and describe which Inventor nodes (or actions) change those variables. If Inventor uses

the current value of an OpenGL state variable and never changes it, the variable is omitted from this

set of tables. See the OpenGL Programming Guide for a complete list of all OpenGL state variables

and their default values. The recommended value for these variables is the default value, with two

exceptions: turn on zÿbuffering and use RGB color mode.

Remember, the constructor for SoGLRenderAction takes a parameter that specifies whether to

inherit the current OpenGL values. If you specify TRUE, Inventor inherits values from OpenGL. If

you specify FALSE (the default), Inventor sets up its own reasonable default values (see Chapter 9).

To save and restore OpenGL state, use the OpenGL pushAttributes() and popAttributes()

commands. For example, if you change variables in the OpenGL state in a callback node, you need to

restore the state when the callback node is finished. Note that if your callback node begins with a 

pushAttributes() and ends with a popAttributes(), but a render abort occurs in between, 

popAttributes() is never called and the state is not restored.

OpenGL State Variable Inventor Nodes That Change This

Variable

GL_CURRENT_COLOR Shapes, Material, Base Color

GL_CURRENT_INDEX Color Index node, Shapes

GL_CURRENT_TEXTURE_COORDS Shapes, TextureCoordinate2

GL_CURRENT_NORMAL Shapes, Normal

GL_CURRENT_RASTER_POSITION Text2

GL_CURRENT_RASTER_COLOR Text2

GL_CURRENT_RASTER_INDEX Text2

GL_CURRENT_RASTER_POSITION_ÿ
VALID

Text2

Table 17ÿ1 OpenGL State Variables:  Current Values and Associated Data

OpenGL State Variable Inventor Nodes That Change This

Variable

GL_MODELVIEW_MATRIX Transformation nodes, Cameras

GL_PROJECTION_MATRIX Cameras

GL_TEXTURE_MATRIX Texture2Transform

GL_VIEWPORT Cameras

GL_DEPTH_RANGE Cameras

GL_MODELVIEW_STACK_DEPTH Transformation nodes

GL_TEXTURE_STACK_DEPTH Texture2Transform

GL_MATRIX_MODE Cameras, Texture2Transform

Table 17ÿ2 OpenGL State Variables:  Transformation State

OpenGL State Variable  Inventor Nodes That Change This Variable
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GL_FOG_COLOR Environment node

GL_FOG_INDEX Environment node

GL_FOG_DENSITY Environment node

GL_FOG_START Environment node

GL_FOG_END Environment node

GL_FOG_MODE Environment node

GL_FOG Environment node

GL_SHADE_MODEL Light Model, if in color index mode

Table 17ÿ3 OpenGL State Variables:  Coloring

OpenGL State Variable  Inventor Nodes That Change This Variable

GL_LIGHTING Light Model

GL_COLOR_MATERIAL Shapes

GL_MATERIAL_PARAMETER Shapes

GL_MATERIAL_FACE Shapes

GL_AMBIENT Shapes, Material

GL_DIFFUSE Shapes, Material

GL_SPECULAR Shapes, Material

GL_EMISSION Shapes, Material

GL_SHININESS Shapes, Material

GL_LIGHT_MODEL_AMBIENT Shapes, Material

GL_LIGHT_MODEL_LOCAL_VIEWER Shapes, Material

GL_LIGHT_MODEL_TWO_SIDE Shape Hints

GL_AMBIENT Lights

GL_DIFFUSE Lights

GL_SPECULAR Lights

GL_POSITION Lights

GL_CONSTANT_ATTENUATION Environment

GL_LINEAR_ATTENUATION Environment

GL_QUADRATIC_ATTENUATION Environment

GL_SPOT_DIRECTION Lights

GL_SPOT_EXPONENT Lights

GL_SPOT_CUTOFF Lights

GL_LIGHTi Lights

GL_COLOR_INDEXES Lights

Table 17ÿ4 OpenGL State Variables:  Lighting

OpenGL State Variable Inventor Nodes That Change This

Variable

GL_POINT_SIZE Draw Style

GL_POINT_SMOOTH Render action

GL_LINE_WIDTH Draw Style

GL_LINE_SMOOTH Render Action

GL_LINE_STIPPLE_PATTERN Draw Style 

GL_LINE_STIPPLE Draw Style 

GL_CULL_FACE Shape Hints 

GL_CULL_FACE_MODE Shape Hints 
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GL_POLYGON_MODE Draw Style 

GL_POLYGON_STIPPLE Shapes if SCREEN_DOOR transparency

Table 17ÿ5   OpenGL State Variables:  Rasterization

OpenGL State Variable  Inventor Nodes That Change This

Variable

GL_TEXTURE_x Texture2 node

GL_TEXTURE Texture2 node

GL_TEXTURE_WIDTH Texture2 node

GL_TEXTURE_HEIGHT Texture2 node

GL_TEXTURE_COMPONENTS Texture2 node

GL_TEXTURE_MIN_FILTER Complexity node

GL_TEXTURE_MAG_FILTER Complexity node

GL_TEXTURE_WRAP_x Texture2 node

GL_TEXTURE_ENV_MODE Texture2 node

GL_TEXTURE_ENV_COLOR Texture2 node

GL_TEXTURE_GEN_x Texture Coordinate Function nodes

GL_EYE_LINEAR Texture Coordinate Function nodes

GL_OBJECT_LINEAR Texture Coordinate Function nodes

GL_TEXTURE_GEN_MODE Texture Coordinate Function nodes

Table 17ÿ6 OpenGL State Variables:  Texturing

GL_BLEND Render action, Texture2 node

GL_BLEND_SRC Render action, Texture2 node

GL_BLEND_DST Render action, Texture2 node

Table 17ÿ7 OpenGL State Variables:  Pixel Operations

OpenGL State Variable Inventor Nodes That Change This

Variable

GL_UNPACK_ALIGNMENT Texture2 node

GL_*_SCALE
(* = RED; GREEN; BLUE; ALPHA)

Texture2 node

GL_*_BIAS
(* = RED; GREEN; BLUE; ALPHA)

Texture2 node

Table 17ÿ8 OpenGL State Variables:  Pixels

OpenGL State Variable Inventor Nodes That Change This

Variable

GL_LIST_BASE Text2, Text3 nodes

GL_LIST_INDEX Separator, Text2, Text3 nodes

GL_LIST_MODE Separator, Text2, Text3 nodes

Table 17ÿ9 OpenGL State Variables:  Miscellaneous

ColorÿIndex Mode

You can open an X window that supports OpenGL rendering in either RGB mode or colorÿindex (also

referred to as colorÿmap) mode. If you use colorÿ

index mode, be sure to load the color map.  Example 17ÿ1 shows how to set the color map for the 
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SoXtRenderArea. See also the Open Inventor C++ Reference Manual on 

SoXtRenderArea::setColorMap(). 

If you are using BASE_COLOR lighting, use the SoColorIndex node to specify the index into the

color map.

If you are using PHONG lighting, use the SoMaterialIndex node to specify indices into the color

map for the ambient, diffuse, and specular colors. This node also includes fields for specifying the

shininess and transparency values (but not the emissive value). It expects the color map to contain a

ramp from ambient to diffuse to specular colors. 

Tip: You can design a scene graph that can be used in RGB or color index windows by putting both 

SoMaterialIndex and SoMaterial nodes in it.

Example 17ÿ1 Using Color Index Mode

#include <Inventor/SoDB.h>

#include <Inventor/SoInput.h>

#include <Inventor/nodes/SoNode.h>

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>

#include <GL/glx.h>

// Window attribute list to create a color index visual.

// This will create a double buffered color index window

// with the maximum number of bits and a zbuffer.

int attribList[] = {

   GLX_DOUBLEBUFFER, 

   GLX_BUFFER_SIZE, 1, 

   GLX_DEPTH_SIZE, 1, 

   None };

// List of colors to load in the color map

static float colors[3][3] = {{.2, .2, .2}, {.5, 1, .5}, 

         {.5, .5, 1}};

static char *sceneBuffer = "\

#Inventor V2.0 ascii\n\

\

Separator { \

   LightModel { model BASE_COLOR } \

   ColorIndex { index 1 } \

   Coordinate3 { point [ ÿ1 ÿ1 ÿ1, ÿ1 1 ÿ1, 1 1 1, 1 ÿ1 1] } \

   FaceSet {} \

   ColorIndex { index 2 } \

   Coordinate3 { point [ ÿ1 ÿ1 1, ÿ1 1 1, 1 1 ÿ1, 1 ÿ1 ÿ1] } \

   FaceSet {} \

} ";
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void

main(int , char **argv)

{

   // Initialize Inventor and Xt

   Widget myWindow = SoXt::init(argv[0]);

   // Read the scene graph in

   SoInput in;

   SoNode *scene;

   in.setBuffer((void *)sceneBuffer, (size_t)

            strlen(sceneBuffer));

   if (! SoDB::read(&in, scene) || scene == NULL) {

      printf("Couldn’t read scene\n");

      exit(1);

   }

   // Create the color index visual

   XVisualInfo *vis = glXChooseVisual(XtDisplay(myWindow), 

      XScreenNumberOfScreen(XtScreen(myWindow)), attribList);

   if (! vis) {

      printf("Couldn’t create visual\n");

      exit(1);

   }

   // Allocate the viewer, set the scene, the visual and

   // load the color map with the wanted colors.

   //

   // Color 0 will be used for the background (default) while

   // color 1 and 2 are used by the objects.

   //

   SoXtExaminerViewer *myViewer = new

            SoXtExaminerViewer(myWindow);

   myViewerÿ>setNormalVisual(vis);

   myViewerÿ>setColorMap(0, 3, (SbColor *) colors);

   myViewerÿ>setSceneGraph(scene);

   myViewerÿ>setTitle("Color Index Mode");

   // Show the viewer and loop forever...

   myViewerÿ>show();

   XtRealizeWidget(myWindow);

   SoXt::mainLoop();

}

Using an SoCallback Node

A typical use of an SoCallback node is to make calls to OpenGL.  At the beginning of the callback

function, you need to check the action type and then proceed based on the type of action that has been
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applied to the node. Typically, you are interested in the render action:

if(actionÿ>isOfType(SoGLRenderAction::getClassTypeId())){

   ...execute rendering code ..

}

Caching

The effects of a callback node may not be cacheable, depending on what it does. For example, if the

callback node contains shapes whose geometry is changing, it should not be cached.  In Example 17ÿ2

, the callback node creates a checked background, which can be cached because it is not changing. 

If a callback node relies on any information outside of Inventor that may change (such as a global

variable), it should not be cached. To prevent Inventor from automatically creating a cache, use the 

SoCacheElement::ÿ

invalidate() method from within a callback. For example:

void

myCallback(void *myData, SoAction *action)

{

   if (actionÿ>isOfType(SoGLRenderAction::getClassTypeId())){

      SoCacheElement::invalidate(actionÿ>getState());

         //makes sure this isn’t cached

      //...make OpenGL calls that depend on a global variable...//

   }

}

Be careful when opening an OpenGL display list inside an SoCallback node. Recall from Chapter 9

that the Inventor render cache contains an OpenGL display list. Only one OpenGL display list can be

open at a time, and a separator node above the callback node may have already opened a display list

for caching. If your callback node opens a second display list, an error  occurs. Use the 

SoCacheElement::anyOpen() method to check whether a cache is open.

Using a Callback Node

Example 17ÿ2 creates an Inventor render area. It uses Inventor to create a red cube and a blue sphere

and then uses an SoCallback node containing GL calls to draw a checked "floor." The floor is cached

automatically by Inventor. Note that the SoXtRenderArea automatically redraws the scene when the

window is resized. Example 17ÿ3, which uses a GLX window, does not redraw automatically.

Both Examples 17ÿ2 and 17ÿ3 produce the same image, shown in Figure 17ÿ1.
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Figure 17ÿ1 Combining Use of Inventor and OpenGL

Example 17ÿ2 Using a Callback Node

#include <GL/gl.h>

#include <Inventor/SbLinear.h>

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/SoXtRenderArea.h>

#include <Inventor/nodes/SoCallback.h>

#include <Inventor/nodes/SoCube.h>

#include <Inventor/nodes/SoDirectionalLight.h>

#include <Inventor/nodes/SoLightModel.h>

#include <Inventor/nodes/SoMaterial.h>

#include <Inventor/nodes/SoPerspectiveCamera.h>

#include <Inventor/nodes/SoSphere.h>

#include <Inventor/nodes/SoSeparator.h>

#include <Inventor/nodes/SoTransform.h>

float   floorObj[81][3];

// Build a scene with two objects and some light

void

buildScene(SoGroup *root)

{
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   // Some light

   rootÿ>addChild(new SoLightModel);

   rootÿ>addChild(new SoDirectionalLight);

   // A red cube translated to the left and down

   SoTransform *myTrans = new SoTransform;    

   myTransÿ>translation.setValue(ÿ2.0, ÿ2.0, 0.0);

   rootÿ>addChild(myTrans);

   SoMaterial *myMtl = new SoMaterial;

   myMtlÿ>diffuseColor.setValue(1.0, 0.0, 0.0);

   rootÿ>addChild(myMtl);

   rootÿ>addChild(new SoCube);

   // A blue sphere translated right

   myTrans = new SoTransform;    

   myTransÿ>translation.setValue(4.0, 0.0, 0.0);

   rootÿ>addChild(myTrans);

   myMtl = new SoMaterial;

   myMtlÿ>diffuseColor.setValue(0.0, 0.0, 1.0);

   rootÿ>addChild(myMtl);

   rootÿ>addChild(new SoSphere);

}

// Build the floor that will be rendered using OpenGL.

void

buildFloor()

{

   int a = 0;

   for (float i = ÿ5.0; i <= 5.0; i += 1.25) {

      for (float j = ÿ5.0; j <= 5.0; j += 1.25, a++) {

         floorObj[a][0] = j;

         floorObj[a][1] = 0.0;

         floorObj[a][2] = i;

      }

   }

}

// Draw the lines that make up the floor, using OpenGL

void

drawFloor()

{

   int i;
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   glBegin(GL_LINES);

   for (i=0; i<4; i++) {

      glVertex3fv(floorObj[i*18]);

      glVertex3fv(floorObj[(i*18)+8]);

      glVertex3fv(floorObj[(i*18)+17]);

      glVertex3fv(floorObj[(i*18)+9]);

   }

   glVertex3fv(floorObj[i*18]);

   glVertex3fv(floorObj[(i*18)+8]);

   glEnd();

   glBegin(GL_LINES);

   for (i=0; i<4; i++) {

      glVertex3fv(floorObj[i*2]);

      glVertex3fv(floorObj[(i*2)+72]);

      glVertex3fv(floorObj[(i*2)+73]);

      glVertex3fv(floorObj[(i*2)+1]);

   }

   glVertex3fv(floorObj[i*2]);

   glVertex3fv(floorObj[(i*2)+72]);

   glEnd();

}

// Callback routine to render the floor using OpenGL

void

myCallbackRoutine(void *, SoAction *)

{

   glPushMatrix();

   glTranslatef(0.0, ÿ3.0, 0.0);

   glColor3f(0.0, 0.7, 0.0);

   glLineWidth(2);

   glDisable(GL_LIGHTING);  // so we don’t have to set normals

   drawFloor();

   glEnable(GL_LIGHTING);   

   glLineWidth(1);

   glPopMatrix();

}

main(int, char **)

{

   // Initialize Inventor utilities

   Widget myWindow = SoXt::init("Example 17.1");

   buildFloor();
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   // Build a simple scene graph, including a camera and

   // a SoCallback node for performing some GL rendering.

   SoSeparator *root = new SoSeparator;

   rootÿ>ref();

   SoPerspectiveCamera *myCamera = new SoPerspectiveCamera;

   myCameraÿ>position.setValue(0.0, 0.0, 5.0);

   myCameraÿ>heightAngle  = M_PI/2.0;  // 90 degrees

   myCameraÿ>nearDistance = 2.0;

   myCameraÿ>farDistance  = 12.0;

   rootÿ>addChild(myCamera);

   SoCallback *myCallback = new SoCallback;

   myCallbackÿ>setCallback(myCallbackRoutine);

   rootÿ>addChild(myCallback);

   buildScene(root);

   // Initialize an Inventor Xt RenderArea and draw the scene.

   SoXtRenderArea *myRenderArea = new SoXtRenderArea(myWindow);

   myRenderAreaÿ>setSceneGraph(root);

   myRenderAreaÿ>setTitle("OpenGL Callback");

   myRenderAreaÿ>setBackgroundColor(SbColor(.8, .8, .8));

   myRenderAreaÿ>show();

   SoXt::show(myWindow);

   SoXt::mainLoop();

}

Applying a Render Action Inside a GLX Window

Example 17ÿ3  creates a GLX window, makes Inventor and OpenGL calls, and then applies a GL

render action. It uses OpenGL to render a checked "floor"  and Inventor to render a red cube and a blue

sphere, in the same window. 

Example 17ÿ3 Using a GLX Window

#include <GL/glx.h>

#include <GL/gl.h>

#include <GL/glu.h>

#include <stdio.h>

#include <unistd.h>

#include <Inventor/SoDB.h>

#include <Inventor/actions/SoGLRenderAction.h>

#include <Inventor/nodes/SoCube.h>

#include <Inventor/nodes/SoDirectionalLight.h>
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#include <Inventor/nodes/SoLightModel.h>

#include <Inventor/nodes/SoMaterial.h>

#include <Inventor/nodes/SoTransform.h>

#include <Inventor/nodes/SoSeparator.h>

#include <Inventor/nodes/SoSphere.h>

#define    WINWIDTH    400 

#define    WINHEIGHT   400 

float   floorObj[81][3];

// Build an Inventor scene with two objects and some light

void

buildScene(SoGroup *root)

{

   // Some light

   rootÿ>addChild(new SoLightModel);

   rootÿ>addChild(new SoDirectionalLight);

   // A red cube translated to the left and down

   SoTransform *myTrans = new SoTransform;

   myTransÿ>translation.setValue(ÿ2.0, ÿ2.0, 0.0);

   rootÿ>addChild(myTrans);

   SoMaterial *myMtl = new SoMaterial;

   myMtlÿ>diffuseColor.setValue(1.0, 0.0, 0.0);

   rootÿ>addChild(myMtl);

   rootÿ>addChild(new SoCube);

   // A blue sphere translated right

   myTrans = new SoTransform;

   myTransÿ>translation.setValue(4.0, 0.0, 0.0);

   rootÿ>addChild(myTrans);

   myMtl = new SoMaterial;

   myMtlÿ>diffuseColor.setValue(0.0, 0.0, 1.0);

   rootÿ>addChild(myMtl);

   rootÿ>addChild(new SoSphere);

}

// Build a floor that will be rendered using OpenGL.

void

buildFloor()

{
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   int a = 0;

   for (float i = ÿ5.0; i <= 5.0; i += 1.25) {

      for (float j = ÿ5.0; j <= 5.0; j += 1.25, a++) {

         floorObj[a][0] = j;

         floorObj[a][1] = 0.0;

         floorObj[a][2] = i;

      }

   }

}

// Callback used by GLX window

static Bool

waitForNotify(Display *, XEvent *e, char *arg)

{

   return (eÿ>type == MapNotify) && 

            (eÿ>xmap.window == (Window) arg);

}

// Create and initialize GLX window.

void

openWindow(Display *&display, Window &window)

{

   XVisualInfo *vi;

   Colormap cmap;

   XSetWindowAttributes swa;

   GLXContext cx;

   XEvent event;

   static int attributeList[] = {

            GLX_RGBA,

            GLX_RED_SIZE, 1,

            GLX_GREEN_SIZE, 1,

            GLX_BLUE_SIZE, 1,

            GLX_DEPTH_SIZE, 1,

            GLX_DOUBLEBUFFER, 

            None,

   };

   display = XOpenDisplay(0);

   vi = glXChooseVisual(display, 

            DefaultScreen(display), attributeList);

   cx = glXCreateContext(display, vi, 0, GL_TRUE);

   cmap = XCreateColormap(display, 

            RootWindow(display, viÿ>screen), 

            viÿ>visual, AllocNone);

   swa.colormap = cmap;

   swa.border_pixel = 0;
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   swa.event_mask = StructureNotifyMask;

   window = XCreateWindow(display, 

            RootWindow(display, viÿ>screen), 100, 100,

            WINWIDTH, WINHEIGHT, 0, viÿ>depth, InputOutput,

            viÿ>visual, 

            (CWBorderPixel | CWColormap | CWEventMask), &swa);

   XMapWindow(display, window);

   XIfEvent(display, &event, waitForNotify, (char *) window);

   glXMakeCurrent(display, window, cx);

}

// Draw the lines that make up the floor, using OpenGL

void

drawFloor()

{

   int i;

   glBegin(GL_LINES);

   for (i=0; i<4; i++) {

      glVertex3fv(floorObj[i*18]);

      glVertex3fv(floorObj[(i*18)+8]);

      glVertex3fv(floorObj[(i*18)+17]);

      glVertex3fv(floorObj[(i*18)+9]);

   }

   glVertex3fv(floorObj[i*18]);

   glVertex3fv(floorObj[(i*18)+8]);

   glEnd();

   glBegin(GL_LINES);

   for (i=0; i<4; i++) {

      glVertex3fv(floorObj[i*2]);

      glVertex3fv(floorObj[(i*2)+72]);

      glVertex3fv(floorObj[(i*2)+73]);

      glVertex3fv(floorObj[(i*2)+1]);

   }

   glVertex3fv(floorObj[i*2]);

   glVertex3fv(floorObj[(i*2)+72]);

   glEnd();

}

main(int, char **)

{

   // Initialize Inventor
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   SoDB::init();

   // Build a simple scene graph

   SoSeparator *root = new SoSeparator;

   rootÿ>ref();

   buildScene(root);

   // Build the floor geometry

   buildFloor();

   // Create and initialize window

   Display *display;

   Window window;

   openWindow(display, window);

   glEnable(GL_DEPTH_TEST);

   glClearColor(0.8, 0.8, 0.8, 1.0);

   glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

   // Set up the camera using OpenGL.

   glMatrixMode(GL_PROJECTION);

   glLoadIdentity();

   gluPerspective(90.0, 1.0, 2.0, 12.0);

   glMatrixMode(GL_MODELVIEW);

   glLoadIdentity();

   glTranslatef(0.0, 0.0, ÿ5.0);

   // Render the floor using OpenGL

   glPushMatrix();

   glTranslatef(0.0, ÿ3.0, 0.0);

   glColor3f(0.0, 0.7, 0.0);

   glLineWidth(2.0);

   glDisable(GL_LIGHTING);

   drawFloor();

   glEnable(GL_LIGHTING);

   glPopMatrix();

   // Render the scene

   SbViewportRegion myViewport(WINWIDTH, WINHEIGHT);

   SoGLRenderAction myRenderAction(myViewport);

   myRenderAction.apply(root);

   glXSwapBuffers(display, window);

   sleep (10); 

   rootÿ>unref();

   return 0;

}



Appendix A

An Introduction to ObjectÿOriented Programming for C
Programmers

Open Inventor is an objectÿoriented toolkit for developing 3D programs. It is written in C++, but it

includes a C programming interface. This book is full of references to classes, subclasses, and other

concepts from objectÿoriented programming. All examples are in C++. You will get the most from this

book if you have a reasonable understanding of classes and objectedÿoriented programming before

you begin reading it.

This appendix provides an informal introduction to objectÿoriented programming for C programmers

and an overview of the concepts behind the C interface. If you are comfortable with objectÿoriented

programming, you can skip the first section and just skim the example in this appendix. For the

specifics of Inventor’s C programming interface, see Appendix B.

This chapter contains the following sections:

 • "What Is ObjectÿOriented Programming?" introduces you to the two fundamental concepts of

objectÿoriented programming: data abstraction and inheritance.

 • "An Example of a Class: Sphere" develops a substantial example of a C++ class that illustrates

the concepts of objectÿoriented programming.

 • "Suggested Reading" points you to further information on C++.

What Is ObjectÿOriented Programming?

Many successful programmers use objectÿoriented techniques without knowing it. You have probably

heard programmers complimenting an implementation by describing it as modular. Modular code has

a wellÿdefined interface that works without requiring its users to know how it was written. Modular

code can be reused by many applications, cuts down on programmer learning time, and allows the

implementation internals to change without affecting the programs that use it. It protects the

programmer from the implementation details. The programming interface defines the functionality.

Data Abstraction

For an example, look at the file I/O functions provided in the standard C library: creat(), open(), 

read(), write(), and close(). These routines clearly define the I/O functionality without revealing the

file system details or implementation. Each function uses a file descriptor to identify the data

representing the file, device, or socket. The data structures that represent these objects are different for

each file type, yet they are completely hidden from you as a programmer. The open/close/read/write

semantics apply consistently to each object.

This technique of hiding internal data structures is known as data abstractionthe first fundamental

concept of objectÿoriented programming. It’s good programming practice to confine access to data

structures to the code that is intended to modify the structures. Revealing private data allows the

programmer using the structure to modify things that perhaps he shouldn’t modify. The programmer

is then relying on details of the internal implementation, so the implementor can’t make changes to

that internal representation.

Objects represent the building blocks from which programs are constructed. They consist of data
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structures and some associated functions that operate on those data structures. Objects perform

functions on themselves rather than allowing applications to have access to their internal

implementation. In our example, the C file I/O routines define a generic file (the object) that is

accessed through the open/close/read/write functions.

Inheritance

So far, we’ve described good, modular code, but not specifically objectÿoriented programming. 

Inheritance is the concept that sets objectÿoriented code apart from wellÿwritten modular code.

Inheritance allows you to create new objects from existing objects. It makes it easy to customize and

specialize your programs. Inheritance is the second fundamental concept of objectÿoriented

programming.

You’ve probably often wanted to reuse some existing code, but you couldn’t because you needed to

make minor changes. So you copied the code with the changes into an independent implementation.

This reinvention is tedious, errorÿprone, and a waste of your time. Inheritance provides you with a

mechanism for reusing your existing code and adding small changes, without starting over. 

The C file I/O routine example actually defines three object types: files, devices, and sockets. These

objects are created from the generic file object, which defines the open/close/read/write semantics.

Writing the I/O routines is just a matter of implementing those functions for each type of file object.

The implementation differences stay hidden from the programmer.

Implementing Data Abstraction and Inheritance: Classes

Objectÿoriented programming languages use the techniques we’ve described in a formal manner. C++

provides a few extra constructs on top of C that enforce these techniques. The most basic of these

constructs is the class.You can think of a class either as a data structure with relevant functions

attached, or as a group of related functions with some data attached. It doesn’t matter which model

you prefer. The important concept to understand is that objects encapsulate related data and functions

into a single package, called a class. 

Functions within a class are usually called member functions, or more generically, methods. The data

structures within a class are referred to as member variables. So a class is composed of member

functions and variables.

Note that we’re using the term class to represent the abstract notion of an object, much like a structure

in C. The term object usually refers to an instance of a class. You create an object from a given class

when you instantiate the class. The C parallel would be allocating memory to make a copy of a

structure. You can refer to that copy of the structure as an instance of the structure, or as an object

with the same type as the structure.

When new classes are defined, they can be derived from an existing class. The existing class is called

a base or parent class, and the new class is called the derived class or subclass. New classes created

this way typically inherit all of the methods and variables that were defined in the base class.

Class Hierarchies

Open Inventor is composed of a large set of related classes that implement many aspects of 3D

programming. These classes are implemented in C++. The Open Inventor C programming interface

allows you to use these classes from C programs. So you can write C programs that reap the benefits

of C++ inheritance without needing to learn C++ first. But the C interface does not hide the fact that
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there are classes. Your programming tasks will be easier if you understand the Inventor classes and

how they relate to each other. For example, you need to know which class each class is derived from

to know which functions apply. 

Class relationships in objectÿoriented systems are often illustrated through class hierarchy diagrams,

or class trees. Figure Aÿ1 is an example. It illustrates a fictitious class hierarchy. Note that this

example is not based on Inventor. It is used to convey key concepts in a simple manner, but its sphere,

cone and quad mesh are for example only and are not the same as the Inventor classes with similar

names.

Figure Aÿ1 Sample Class Hierarchy Diagram

Functions and variables defined in the class Geometry also exist for every subclass. So if Geometry

has a variable Bbox and a function getBbox(), all the subclasses of Geometry also have Bbox and

getBbox().

See Chapter 1 for a summary of the Open Inventor class tree.

An Example of a Class: Sphere

This section discusses an example of a C++ class and its member functions. The class we’ll consider

is one from the fictional class tree shown in Figure Aÿ1: Sphere, which represents and operates on a

sphere. The Sphere class is defined below with several member functions and some member

variables:

class Sphere {

public:

    Sphere();             // creates a sphere with default values

    ~Sphere();            // destructor, which deletes a sphere

    void render()         // renders the sphere

    Boolean pick(int x, int y); // picks the sphere

    float radius;          // radius of the sphere

    float center[3];       // center of the sphere

};

Sphere is a class that creates, manages, and operates on a geometric sphere object. The internal

implementation details of the sphere are not exposed to you.
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Notice that the functions of Sphere do not have a sphere argument. When 

you invoke these functions from C++, you invoke them from the class itself. Each function has an

implied sphere argument. For example, this is how you would create a sphere, set its radius, and then

render it in C++:

Sphere *mySphere;               // pointer to a sphere object

mySphere = new Sphere();        // creates and initializes sphere

mySphereÿ>radius = 3.0;         // sets the radius

mySphereÿ>render();             // renders it

The sphereÿ> syntax accesses a member variable or invokes a member function in the same way that

C accesses structure members. For example, mySphereÿ>render() invokes the render() function on 

mySphere. The new Sphere() syntax creates a sphere, allocating memory for the object and

initializing it.

This is how the sphere class would look in the corresponding C interface:

Sphere *SphereCreate();

void SphereDelete(Sphere *sphere);

void SphereRender(Sphere *sphere);

Boolean SpherePick(Sphere *sphere, int x, int y);

(This example follows the naming conventions for Inventor C functions. For details on those

conventions, see Appendix B.)

The C interface would also define a structure for the sphere:

struct Sphere {

    char     pad[48];             /* padding generated by Inventor

 */

    float    radius;

    float    center[3];

};

The pad[48] is generated automatically from the C++ code. These pad statements are a byÿproduct of

the generation of the C interface from the C++ classes. They protect private data that you as a

programmer shouldn’t need to access. 

To create a sphere, set its radius, and render it from C, you would write code like this:

Sphere *mySphere;            /* my sphere object */

mySphere = SphereCreate();

mySphereÿ>radius = 3.0;

SphereRender(mySphere);

Notice how similar this code is to the C++ example. The main difference is syntax. (Again, note that

this is a hypothetical example; this is not exactly how the radius for a sphere is specified in Inventor

programs.)

An Example of Inheritance: HollowSphere

Recall that inheritance is the ability to build specialized classes from existing classes. In C++, you can

create subclasses of a class, which are identical to the parent class with exceptions you can select.
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These exceptions can be different implementations of functions on the parent class, or extra added

functions. Subclasses are said to be derived from or subclassed from the parent class.

For example, we can build a subclass of Sphere called HollowSphere. HollowSphere is identical to 

Sphere, except that it has a thickness value and a new function that tells it whether to render

translucently. HollowSphere is derived from Sphere. Since it’s a subclass of Sphere, all member

functions of Sphere also apply to HollowSphere. Our definition of HollowSphere does not have to

define delete(), render(), or pick() functions. HollowSphere inherits these functions from the Sphere

class. The same is true of Sphere’s member variables, radius and center: HollowSphere inherits

those as well.

Here is the C++ class definition for HollowSphere:

class HollowSphere : public Sphere {                   // subclass

 of Sphere 

    void     showEquator();                   // show equator during

 render

    float    thickness;                     // stores thickness

 value

}

The following C++ code fragment creates a hollow sphere, sets its radius and thickness, turns on the

equator options, and renders it:

HollowSphere *mySphere;

mySphere = new HollowSphere();

mySphereÿ>radius = 3.0;

mySphereÿ>thickness = 0.25;

mySphereÿ>showEquator();

mySphereÿ>render();

To do the same using the C interface:

HollowSphere *mySphere;

mySphere = HollowSphereCreate();

mySphereÿ>radius = 3.0;

mySphereÿ>thickness = 0.25;

HollowSphereShowEquator(mySphere);

HollowSphereRender(mySphere);  /* inherited from parent class */

Note that when you invoke a method from the parent class, the method name is prefixed by the name

of the subclass. See Appendix B for a fuller explanation of how the Inventor C interface names

inheritance methods.

Suggested Reading

If you want to learn more about C++ and objectÿoriented programming, the following books are good

starting points:

 • Dewhurst, Stephen C., and Kathy T. Stark, Programming in C++. Englewood Cliffs, N.J.:

PrenticeÿHall, Inc., 1989.

 • Ellis, Margaret A., and Bjarne Stroustrup, The Annotated C++ Reference Manual. Reading,
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